Abstract

In this paper, the local convective heat transfer coefficient (h) is measured along the surface of an electrically heated vertical wire using digital holographic interferometry (DHI). Experiments are conducted on wires of different diameters. The experimentally measured values are within the range as given in the literature. DHI is expected to provide a more accurate local convective heat transfer coefficient (h) as the value of the temperature gradient required for the calculation of “h” can be obtained more accurately than by other existing optical interferometric techniques without the use of a phase shifting technique. This is because in digital holography phase measurement accuracy is expected to be higher.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Hauf and U. Grigull, “Optical methods in heat transfer,” in Advances in Heat Transfer (Academic, 1970), pp. 133–366.
  2. M. N. Özisik, Basic Heat Transfer (McGraw-Hill, 1977).
  3. J. V. Herraez and R. Belda, “A study of free convection in air around horizontal cylinders of different diameters based on holographic interferometry. Temperature field equations and heat transfer coefficients,” Int. J. Therm. Sci. 41, 261–267 (2002).
  4. D. Naylor, “Recent developments in the measurement of convective heat transfer rates by laser interferometry,” Int. J. Heat Fluid Flow 24, 345–355 (2003).
  5. M. Arshad, M. H. Inayat, and I. R. Chughtai, “Experimental study of natural convection heat transfer from an enclosed assembly of thin vertical cylinders,” Appl. Therm. Eng. 31, 20–27 (2011).
    [CrossRef]
  6. D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Inst. Mech. Eng. 178, 461–472 (1963).
    [CrossRef]
  7. R. J. Goldstein, “Optical measurement of temperature,” in Measurement Techniques in Heat Transfer, E. R. G. Eckert and R. J. Goldstein, eds. (Technical, 1970), pp. 177–228.
  8. C. M. Vest, Holographic Interferometry (Wiley, 1979).
  9. P. V. Farrel, G. S. Springer, and C. M. Vest, “Heterodyne holographic interferometry: concentration and temperature measurement in gas mixtures,” Appl. Opt. 21, 1624–1627 (1982).
    [CrossRef]
  10. D. L. Reuss, “Temperature measurement in a radially symmetric flame using holographic interferometry,” Combust. Flame 49, 207–219 (1983).
    [CrossRef]
  11. P. V. Farrell and D. L. Hofeldt, “Temperature measurement in gases using speckle photography,” Appl. Opt. 23, 1055–1059 (1984).
    [CrossRef]
  12. C. Shakher and R. S. Sirohi, “Flame temperature measurement using speckle techniques,” in New Directions in Holography and Speckle, H. J. Caulfield and C. S. Vikram, eds. (American Scientific, 2008), pp. 376–389.
  13. A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1–12 (2000).
    [CrossRef]
  14. P. Singh, M. S. Faridi, and C. Shakher, “Measurement of temperature of an axisymmetric flame using shearing interferometry and Fourier fringe analysis technique,” Opt. Eng. 43, 387–392 (2004).
    [CrossRef]
  15. E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, “Measurement of temperature distribution of flame by moire deflectometry,” Appl. Opt. 20, 4263–4266 (1981).
    [CrossRef]
  16. C. Shakher and A. K. Nirala, “Measurement of temperature using speckle shearing interferometry,” Appl. Opt. 33, 2125–2127 (1994).
  17. D. E. Silva, “Talbot interferometry for radial and lateral derivatives,” Appl. Opt. 11, 2613–2624 (1972).
    [CrossRef]
  18. C. Shakher and A. J. P. Daniel, “Talbot interferometry with circular grating for the measurement of temperature in axisymmetric gaseous flames,” Appl. Opt. 33, 6068–6072 (1994).
    [CrossRef]
  19. C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser based interferometric techniques,” Opt. Lasers Eng. 31, 455–491 (1999).
    [CrossRef]
  20. M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear grating,” Opt. Lasers Eng. 36, 373–380 (2001).
    [CrossRef]
  21. M. M. Hossain and C. Shakher, “Temperature measurement in laminar free convective flow using digital holography,” Appl. Opt. 48, 1869–1877 (2009).
    [CrossRef]
  22. Y. Li, D. Wang, G. Wang, Y. Zhang, and C. Liu, “Measurement of temperature field in the region near to the radiator by using digital holography,” Proc. SPIE 7382, 738240 (2009).
    [CrossRef]
  23. S. Sharma, G. Sheoran, and C. Shakher, “Digital holographic interferometry for measurement of temperature in axisymmetric flames,” Appl. Opt. 51, 3228–3235 (2012).
    [CrossRef]
  24. S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axisymmetric flame of butane torch burner using digital holographic interferometry,” Opt. Lasers Eng. 50, 1436–1444 (2012).
    [CrossRef]
  25. S. Sharma, G. Sheoran, and C. Shakher, “Temperature measurement of axisymmetric flame under the influence of magnetic field using lensless Fourier transform digital holography,” Appl. Opt. 51, 4554–4562 (2012).
    [CrossRef]
  26. R. Doleček, P. Psota, V. Lédlv, T. Vít, J. Václavík, and V. Kopecký, “General temperature field measurement by digital holography,” Appl. Opt. 52, A319–A325 (2013).
    [CrossRef]
  27. A. Wada, M. Kato, and Y. Ishii, “Large step height measurements using multiple-wavelength holographic interferometry with tunable laser diodes,” J. Opt. Soc. Am. A 25, 3013–3020 (2008).
    [CrossRef]
  28. U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
    [CrossRef]
  29. C. Wagner, S. Seebacher, W. Osten, and W. Juptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812–4820 (1999).
    [CrossRef]
  30. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, 2005).
  31. Y. T. Cho and S.-J. Na, “Application of Abel inversion in real-time calculations for circularly and elliptically symmetric radiation sources,” Meas. Sci. Technol. 16, 878–884 (2005).
    [CrossRef]
  32. U. Schnar, “Direct phase determination in hologram interferometry with use of digital recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994).
    [CrossRef]
  33. R. M. Goldstein, H. A. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
    [CrossRef]
  34. Z. Wang, J. Zhang, and Z. Zhao, “New methods of the filtering the phase noise in the interferometric SAR,” IEEE Geosci. Remote Sens. 4, 2622–2625 (2004).
  35. S. Fatehi, K. Madanipour, and P. Parvin, “Measurement of convective heat transfer coefficient around a vertical hot wire in different heights using Michelson interferometer based on Abel transform,” Phys. Express 1, 124–132 (2011).

2013 (1)

2012 (3)

2011 (2)

S. Fatehi, K. Madanipour, and P. Parvin, “Measurement of convective heat transfer coefficient around a vertical hot wire in different heights using Michelson interferometer based on Abel transform,” Phys. Express 1, 124–132 (2011).

M. Arshad, M. H. Inayat, and I. R. Chughtai, “Experimental study of natural convection heat transfer from an enclosed assembly of thin vertical cylinders,” Appl. Therm. Eng. 31, 20–27 (2011).
[CrossRef]

2009 (2)

Y. Li, D. Wang, G. Wang, Y. Zhang, and C. Liu, “Measurement of temperature field in the region near to the radiator by using digital holography,” Proc. SPIE 7382, 738240 (2009).
[CrossRef]

M. M. Hossain and C. Shakher, “Temperature measurement in laminar free convective flow using digital holography,” Appl. Opt. 48, 1869–1877 (2009).
[CrossRef]

2008 (1)

2005 (1)

Y. T. Cho and S.-J. Na, “Application of Abel inversion in real-time calculations for circularly and elliptically symmetric radiation sources,” Meas. Sci. Technol. 16, 878–884 (2005).
[CrossRef]

2004 (2)

P. Singh, M. S. Faridi, and C. Shakher, “Measurement of temperature of an axisymmetric flame using shearing interferometry and Fourier fringe analysis technique,” Opt. Eng. 43, 387–392 (2004).
[CrossRef]

Z. Wang, J. Zhang, and Z. Zhao, “New methods of the filtering the phase noise in the interferometric SAR,” IEEE Geosci. Remote Sens. 4, 2622–2625 (2004).

2003 (1)

D. Naylor, “Recent developments in the measurement of convective heat transfer rates by laser interferometry,” Int. J. Heat Fluid Flow 24, 345–355 (2003).

2002 (2)

J. V. Herraez and R. Belda, “A study of free convection in air around horizontal cylinders of different diameters based on holographic interferometry. Temperature field equations and heat transfer coefficients,” Int. J. Therm. Sci. 41, 261–267 (2002).

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

2001 (1)

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear grating,” Opt. Lasers Eng. 36, 373–380 (2001).
[CrossRef]

2000 (1)

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1–12 (2000).
[CrossRef]

1999 (2)

C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser based interferometric techniques,” Opt. Lasers Eng. 31, 455–491 (1999).
[CrossRef]

C. Wagner, S. Seebacher, W. Osten, and W. Juptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812–4820 (1999).
[CrossRef]

1994 (3)

1988 (1)

R. M. Goldstein, H. A. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
[CrossRef]

1984 (1)

1983 (1)

D. L. Reuss, “Temperature measurement in a radially symmetric flame using holographic interferometry,” Combust. Flame 49, 207–219 (1983).
[CrossRef]

1982 (1)

1981 (1)

1972 (1)

1963 (1)

D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Inst. Mech. Eng. 178, 461–472 (1963).
[CrossRef]

Arshad, M.

M. Arshad, M. H. Inayat, and I. R. Chughtai, “Experimental study of natural convection heat transfer from an enclosed assembly of thin vertical cylinders,” Appl. Therm. Eng. 31, 20–27 (2011).
[CrossRef]

Bar-Ziv, E.

Belda, R.

J. V. Herraez and R. Belda, “A study of free convection in air around horizontal cylinders of different diameters based on holographic interferometry. Temperature field equations and heat transfer coefficients,” Int. J. Therm. Sci. 41, 261–267 (2002).

Cho, Y. T.

Y. T. Cho and S.-J. Na, “Application of Abel inversion in real-time calculations for circularly and elliptically symmetric radiation sources,” Meas. Sci. Technol. 16, 878–884 (2005).
[CrossRef]

Chughtai, I. R.

M. Arshad, M. H. Inayat, and I. R. Chughtai, “Experimental study of natural convection heat transfer from an enclosed assembly of thin vertical cylinders,” Appl. Therm. Eng. 31, 20–27 (2011).
[CrossRef]

Daniel, A. J. P.

Dolecek, R.

Faridi, M. S.

P. Singh, M. S. Faridi, and C. Shakher, “Measurement of temperature of an axisymmetric flame using shearing interferometry and Fourier fringe analysis technique,” Opt. Eng. 43, 387–392 (2004).
[CrossRef]

Farrel, P. V.

Farrell, P. V.

Fatehi, S.

S. Fatehi, K. Madanipour, and P. Parvin, “Measurement of convective heat transfer coefficient around a vertical hot wire in different heights using Michelson interferometer based on Abel transform,” Phys. Express 1, 124–132 (2011).

Fisher, S. A.

D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Inst. Mech. Eng. 178, 461–472 (1963).
[CrossRef]

Giammartini, S.

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1–12 (2000).
[CrossRef]

Glatt, I.

Goldstein, R. J.

R. J. Goldstein, “Optical measurement of temperature,” in Measurement Techniques in Heat Transfer, E. R. G. Eckert and R. J. Goldstein, eds. (Technical, 1970), pp. 177–228.

Goldstein, R. M.

R. M. Goldstein, H. A. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
[CrossRef]

Grigull, U.

W. Hauf and U. Grigull, “Optical methods in heat transfer,” in Advances in Heat Transfer (Academic, 1970), pp. 133–366.

Guj, G.

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1–12 (2000).
[CrossRef]

Hauf, W.

W. Hauf and U. Grigull, “Optical methods in heat transfer,” in Advances in Heat Transfer (Academic, 1970), pp. 133–366.

Herraez, J. V.

J. V. Herraez and R. Belda, “A study of free convection in air around horizontal cylinders of different diameters based on holographic interferometry. Temperature field equations and heat transfer coefficients,” Int. J. Therm. Sci. 41, 261–267 (2002).

Hofeldt, D. L.

Hossain, M. M.

Inayat, M. H.

M. Arshad, M. H. Inayat, and I. R. Chughtai, “Experimental study of natural convection heat transfer from an enclosed assembly of thin vertical cylinders,” Appl. Therm. Eng. 31, 20–27 (2011).
[CrossRef]

Ishii, Y.

Juptner, W.

Juptner, W. P. O.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

Kafri, O.

Kato, M.

Keren, E.

Kopecký, V.

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, 2005).

Lédlv, V.

Li, Y.

Y. Li, D. Wang, G. Wang, Y. Zhang, and C. Liu, “Measurement of temperature field in the region near to the radiator by using digital holography,” Proc. SPIE 7382, 738240 (2009).
[CrossRef]

Liu, C.

Y. Li, D. Wang, G. Wang, Y. Zhang, and C. Liu, “Measurement of temperature field in the region near to the radiator by using digital holography,” Proc. SPIE 7382, 738240 (2009).
[CrossRef]

Madanipour, K.

S. Fatehi, K. Madanipour, and P. Parvin, “Measurement of convective heat transfer coefficient around a vertical hot wire in different heights using Michelson interferometer based on Abel transform,” Phys. Express 1, 124–132 (2011).

Na, S.-J.

Y. T. Cho and S.-J. Na, “Application of Abel inversion in real-time calculations for circularly and elliptically symmetric radiation sources,” Meas. Sci. Technol. 16, 878–884 (2005).
[CrossRef]

Naylor, D.

D. Naylor, “Recent developments in the measurement of convective heat transfer rates by laser interferometry,” Int. J. Heat Fluid Flow 24, 345–355 (2003).

Nirala, A. K.

C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser based interferometric techniques,” Opt. Lasers Eng. 31, 455–491 (1999).
[CrossRef]

C. Shakher and A. K. Nirala, “Measurement of temperature using speckle shearing interferometry,” Appl. Opt. 33, 2125–2127 (1994).

Osten, W.

Özisik, M. N.

M. N. Özisik, Basic Heat Transfer (McGraw-Hill, 1977).

Parvin, P.

S. Fatehi, K. Madanipour, and P. Parvin, “Measurement of convective heat transfer coefficient around a vertical hot wire in different heights using Michelson interferometer based on Abel transform,” Phys. Express 1, 124–132 (2011).

Psota, P.

Reuss, D. L.

D. L. Reuss, “Temperature measurement in a radially symmetric flame using holographic interferometry,” Combust. Flame 49, 207–219 (1983).
[CrossRef]

Schnar, U.

Schnars, U.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

Seebacher, S.

Shakher, C.

S. Sharma, G. Sheoran, and C. Shakher, “Temperature measurement of axisymmetric flame under the influence of magnetic field using lensless Fourier transform digital holography,” Appl. Opt. 51, 4554–4562 (2012).
[CrossRef]

S. Sharma, G. Sheoran, and C. Shakher, “Digital holographic interferometry for measurement of temperature in axisymmetric flames,” Appl. Opt. 51, 3228–3235 (2012).
[CrossRef]

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axisymmetric flame of butane torch burner using digital holographic interferometry,” Opt. Lasers Eng. 50, 1436–1444 (2012).
[CrossRef]

M. M. Hossain and C. Shakher, “Temperature measurement in laminar free convective flow using digital holography,” Appl. Opt. 48, 1869–1877 (2009).
[CrossRef]

P. Singh, M. S. Faridi, and C. Shakher, “Measurement of temperature of an axisymmetric flame using shearing interferometry and Fourier fringe analysis technique,” Opt. Eng. 43, 387–392 (2004).
[CrossRef]

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear grating,” Opt. Lasers Eng. 36, 373–380 (2001).
[CrossRef]

C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser based interferometric techniques,” Opt. Lasers Eng. 31, 455–491 (1999).
[CrossRef]

C. Shakher and A. J. P. Daniel, “Talbot interferometry with circular grating for the measurement of temperature in axisymmetric gaseous flames,” Appl. Opt. 33, 6068–6072 (1994).
[CrossRef]

C. Shakher and A. K. Nirala, “Measurement of temperature using speckle shearing interferometry,” Appl. Opt. 33, 2125–2127 (1994).

C. Shakher and R. S. Sirohi, “Flame temperature measurement using speckle techniques,” in New Directions in Holography and Speckle, H. J. Caulfield and C. S. Vikram, eds. (American Scientific, 2008), pp. 376–389.

Sharma, S.

Sheoran, G.

Silva, D. E.

Singh, P.

P. Singh, M. S. Faridi, and C. Shakher, “Measurement of temperature of an axisymmetric flame using shearing interferometry and Fourier fringe analysis technique,” Opt. Eng. 43, 387–392 (2004).
[CrossRef]

Sirohi, R. S.

C. Shakher and R. S. Sirohi, “Flame temperature measurement using speckle techniques,” in New Directions in Holography and Speckle, H. J. Caulfield and C. S. Vikram, eds. (American Scientific, 2008), pp. 376–389.

Springer, G. S.

Stella, A.

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1–12 (2000).
[CrossRef]

Thakur, M.

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear grating,” Opt. Lasers Eng. 36, 373–380 (2001).
[CrossRef]

Václavík, J.

Vest, C. M.

Vít, T.

Vyas, A. L.

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear grating,” Opt. Lasers Eng. 36, 373–380 (2001).
[CrossRef]

Wada, A.

Wagner, C.

Wang, D.

Y. Li, D. Wang, G. Wang, Y. Zhang, and C. Liu, “Measurement of temperature field in the region near to the radiator by using digital holography,” Proc. SPIE 7382, 738240 (2009).
[CrossRef]

Wang, G.

Y. Li, D. Wang, G. Wang, Y. Zhang, and C. Liu, “Measurement of temperature field in the region near to the radiator by using digital holography,” Proc. SPIE 7382, 738240 (2009).
[CrossRef]

Wang, Z.

Z. Wang, J. Zhang, and Z. Zhao, “New methods of the filtering the phase noise in the interferometric SAR,” IEEE Geosci. Remote Sens. 4, 2622–2625 (2004).

Werner, C.

R. M. Goldstein, H. A. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
[CrossRef]

Wilkie, D.

D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Inst. Mech. Eng. 178, 461–472 (1963).
[CrossRef]

Zebker, H. A.

R. M. Goldstein, H. A. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
[CrossRef]

Zhang, J.

Z. Wang, J. Zhang, and Z. Zhao, “New methods of the filtering the phase noise in the interferometric SAR,” IEEE Geosci. Remote Sens. 4, 2622–2625 (2004).

Zhang, Y.

Y. Li, D. Wang, G. Wang, Y. Zhang, and C. Liu, “Measurement of temperature field in the region near to the radiator by using digital holography,” Proc. SPIE 7382, 738240 (2009).
[CrossRef]

Zhao, Z.

Z. Wang, J. Zhang, and Z. Zhao, “New methods of the filtering the phase noise in the interferometric SAR,” IEEE Geosci. Remote Sens. 4, 2622–2625 (2004).

Appl. Opt. (11)

E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, “Measurement of temperature distribution of flame by moire deflectometry,” Appl. Opt. 20, 4263–4266 (1981).
[CrossRef]

P. V. Farrel, G. S. Springer, and C. M. Vest, “Heterodyne holographic interferometry: concentration and temperature measurement in gas mixtures,” Appl. Opt. 21, 1624–1627 (1982).
[CrossRef]

P. V. Farrell and D. L. Hofeldt, “Temperature measurement in gases using speckle photography,” Appl. Opt. 23, 1055–1059 (1984).
[CrossRef]

C. Shakher and A. K. Nirala, “Measurement of temperature using speckle shearing interferometry,” Appl. Opt. 33, 2125–2127 (1994).

C. Shakher and A. J. P. Daniel, “Talbot interferometry with circular grating for the measurement of temperature in axisymmetric gaseous flames,” Appl. Opt. 33, 6068–6072 (1994).
[CrossRef]

C. Wagner, S. Seebacher, W. Osten, and W. Juptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812–4820 (1999).
[CrossRef]

D. E. Silva, “Talbot interferometry for radial and lateral derivatives,” Appl. Opt. 11, 2613–2624 (1972).
[CrossRef]

M. M. Hossain and C. Shakher, “Temperature measurement in laminar free convective flow using digital holography,” Appl. Opt. 48, 1869–1877 (2009).
[CrossRef]

S. Sharma, G. Sheoran, and C. Shakher, “Digital holographic interferometry for measurement of temperature in axisymmetric flames,” Appl. Opt. 51, 3228–3235 (2012).
[CrossRef]

S. Sharma, G. Sheoran, and C. Shakher, “Temperature measurement of axisymmetric flame under the influence of magnetic field using lensless Fourier transform digital holography,” Appl. Opt. 51, 4554–4562 (2012).
[CrossRef]

R. Doleček, P. Psota, V. Lédlv, T. Vít, J. Václavík, and V. Kopecký, “General temperature field measurement by digital holography,” Appl. Opt. 52, A319–A325 (2013).
[CrossRef]

Appl. Therm. Eng. (1)

M. Arshad, M. H. Inayat, and I. R. Chughtai, “Experimental study of natural convection heat transfer from an enclosed assembly of thin vertical cylinders,” Appl. Therm. Eng. 31, 20–27 (2011).
[CrossRef]

Combust. Flame (1)

D. L. Reuss, “Temperature measurement in a radially symmetric flame using holographic interferometry,” Combust. Flame 49, 207–219 (1983).
[CrossRef]

Exp. Fluids (1)

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1–12 (2000).
[CrossRef]

IEEE Geosci. Remote Sens. (1)

Z. Wang, J. Zhang, and Z. Zhao, “New methods of the filtering the phase noise in the interferometric SAR,” IEEE Geosci. Remote Sens. 4, 2622–2625 (2004).

Int. J. Heat Fluid Flow (1)

D. Naylor, “Recent developments in the measurement of convective heat transfer rates by laser interferometry,” Int. J. Heat Fluid Flow 24, 345–355 (2003).

Int. J. Therm. Sci. (1)

J. V. Herraez and R. Belda, “A study of free convection in air around horizontal cylinders of different diameters based on holographic interferometry. Temperature field equations and heat transfer coefficients,” Int. J. Therm. Sci. 41, 261–267 (2002).

J. Opt. Soc. Am. A (2)

Meas. Sci. Technol. (2)

Y. T. Cho and S.-J. Na, “Application of Abel inversion in real-time calculations for circularly and elliptically symmetric radiation sources,” Meas. Sci. Technol. 16, 878–884 (2005).
[CrossRef]

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

Opt. Eng. (1)

P. Singh, M. S. Faridi, and C. Shakher, “Measurement of temperature of an axisymmetric flame using shearing interferometry and Fourier fringe analysis technique,” Opt. Eng. 43, 387–392 (2004).
[CrossRef]

Opt. Lasers Eng. (3)

C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser based interferometric techniques,” Opt. Lasers Eng. 31, 455–491 (1999).
[CrossRef]

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear grating,” Opt. Lasers Eng. 36, 373–380 (2001).
[CrossRef]

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axisymmetric flame of butane torch burner using digital holographic interferometry,” Opt. Lasers Eng. 50, 1436–1444 (2012).
[CrossRef]

Phys. Express (1)

S. Fatehi, K. Madanipour, and P. Parvin, “Measurement of convective heat transfer coefficient around a vertical hot wire in different heights using Michelson interferometer based on Abel transform,” Phys. Express 1, 124–132 (2011).

Proc. Inst. Mech. Eng. (1)

D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Inst. Mech. Eng. 178, 461–472 (1963).
[CrossRef]

Proc. SPIE (1)

Y. Li, D. Wang, G. Wang, Y. Zhang, and C. Liu, “Measurement of temperature field in the region near to the radiator by using digital holography,” Proc. SPIE 7382, 738240 (2009).
[CrossRef]

Radio Sci. (1)

R. M. Goldstein, H. A. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
[CrossRef]

Other (6)

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, 2005).

R. J. Goldstein, “Optical measurement of temperature,” in Measurement Techniques in Heat Transfer, E. R. G. Eckert and R. J. Goldstein, eds. (Technical, 1970), pp. 177–228.

C. M. Vest, Holographic Interferometry (Wiley, 1979).

C. Shakher and R. S. Sirohi, “Flame temperature measurement using speckle techniques,” in New Directions in Holography and Speckle, H. J. Caulfield and C. S. Vikram, eds. (American Scientific, 2008), pp. 376–389.

W. Hauf and U. Grigull, “Optical methods in heat transfer,” in Advances in Heat Transfer (Academic, 1970), pp. 133–366.

M. N. Özisik, Basic Heat Transfer (McGraw-Hill, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics