Abstract

This article presents an overview of recent advances in the field of digital holography, ranging from holographic techniques designed to increase the resolution of microscopic images, holographic imaging using incoherent illumination, phase retrieval with incoherent illumination, imaging of occluded objects, and the holographic recording of depth-extended objects using a frequency-comb laser, to the design of an infrastructure for remote laboratories for digital-holographic microscopy and metrology. The paper refers to current trends in digital holography and explains them using new results that were recently achieved at the Institute for Applied Optics of the University Stuttgart.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
    [CrossRef]
  2. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [CrossRef]
  3. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962).
    [CrossRef]
  4. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [CrossRef]
  5. T. Huang, “Digital holography,” Proc. IEEE 59, 1335–1346 (1971).
    [CrossRef]
  6. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavsky, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).
  7. T. H. Demetrakopoulos and R. Mitra, “Digital and optical reconstruction of images from suboptical patterns,” Appl. Opt. 13, 665–670 (1974).
    [CrossRef]
  8. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
  9. X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53, 112306 (2014).
    [CrossRef]
  10. Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636–653 (2006).
    [CrossRef]
  11. T. Kreis, Handbook of Holographic Interferometry–Optical and Digital Methods (Wiley-VCH, 2005).
  12. J. Gang, “Three-dimensional display technologies,” Adv. Opt. Photon. 5, 456–535 (2013).
    [CrossRef]
  13. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 1705–1707 (2006).
    [CrossRef]
  14. H. J. Coufal, D. Psaltis, G. T. Sincerbox, A. M. Glass, and M. J. Cardillo, eds., Holographic Data Storage (Springer-Verlag, 2000).
  15. L. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2004).
  16. M. Sutkowski and M. Kujawinska, “Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000).
    [CrossRef]
  17. C. Kohler, X. Schwab, and W. Osten, “Optimally tuned spatial light modulators for digital holography,” Appl. Opt. 45, 960–967 (2006).
    [CrossRef]
  18. HOLOEYE Photonic AG, http://holoeye.com/ .
  19. G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 1–29.
  20. HAMAMTSU Photonics K.K., http://www.hamamatsu.com/jp/en/technology/innovation/lcos-slm/index.html .
  21. S. Zwick, T. Haist, M. Warber, and W. Osten, “Dynamic holography using pixelated light modulators,” Appl. Opt. 49, F47–F58 (2010).
    [CrossRef]
  22. M. Reicherter, J. Liesener, T. Haist, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written in a liquid crystal display,” Opt. Lett. 9, 508–510 (1999).
  23. M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” J. Disp. Technol. 6, 490–499 (2010).
    [CrossRef]
  24. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).
    [CrossRef]
  25. J. Liesener, M. Reicherter, and H. J. Tiziani, “Determination and compensation of aberrations using SLMs,” Opt. Commun. 233, 161–166 (2004).
    [CrossRef]
  26. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5, 81–101 (2011).
    [CrossRef]
  27. T. Haist, M. Hasler, W. Osten, and M. Baranek, “Programmable microscopy,” in Multidimensional Imaging, B. Javidi, E. Tajahuerce, and P. Andrés, eds. (Wiley, 2014), pp. 153–174.
  28. P. Marquet and C. Depeursinge, “Digital holographic microscopy: a new imaging technique to quantitatively explore cell dynamics with nanometer sensitivity,” in Multidimensional Imaging, B. Javidi, E. Tajahuerce, and P. Andrés, eds. (Wiley, 2014), pp. 197–212.
  29. L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011).
    [CrossRef]
  30. B. Lee and Y. Kim, “Three-dimensional display and imaging: status and prospects,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 31–56.
  31. W. Osten, T. Baumbach, and W. Jueptner, “Comparative digital holography,” Opt. Lett. 27, 1764–1766 (2002).
    [CrossRef]
  32. T. Baumbach, W. Osten, C. Kopylow, and W. Jueptner, “Remote metrology by comparative digital holography,” Appl. Opt. 45, 925–934 (2006).
    [CrossRef]
  33. A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18, 14159–14164 (2010).
    [CrossRef]
  34. P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328–1330 (2013).
    [CrossRef]
  35. A. Faridian, G. Pedrini, and W. Osten, “High-contrast multilayer imaging of biological organisms through dark-field digital refocusing,” J. Biomed. Opt. 18, 086009 (2013).
    [CrossRef]
  36. A. Faridian, G. Pedrini, and W. Osten, “Opposed-view dark-field digital holographic microscopy,” Biomed. Opt. Express 5, 728–736 (2014).
    [CrossRef]
  37. G. Pedrini, H. Li, A. Faridian, and W. Osten, “Digital holography of self-luminous objects by using a Mach-Zehnder setup,” Opt. Lett. 37, 713–715 (2012).
    [CrossRef]
  38. D. N. Naik, G. Pedrini, and W. Osten, “Recording of incoherent-object hologram as complex spatial coherence function using Sagnac radial shearing interferometer and a Pockels cell,” Opt. Express 21, 3990–3995 (2013).
    [CrossRef]
  39. D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach–Zehnder radial-shearing interferometer,” Opt. Lett. 39, 1857–1860 (2014).
    [CrossRef]
  40. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
    [CrossRef]
  41. K. Körner, G. Pedrini, I. Alexeenko, T. Steinmetz, R. Holzwarth, and W. Osten, “Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning,” Opt. Express 20, 7237–7242 (2012).
    [CrossRef]
  42. K. Körner, G. Pedrini, C. Pruss, and W. Osten, “Verfahren und Anordnung zur Kurz-Kohärenz-Holografie,” Deutsches PatentDE 10 2011 016 660 B4 (October 25, 2012).
  43. K. Körner, G. Pedrini, I. Alexeenko, W. Lyda, T. Steinmetz, R. Holzwarth, and W. Osten, “Multi-level optical sectioning based on digital holography with a femtosecond frequency comb laser,” Proc. SPIE 8430, 843004 (2012).
    [CrossRef]
  44. P. Gao, G. Pedrini, and W. Osten, “Phase retrieval with resolution enhancement by using structured illumination,” Opt. Lett. 38, 5204–5207 (2013).
    [CrossRef]
  45. A. Singh, A. Faridian, P. Gao, G. Pedrini, and W. Osten, “Quantitative phase imaging using deep UV LED source,” Opt. Lett. 39, 3468–3471 (2014).
    [CrossRef]
  46. W. Osten, M. Wilke, and G. Pedrini, “Remote laboratories for optical metrology: from the lab to the cloud,” Opt. Eng. 52, 101914 (2013).
    [CrossRef]
  47. M. Wilke, A. K. Singh, A. Faridian, T. Richter, G. Pedrini, and W. Osten, “Statistics of Fresnelet coefficients in PSI holograms,” Proc. SPIE 8499, 849904 (2012).
    [CrossRef]
  48. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  49. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [CrossRef]
  50. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
    [CrossRef]
  51. A. Mudassar and A. Hussain, “Super-resolution of active spatial frequency heterodyning using holographic approach,” Appl. Opt. 49, 3434–3441 (2010).
    [CrossRef]
  52. L. Mertz and N. O. Young, “Fresnel transformations of images,” in Proceedings of the ICO Conference on Optical instruments and Techniques, K. J. Habell, ed. (Chapman and Hall, 1962), pp. 305–310.
  53. A. W. Lohmann, “Wavefront reconstruction for incoherent objects,” J. Opt. Soc. Am. 55, 1555–1556 (1965).
    [CrossRef]
  54. O. Bryngdahl and A. Lohmann, “Variable magnification in incoherent holography,” Appl. Opt. 9, 231–232 (1970).
    [CrossRef]
  55. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912–914 (2007).
    [CrossRef]
  56. C. W. McCutchen, “Generalized source and the van Cittert-Zernike theorem: a study of the spatial coherence required for interferometry,” J. Opt. Soc. Am. 56, 727–732 (1966).
    [CrossRef]
  57. A. S. Marathay, “Noncoherent-object hologram: its reconstruction and optical processing,” J. Opt. Soc. Am. A 4, 1861–1868 (1987).
    [CrossRef]
  58. M. Takeda, W. Wang, Z. Duan, and Y. Miyamoto, “Coherence holography,” Opt. Express 13, 9629–9635 (2005).
    [CrossRef]
  59. M. K. Kim, “Full color natural light holographic camera,” Opt. Express 21, 9636–9642 (2013).
    [CrossRef]
  60. D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Recording of 3D spatial and spectral information of self-luminous objects using a Mach-Zehnder radial shearing interferometer,” in 7th International Workshop on Advanced Optical Imaging and Metrology-Fringe 2013, W. Osten, ed. (Springer, 2013), pp. 715–718.
  61. K. Itoh, T. Inoue, T. Yoshida, and Y. Ichioka, “Interferometric supermultispectral imaging,” Appl. Opt. 29, 1625–1630 (1990).
    [CrossRef]
  62. D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999).
    [CrossRef]
  63. S. Teeranutranont and K. Yoshimori, “Digital holographic three-dimensional imaging spectrometry,” Appl. Opt. 52, A388–A396 (2013).
    [CrossRef]
  64. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
    [CrossRef]
  65. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
    [CrossRef]
  66. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [CrossRef]
  67. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
    [CrossRef]
  68. B. C. Platt and R. Shack, “History and principles of Shack–Hartmann wavefront sensing,” J. Refr. Surg. 17, S573–S577 (2001).
  69. J. B. Costa, “Modulation effect of the atmosphere in a pyramid wave-front sensor,” Appl. Opt. 44, 60–66 (2005).
    [CrossRef]
  70. S. Dong, T. Haist, and W. Osten, “Hybrid wavefront sensor for the fast detection of wavefront disturbances,” Appl. Opt. 51, 6268–6274 (2012).
    [CrossRef]
  71. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009).
    [CrossRef]
  72. G. Pedrini, W. Osten, and Y. Zhang, “Wave-front reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30, 833–835 (2005).
    [CrossRef]
  73. P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45, 8596–8605 (2006).
    [CrossRef]
  74. P. Bao, F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval using multiple illumination wavelengths,” Opt. Lett. 33, 309–311 (2008).
    [CrossRef]
  75. Y. J. Liu, B. Chen, E. R. Li, J. Y. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. C. Tian, K. A. Nugent, P. P. Zhu, and Z. Y. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78, 023817 (2008).
    [CrossRef]
  76. F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75, 043805 (2007).
    [CrossRef]
  77. F. Zhang and J. M. Rodenburg, “Phase retrieval based on wave-front relay and modulation,” Phys. Rev. B 82, 121104(R) (2010).
    [CrossRef]
  78. J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4798 (2004).
    [CrossRef]
  79. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
    [CrossRef]
  80. T. B. Edo, D. J. Batey, A. M. Maiden, C. Rau, U. Wagner, Z. D. Pesic, T. A. Waigh, and J. M. Rodenburg, “Sampling in x-ray ptychography,” Phys. Rev. A 87, 053850 (2013).
    [CrossRef]
  81. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983).
    [CrossRef]
  82. F. Roddier, “Wavefront sensing and the irradiance transport equation,” Appl. Opt. 29, 1402–1403 (1990).
    [CrossRef]
  83. J. Frank, S. Altmeyer, and G. Wernicke, “Non-interferometric, non-iterative phase retrieval by Green’s functions,” J. Opt. Soc. Am. A 27, 2244–2251 (2010).
    [CrossRef]
  84. S. C. Woods and A. H. Greenaway, “Wave-front sensing by use of a Green’s function solution to the intensity transport equation,” J. Opt. Soc. Am. A 20, 508–512 (2003).
    [CrossRef]
  85. P. Bon, S. Monneret, and B. Wattellier, “Noniterative boundary-artifact-free wavefront reconstruction from its derivatives,” Appl. Opt. 51, 5698–5704 (2012).
    [CrossRef]
  86. Remote Laboratory, http://remotelaboratory.com/ .
  87. University of South Australia NetLab, http://netlab.unisa.edu.au/index.xhtml .
  88. University of South Australia NetLab, http://netlab.unisa.edu.au/index.xhtml .
  89. Johns Hopkins University Virtual Lab, http://www.jhu.edu/virtlab/virtlab.html .
  90. M. Gronle, W. Lyda, M. Wilke, C. Kohler, and W. Osten, “Itom: an open source metrology, automation and data evaluation software,” Appl. Opt. 53, 2974–2982 (2014).
    [CrossRef]
  91. Open Wonderland, http://openwonderland.org/ .
  92. eSciDoc, https://www.escidoc.org/ .
  93. W. Osten, “Holography and virtual 3D-testing,” in Proceedings of the 1st International Berlin Workshop HoloMet 2000 “New Prospects of Holography and 3D-Metrology,”W. Osten and W. Jüptner, eds. (Strahltechnik Band 14, 2000), pp. 14–17.
  94. W. Osten, T. Baumbach, and W. Jüptner, “A new sensor for remote interferometry,” Proc. SPIE 4596, 158–168 (2001).
    [CrossRef]
  95. A. Ball and M. Duke, “How to cite datasets and link to publications,” Digital Curation Centre (2011), http://www.dcc.ac.uk/resources/how-guides/cite-datasets .
  96. A. Coble, A. Smallbone, A. Bhave, R. Watson, A. Braumann, and M. Kraft, “Delivering authentic experiences for engineering students and professionals through e-labs,” in IEEE EDUCON Education Engineering (2010), pp. 1085–1090.
  97. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
    [CrossRef]
  98. B. Javidi and F. Okano, Three Dimensional Television, Video, and Display Technologies (Springer, 2002).
  99. E. Darakis and J. J. Soraghan, “Use of Fresnelets for phase-shifting digital hologram compression,” IEEE Trans. Image Process. 15, 3804–3811 (2006).
    [CrossRef]
  100. A. Hyvärinen, P. O. Hoyer, and E. Oja, “Sparse code shrinkage: denoising by nonlinear maximum likelihood estimation,” in Proceedings of Advances in Neural Information Processing Systems, Vol. 11 (MIT, 1998).

2014

2013

2012

G. Pedrini, H. Li, A. Faridian, and W. Osten, “Digital holography of self-luminous objects by using a Mach-Zehnder setup,” Opt. Lett. 37, 713–715 (2012).
[CrossRef]

K. Körner, G. Pedrini, I. Alexeenko, T. Steinmetz, R. Holzwarth, and W. Osten, “Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning,” Opt. Express 20, 7237–7242 (2012).
[CrossRef]

P. Bon, S. Monneret, and B. Wattellier, “Noniterative boundary-artifact-free wavefront reconstruction from its derivatives,” Appl. Opt. 51, 5698–5704 (2012).
[CrossRef]

S. Dong, T. Haist, and W. Osten, “Hybrid wavefront sensor for the fast detection of wavefront disturbances,” Appl. Opt. 51, 6268–6274 (2012).
[CrossRef]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[CrossRef]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[CrossRef]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[CrossRef]

K. Körner, G. Pedrini, I. Alexeenko, W. Lyda, T. Steinmetz, R. Holzwarth, and W. Osten, “Multi-level optical sectioning based on digital holography with a femtosecond frequency comb laser,” Proc. SPIE 8430, 843004 (2012).
[CrossRef]

M. Wilke, A. K. Singh, A. Faridian, T. Richter, G. Pedrini, and W. Osten, “Statistics of Fresnelet coefficients in PSI holograms,” Proc. SPIE 8499, 849904 (2012).
[CrossRef]

2011

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5, 81–101 (2011).
[CrossRef]

L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011).
[CrossRef]

2010

2009

2008

P. Bao, F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval using multiple illumination wavelengths,” Opt. Lett. 33, 309–311 (2008).
[CrossRef]

Y. J. Liu, B. Chen, E. R. Li, J. Y. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. C. Tian, K. A. Nugent, P. P. Zhu, and Z. Y. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78, 023817 (2008).
[CrossRef]

2007

2006

2005

2004

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4798 (2004).
[CrossRef]

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[CrossRef]

J. Liesener, M. Reicherter, and H. J. Tiziani, “Determination and compensation of aberrations using SLMs,” Opt. Commun. 233, 161–166 (2004).
[CrossRef]

2003

2002

2001

W. Osten, T. Baumbach, and W. Jüptner, “A new sensor for remote interferometry,” Proc. SPIE 4596, 158–168 (2001).
[CrossRef]

B. C. Platt and R. Shack, “History and principles of Shack–Hartmann wavefront sensing,” J. Refr. Surg. 17, S573–S577 (2001).

2000

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[CrossRef]

M. Sutkowski and M. Kujawinska, “Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000).
[CrossRef]

1999

M. Reicherter, J. Liesener, T. Haist, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written in a liquid crystal display,” Opt. Lett. 9, 508–510 (1999).

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999).
[CrossRef]

1994

1990

1987

1983

1974

1972

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavsky, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

1971

T. Huang, “Digital holography,” Proc. IEEE 59, 1335–1346 (1971).
[CrossRef]

1970

1967

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

1966

1965

1962

1960

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

1948

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Alexeenko, I.

K. Körner, G. Pedrini, I. Alexeenko, T. Steinmetz, R. Holzwarth, and W. Osten, “Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning,” Opt. Express 20, 7237–7242 (2012).
[CrossRef]

K. Körner, G. Pedrini, I. Alexeenko, W. Lyda, T. Steinmetz, R. Holzwarth, and W. Osten, “Multi-level optical sectioning based on digital holography with a femtosecond frequency comb laser,” Proc. SPIE 8430, 843004 (2012).
[CrossRef]

Almoro, P.

Altmeyer, S.

Bao, P.

Baranek, M.

T. Haist, M. Hasler, W. Osten, and M. Baranek, “Programmable microscopy,” in Multidimensional Imaging, B. Javidi, E. Tajahuerce, and P. Andrés, eds. (Wiley, 2014), pp. 153–174.

Batey, D. J.

T. B. Edo, D. J. Batey, A. M. Maiden, C. Rau, U. Wagner, Z. D. Pesic, T. A. Waigh, and J. M. Rodenburg, “Sampling in x-ray ptychography,” Phys. Rev. A 87, 053850 (2013).
[CrossRef]

Baumbach, T.

Bawendi, M.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[CrossRef]

Bernet, S.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5, 81–101 (2011).
[CrossRef]

Bertaux, N.

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[CrossRef]

Bhave, A.

A. Coble, A. Smallbone, A. Bhave, R. Watson, A. Braumann, and M. Kraft, “Delivering authentic experiences for engineering students and professionals through e-labs,” in IEEE EDUCON Education Engineering (2010), pp. 1085–1090.

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[CrossRef]

Bon, P.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Brady, D. J.

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999).
[CrossRef]

Brady, R. B.

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999).
[CrossRef]

Braumann, A.

A. Coble, A. Smallbone, A. Bhave, R. Watson, A. Braumann, and M. Kraft, “Delivering authentic experiences for engineering students and professionals through e-labs,” in IEEE EDUCON Education Engineering (2010), pp. 1085–1090.

Brooker, G.

Bryngdahl, O.

Chen, B.

Y. J. Liu, B. Chen, E. R. Li, J. Y. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. C. Tian, K. A. Nugent, P. P. Zhu, and Z. Y. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78, 023817 (2008).
[CrossRef]

Coble, A.

A. Coble, A. Smallbone, A. Bhave, R. Watson, A. Braumann, and M. Kraft, “Delivering authentic experiences for engineering students and professionals through e-labs,” in IEEE EDUCON Education Engineering (2010), pp. 1085–1090.

Coppola, G.

Costa, J. B.

DaneshPanah, M.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” J. Disp. Technol. 6, 490–499 (2010).
[CrossRef]

Darakis, E.

E. Darakis and J. J. Soraghan, “Use of Fresnelets for phase-shifting digital hologram compression,” IEEE Trans. Image Process. 15, 3804–3811 (2006).
[CrossRef]

De Nicola, S.

Demetrakopoulos, T. H.

Depeursinge, C.

P. Marquet and C. Depeursinge, “Digital holographic microscopy: a new imaging technique to quantitatively explore cell dynamics with nanometer sensitivity,” in Multidimensional Imaging, B. Javidi, E. Tajahuerce, and P. Andrés, eds. (Wiley, 2014), pp. 197–212.

Dong, S.

Duan, Z.

Edo, T. B.

T. B. Edo, D. J. Batey, A. M. Maiden, C. Rau, U. Wagner, Z. D. Pesic, T. A. Waigh, and J. M. Rodenburg, “Sampling in x-ray ptychography,” Phys. Rev. A 87, 053850 (2013).
[CrossRef]

Eigenthaler, U.

Faridian, A.

Faulkner, H. M. L.

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[CrossRef]

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4798 (2004).
[CrossRef]

Ferraro, P.

Finizio, A.

Frank, J.

Frauel, Y.

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636–653 (2006).
[CrossRef]

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[CrossRef]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Gang, J.

Gao, P.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Greenaway, A. H.

Grilli, S.

Gronle, M.

Gupta, O.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[CrossRef]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[CrossRef]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[CrossRef]

Haist, T.

S. Dong, T. Haist, and W. Osten, “Hybrid wavefront sensor for the fast detection of wavefront disturbances,” Appl. Opt. 51, 6268–6274 (2012).
[CrossRef]

S. Zwick, T. Haist, M. Warber, and W. Osten, “Dynamic holography using pixelated light modulators,” Appl. Opt. 49, F47–F58 (2010).
[CrossRef]

M. Reicherter, J. Liesener, T. Haist, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written in a liquid crystal display,” Opt. Lett. 9, 508–510 (1999).

T. Haist, M. Hasler, W. Osten, and M. Baranek, “Programmable microscopy,” in Multidimensional Imaging, B. Javidi, E. Tajahuerce, and P. Andrés, eds. (Wiley, 2014), pp. 153–174.

Hasegawa, S.

Hasler, M.

T. Haist, M. Hasler, W. Osten, and M. Baranek, “Programmable microscopy,” in Multidimensional Imaging, B. Javidi, E. Tajahuerce, and P. Andrés, eds. (Wiley, 2014), pp. 153–174.

Hayasaki, Y.

Hermerschmidt, A.

G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 1–29.

Hirscher, M.

Holzwarth, R.

K. Körner, G. Pedrini, I. Alexeenko, W. Lyda, T. Steinmetz, R. Holzwarth, and W. Osten, “Multi-level optical sectioning based on digital holography with a femtosecond frequency comb laser,” Proc. SPIE 8430, 843004 (2012).
[CrossRef]

K. Körner, G. Pedrini, I. Alexeenko, T. Steinmetz, R. Holzwarth, and W. Osten, “Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning,” Opt. Express 20, 7237–7242 (2012).
[CrossRef]

Hong, J.

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53, 112306 (2014).
[CrossRef]

Hopp, D.

Hoyer, P. O.

A. Hyvärinen, P. O. Hoyer, and E. Oja, “Sparse code shrinkage: denoising by nonlinear maximum likelihood estimation,” in Proceedings of Advances in Neural Information Processing Systems, Vol. 11 (MIT, 1998).

Huang, T.

T. Huang, “Digital holography,” Proc. IEEE 59, 1335–1346 (1971).
[CrossRef]

Hussain, A.

Hyvärinen, A.

A. Hyvärinen, P. O. Hoyer, and E. Oja, “Sparse code shrinkage: denoising by nonlinear maximum likelihood estimation,” in Proceedings of Advances in Neural Information Processing Systems, Vol. 11 (MIT, 1998).

Ichioka, Y.

Inoue, T.

Itoh, K.

Javidi, B.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” J. Disp. Technol. 6, 490–499 (2010).
[CrossRef]

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636–653 (2006).
[CrossRef]

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[CrossRef]

B. Javidi and F. Okano, Three Dimensional Television, Video, and Display Technologies (Springer, 2002).

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5, 81–101 (2011).
[CrossRef]

Jueptner, W.

Jüptner, W.

W. Osten, T. Baumbach, and W. Jüptner, “A new sensor for remote interferometry,” Proc. SPIE 4596, 158–168 (2001).
[CrossRef]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).

Kang, H.

L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011).
[CrossRef]

Katz, O.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[CrossRef]

Kim, M. K.

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53, 112306 (2014).
[CrossRef]

M. K. Kim, “Full color natural light holographic camera,” Opt. Express 21, 9636–9642 (2013).
[CrossRef]

Kim, Y.

B. Lee and Y. Kim, “Three-dimensional display and imaging: status and prospects,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 31–56.

Kohler, C.

Kopylow, C.

Körner, K.

K. Körner, G. Pedrini, I. Alexeenko, T. Steinmetz, R. Holzwarth, and W. Osten, “Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning,” Opt. Express 20, 7237–7242 (2012).
[CrossRef]

K. Körner, G. Pedrini, I. Alexeenko, W. Lyda, T. Steinmetz, R. Holzwarth, and W. Osten, “Multi-level optical sectioning based on digital holography with a femtosecond frequency comb laser,” Proc. SPIE 8430, 843004 (2012).
[CrossRef]

K. Körner, G. Pedrini, C. Pruss, and W. Osten, “Verfahren und Anordnung zur Kurz-Kohärenz-Holografie,” Deutsches PatentDE 10 2011 016 660 B4 (October 25, 2012).

Kraft, M.

A. Coble, A. Smallbone, A. Bhave, R. Watson, A. Braumann, and M. Kraft, “Delivering authentic experiences for engineering students and professionals through e-labs,” in IEEE EDUCON Education Engineering (2010), pp. 1085–1090.

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry–Optical and Digital Methods (Wiley-VCH, 2005).

Kronrod, M. A.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavsky, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

Krüger, S.

G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 1–29.

Kujawinska, M.

M. Sutkowski and M. Kujawinska, “Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000).
[CrossRef]

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[CrossRef]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Lazarev, G.

G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 1–29.

Lee, B.

B. Lee and Y. Kim, “Three-dimensional display and imaging: status and prospects,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 31–56.

Leith, E. N.

Li, E. R.

Y. J. Liu, B. Chen, E. R. Li, J. Y. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. C. Tian, K. A. Nugent, P. P. Zhu, and Z. Y. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78, 023817 (2008).
[CrossRef]

Li, H.

Liesener, J.

J. Liesener, M. Reicherter, and H. J. Tiziani, “Determination and compensation of aberrations using SLMs,” Opt. Commun. 233, 161–166 (2004).
[CrossRef]

M. Reicherter, J. Liesener, T. Haist, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written in a liquid crystal display,” Opt. Lett. 9, 508–510 (1999).

Liu, C.

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53, 112306 (2014).
[CrossRef]

Liu, Y. J.

Y. J. Liu, B. Chen, E. R. Li, J. Y. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. C. Tian, K. A. Nugent, P. P. Zhu, and Z. Y. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78, 023817 (2008).
[CrossRef]

Lohmann, A.

Lohmann, A. W.

Lyda, W.

M. Gronle, W. Lyda, M. Wilke, C. Kohler, and W. Osten, “Itom: an open source metrology, automation and data evaluation software,” Appl. Opt. 53, 2974–2982 (2014).
[CrossRef]

K. Körner, G. Pedrini, I. Alexeenko, W. Lyda, T. Steinmetz, R. Holzwarth, and W. Osten, “Multi-level optical sectioning based on digital holography with a femtosecond frequency comb laser,” Proc. SPIE 8430, 843004 (2012).
[CrossRef]

Magro, C.

Maiden, A. M.

T. B. Edo, D. J. Batey, A. M. Maiden, C. Rau, U. Wagner, Z. D. Pesic, T. A. Waigh, and J. M. Rodenburg, “Sampling in x-ray ptychography,” Phys. Rev. A 87, 053850 (2013).
[CrossRef]

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Marathay, A. S.

Marcelli, A.

Y. J. Liu, B. Chen, E. R. Li, J. Y. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. C. Tian, K. A. Nugent, P. P. Zhu, and Z. Y. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78, 023817 (2008).
[CrossRef]

Marks, D. L.

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999).
[CrossRef]

Marquet, P.

P. Marquet and C. Depeursinge, “Digital holographic microscopy: a new imaging technique to quantitatively explore cell dynamics with nanometer sensitivity,” in Multidimensional Imaging, B. Javidi, E. Tajahuerce, and P. Andrés, eds. (Wiley, 2014), pp. 197–212.

Matoba, O.

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636–653 (2006).
[CrossRef]

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[CrossRef]

Maucort, G.

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5, 81–101 (2011).
[CrossRef]

McCutchen, C. W.

Mertz, L.

L. Mertz and N. O. Young, “Fresnel transformations of images,” in Proceedings of the ICO Conference on Optical instruments and Techniques, K. J. Habell, ed. (Chapman and Hall, 1962), pp. 305–310.

Merzlyakov, N. S.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavsky, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

Ming, H.

Y. J. Liu, B. Chen, E. R. Li, J. Y. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. C. Tian, K. A. Nugent, P. P. Zhu, and Z. Y. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78, 023817 (2008).
[CrossRef]

Mitra, R.

Miyamoto, Y.

Monneret, S.

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[CrossRef]

Mudassar, A.

Munson, D. C.

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999).
[CrossRef]

Naik, D. N.

Naughton, T. J.

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636–653 (2006).
[CrossRef]

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[CrossRef]

Nishida, N.

Nugent, K. A.

Y. J. Liu, B. Chen, E. R. Li, J. Y. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. C. Tian, K. A. Nugent, P. P. Zhu, and Z. Y. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78, 023817 (2008).
[CrossRef]

Oja, E.

A. Hyvärinen, P. O. Hoyer, and E. Oja, “Sparse code shrinkage: denoising by nonlinear maximum likelihood estimation,” in Proceedings of Advances in Neural Information Processing Systems, Vol. 11 (MIT, 1998).

Okano, F.

B. Javidi and F. Okano, Three Dimensional Television, Video, and Display Technologies (Springer, 2002).

Onural, L.

L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011).
[CrossRef]

Osten, S.

G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 1–29.

Osten, W.

A. Faridian, G. Pedrini, and W. Osten, “Opposed-view dark-field digital holographic microscopy,” Biomed. Opt. Express 5, 728–736 (2014).
[CrossRef]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
[CrossRef]

M. Gronle, W. Lyda, M. Wilke, C. Kohler, and W. Osten, “Itom: an open source metrology, automation and data evaluation software,” Appl. Opt. 53, 2974–2982 (2014).
[CrossRef]

A. Singh, A. Faridian, P. Gao, G. Pedrini, and W. Osten, “Quantitative phase imaging using deep UV LED source,” Opt. Lett. 39, 3468–3471 (2014).
[CrossRef]

D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach–Zehnder radial-shearing interferometer,” Opt. Lett. 39, 1857–1860 (2014).
[CrossRef]

D. N. Naik, G. Pedrini, and W. Osten, “Recording of incoherent-object hologram as complex spatial coherence function using Sagnac radial shearing interferometer and a Pockels cell,” Opt. Express 21, 3990–3995 (2013).
[CrossRef]

A. Faridian, G. Pedrini, and W. Osten, “High-contrast multilayer imaging of biological organisms through dark-field digital refocusing,” J. Biomed. Opt. 18, 086009 (2013).
[CrossRef]

P. Gao, G. Pedrini, and W. Osten, “Phase retrieval with resolution enhancement by using structured illumination,” Opt. Lett. 38, 5204–5207 (2013).
[CrossRef]

W. Osten, M. Wilke, and G. Pedrini, “Remote laboratories for optical metrology: from the lab to the cloud,” Opt. Eng. 52, 101914 (2013).
[CrossRef]

P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328–1330 (2013).
[CrossRef]

K. Körner, G. Pedrini, I. Alexeenko, W. Lyda, T. Steinmetz, R. Holzwarth, and W. Osten, “Multi-level optical sectioning based on digital holography with a femtosecond frequency comb laser,” Proc. SPIE 8430, 843004 (2012).
[CrossRef]

K. Körner, G. Pedrini, I. Alexeenko, T. Steinmetz, R. Holzwarth, and W. Osten, “Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning,” Opt. Express 20, 7237–7242 (2012).
[CrossRef]

M. Wilke, A. K. Singh, A. Faridian, T. Richter, G. Pedrini, and W. Osten, “Statistics of Fresnelet coefficients in PSI holograms,” Proc. SPIE 8499, 849904 (2012).
[CrossRef]

G. Pedrini, H. Li, A. Faridian, and W. Osten, “Digital holography of self-luminous objects by using a Mach-Zehnder setup,” Opt. Lett. 37, 713–715 (2012).
[CrossRef]

S. Dong, T. Haist, and W. Osten, “Hybrid wavefront sensor for the fast detection of wavefront disturbances,” Appl. Opt. 51, 6268–6274 (2012).
[CrossRef]

S. Zwick, T. Haist, M. Warber, and W. Osten, “Dynamic holography using pixelated light modulators,” Appl. Opt. 49, F47–F58 (2010).
[CrossRef]

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” J. Disp. Technol. 6, 490–499 (2010).
[CrossRef]

A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18, 14159–14164 (2010).
[CrossRef]

P. Bao, F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval using multiple illumination wavelengths,” Opt. Lett. 33, 309–311 (2008).
[CrossRef]

F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75, 043805 (2007).
[CrossRef]

P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45, 8596–8605 (2006).
[CrossRef]

T. Baumbach, W. Osten, C. Kopylow, and W. Jueptner, “Remote metrology by comparative digital holography,” Appl. Opt. 45, 925–934 (2006).
[CrossRef]

C. Kohler, X. Schwab, and W. Osten, “Optimally tuned spatial light modulators for digital holography,” Appl. Opt. 45, 960–967 (2006).
[CrossRef]

G. Pedrini, W. Osten, and Y. Zhang, “Wave-front reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30, 833–835 (2005).
[CrossRef]

W. Osten, T. Baumbach, and W. Jueptner, “Comparative digital holography,” Opt. Lett. 27, 1764–1766 (2002).
[CrossRef]

W. Osten, T. Baumbach, and W. Jüptner, “A new sensor for remote interferometry,” Proc. SPIE 4596, 158–168 (2001).
[CrossRef]

K. Körner, G. Pedrini, C. Pruss, and W. Osten, “Verfahren und Anordnung zur Kurz-Kohärenz-Holografie,” Deutsches PatentDE 10 2011 016 660 B4 (October 25, 2012).

D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Recording of 3D spatial and spectral information of self-luminous objects using a Mach-Zehnder radial shearing interferometer,” in 7th International Workshop on Advanced Optical Imaging and Metrology-Fringe 2013, W. Osten, ed. (Springer, 2013), pp. 715–718.

W. Osten, “Holography and virtual 3D-testing,” in Proceedings of the 1st International Berlin Workshop HoloMet 2000 “New Prospects of Holography and 3D-Metrology,”W. Osten and W. Jüptner, eds. (Strahltechnik Band 14, 2000), pp. 14–17.

T. Haist, M. Hasler, W. Osten, and M. Baranek, “Programmable microscopy,” in Multidimensional Imaging, B. Javidi, E. Tajahuerce, and P. Andrés, eds. (Wiley, 2014), pp. 153–174.

Pedrini, G.

D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach–Zehnder radial-shearing interferometer,” Opt. Lett. 39, 1857–1860 (2014).
[CrossRef]

A. Singh, A. Faridian, P. Gao, G. Pedrini, and W. Osten, “Quantitative phase imaging using deep UV LED source,” Opt. Lett. 39, 3468–3471 (2014).
[CrossRef]

A. Faridian, G. Pedrini, and W. Osten, “Opposed-view dark-field digital holographic microscopy,” Biomed. Opt. Express 5, 728–736 (2014).
[CrossRef]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
[CrossRef]

P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328–1330 (2013).
[CrossRef]

D. N. Naik, G. Pedrini, and W. Osten, “Recording of incoherent-object hologram as complex spatial coherence function using Sagnac radial shearing interferometer and a Pockels cell,” Opt. Express 21, 3990–3995 (2013).
[CrossRef]

A. Faridian, G. Pedrini, and W. Osten, “High-contrast multilayer imaging of biological organisms through dark-field digital refocusing,” J. Biomed. Opt. 18, 086009 (2013).
[CrossRef]

W. Osten, M. Wilke, and G. Pedrini, “Remote laboratories for optical metrology: from the lab to the cloud,” Opt. Eng. 52, 101914 (2013).
[CrossRef]

P. Gao, G. Pedrini, and W. Osten, “Phase retrieval with resolution enhancement by using structured illumination,” Opt. Lett. 38, 5204–5207 (2013).
[CrossRef]

K. Körner, G. Pedrini, I. Alexeenko, T. Steinmetz, R. Holzwarth, and W. Osten, “Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning,” Opt. Express 20, 7237–7242 (2012).
[CrossRef]

K. Körner, G. Pedrini, I. Alexeenko, W. Lyda, T. Steinmetz, R. Holzwarth, and W. Osten, “Multi-level optical sectioning based on digital holography with a femtosecond frequency comb laser,” Proc. SPIE 8430, 843004 (2012).
[CrossRef]

M. Wilke, A. K. Singh, A. Faridian, T. Richter, G. Pedrini, and W. Osten, “Statistics of Fresnelet coefficients in PSI holograms,” Proc. SPIE 8499, 849904 (2012).
[CrossRef]

G. Pedrini, H. Li, A. Faridian, and W. Osten, “Digital holography of self-luminous objects by using a Mach-Zehnder setup,” Opt. Lett. 37, 713–715 (2012).
[CrossRef]

A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18, 14159–14164 (2010).
[CrossRef]

P. Bao, F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval using multiple illumination wavelengths,” Opt. Lett. 33, 309–311 (2008).
[CrossRef]

F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75, 043805 (2007).
[CrossRef]

P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45, 8596–8605 (2006).
[CrossRef]

G. Pedrini, W. Osten, and Y. Zhang, “Wave-front reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30, 833–835 (2005).
[CrossRef]

K. Körner, G. Pedrini, C. Pruss, and W. Osten, “Verfahren und Anordnung zur Kurz-Kohärenz-Holografie,” Deutsches PatentDE 10 2011 016 660 B4 (October 25, 2012).

D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Recording of 3D spatial and spectral information of self-luminous objects using a Mach-Zehnder radial shearing interferometer,” in 7th International Workshop on Advanced Optical Imaging and Metrology-Fringe 2013, W. Osten, ed. (Springer, 2013), pp. 715–718.

Pesic, Z. D.

T. B. Edo, D. J. Batey, A. M. Maiden, C. Rau, U. Wagner, Z. D. Pesic, T. A. Waigh, and J. M. Rodenburg, “Sampling in x-ray ptychography,” Phys. Rev. A 87, 053850 (2013).
[CrossRef]

Pierattini, G.

Platt, B. C.

B. C. Platt and R. Shack, “History and principles of Shack–Hartmann wavefront sensing,” J. Refr. Surg. 17, S573–S577 (2001).

Pruss, C.

K. Körner, G. Pedrini, C. Pruss, and W. Osten, “Verfahren und Anordnung zur Kurz-Kohärenz-Holografie,” Deutsches PatentDE 10 2011 016 660 B4 (October 25, 2012).

Raskar, R.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[CrossRef]

Rau, C.

T. B. Edo, D. J. Batey, A. M. Maiden, C. Rau, U. Wagner, Z. D. Pesic, T. A. Waigh, and J. M. Rodenburg, “Sampling in x-ray ptychography,” Phys. Rev. A 87, 053850 (2013).
[CrossRef]

Reicherter, M.

J. Liesener, M. Reicherter, and H. J. Tiziani, “Determination and compensation of aberrations using SLMs,” Opt. Commun. 233, 161–166 (2004).
[CrossRef]

M. Reicherter, J. Liesener, T. Haist, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written in a liquid crystal display,” Opt. Lett. 9, 508–510 (1999).

Richter, T.

M. Wilke, A. K. Singh, A. Faridian, T. Richter, G. Pedrini, and W. Osten, “Statistics of Fresnelet coefficients in PSI holograms,” Proc. SPIE 8499, 849904 (2012).
[CrossRef]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5, 81–101 (2011).
[CrossRef]

Roddier, F.

Rodenburg, J. M.

T. B. Edo, D. J. Batey, A. M. Maiden, C. Rau, U. Wagner, Z. D. Pesic, T. A. Waigh, and J. M. Rodenburg, “Sampling in x-ray ptychography,” Phys. Rev. A 87, 053850 (2013).
[CrossRef]

F. Zhang and J. M. Rodenburg, “Phase retrieval based on wave-front relay and modulation,” Phys. Rev. B 82, 121104(R) (2010).
[CrossRef]

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[CrossRef]

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4798 (2004).
[CrossRef]

Rosen, J.

Schaal, F.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” J. Disp. Technol. 6, 490–499 (2010).
[CrossRef]

Schnars, U.

Schwab, X.

Shack, R.

B. C. Platt and R. Shack, “History and principles of Shack–Hartmann wavefront sensing,” J. Refr. Surg. 17, S573–S577 (2001).

Silberberg, Y.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[CrossRef]

Singh, A.

Singh, A. K.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22, 7694–7701 (2014).
[CrossRef]

M. Wilke, A. K. Singh, A. Faridian, T. Richter, G. Pedrini, and W. Osten, “Statistics of Fresnelet coefficients in PSI holograms,” Proc. SPIE 8499, 849904 (2012).
[CrossRef]

Small, E.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[CrossRef]

Smallbone, A.

A. Coble, A. Smallbone, A. Bhave, R. Watson, A. Braumann, and M. Kraft, “Delivering authentic experiences for engineering students and professionals through e-labs,” in IEEE EDUCON Education Engineering (2010), pp. 1085–1090.

Soraghan, J. J.

E. Darakis and J. J. Soraghan, “Use of Fresnelets for phase-shifting digital hologram compression,” IEEE Trans. Image Process. 15, 3804–3811 (2006).
[CrossRef]

Stack, R. A.

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999).
[CrossRef]

Steinmetz, T.

K. Körner, G. Pedrini, I. Alexeenko, W. Lyda, T. Steinmetz, R. Holzwarth, and W. Osten, “Multi-level optical sectioning based on digital holography with a femtosecond frequency comb laser,” Proc. SPIE 8430, 843004 (2012).
[CrossRef]

K. Körner, G. Pedrini, I. Alexeenko, T. Steinmetz, R. Holzwarth, and W. Osten, “Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning,” Opt. Express 20, 7237–7242 (2012).
[CrossRef]

Sutkowski, M.

M. Sutkowski and M. Kujawinska, “Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000).
[CrossRef]

Tajahuerce, E.

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636–653 (2006).
[CrossRef]

Takeda, M.

Teague, M. R.

Teeranutranont, S.

Tian, Y. C.

Y. J. Liu, B. Chen, E. R. Li, J. Y. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. C. Tian, K. A. Nugent, P. P. Zhu, and Z. Y. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78, 023817 (2008).
[CrossRef]

Tiziani, H. J.

J. Liesener, M. Reicherter, and H. J. Tiziani, “Determination and compensation of aberrations using SLMs,” Opt. Commun. 233, 161–166 (2004).
[CrossRef]

M. Reicherter, J. Liesener, T. Haist, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written in a liquid crystal display,” Opt. Lett. 9, 508–510 (1999).

Upatnieks, J.

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[CrossRef]

Veeraraghavan, A.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[CrossRef]

Vellekoop, I. M.

Velten, A.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[CrossRef]

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[CrossRef]

Wagner, U.

T. B. Edo, D. J. Batey, A. M. Maiden, C. Rau, U. Wagner, Z. D. Pesic, T. A. Waigh, and J. M. Rodenburg, “Sampling in x-ray ptychography,” Phys. Rev. A 87, 053850 (2013).
[CrossRef]

Waigh, T. A.

T. B. Edo, D. J. Batey, A. M. Maiden, C. Rau, U. Wagner, Z. D. Pesic, T. A. Waigh, and J. M. Rodenburg, “Sampling in x-ray ptychography,” Phys. Rev. A 87, 053850 (2013).
[CrossRef]

Wang, J. Y.

Y. J. Liu, B. Chen, E. R. Li, J. Y. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. C. Tian, K. A. Nugent, P. P. Zhu, and Z. Y. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78, 023817 (2008).
[CrossRef]

Wang, W.

Warber, M.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” J. Disp. Technol. 6, 490–499 (2010).
[CrossRef]

S. Zwick, T. Haist, M. Warber, and W. Osten, “Dynamic holography using pixelated light modulators,” Appl. Opt. 49, F47–F58 (2010).
[CrossRef]

Watson, R.

A. Coble, A. Smallbone, A. Bhave, R. Watson, A. Braumann, and M. Kraft, “Delivering authentic experiences for engineering students and professionals through e-labs,” in IEEE EDUCON Education Engineering (2010), pp. 1085–1090.

Wattellier, B.

Wernicke, G.

Wilke, M.

M. Gronle, W. Lyda, M. Wilke, C. Kohler, and W. Osten, “Itom: an open source metrology, automation and data evaluation software,” Appl. Opt. 53, 2974–2982 (2014).
[CrossRef]

W. Osten, M. Wilke, and G. Pedrini, “Remote laboratories for optical metrology: from the lab to the cloud,” Opt. Eng. 52, 101914 (2013).
[CrossRef]

M. Wilke, A. K. Singh, A. Faridian, T. Richter, G. Pedrini, and W. Osten, “Statistics of Fresnelet coefficients in PSI holograms,” Proc. SPIE 8499, 849904 (2012).
[CrossRef]

Wilkins, S. W.

Y. J. Liu, B. Chen, E. R. Li, J. Y. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. C. Tian, K. A. Nugent, P. P. Zhu, and Z. Y. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78, 023817 (2008).
[CrossRef]

Willwacher, T.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Woods, S. C.

Wu, Z. Y.

Y. J. Liu, B. Chen, E. R. Li, J. Y. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. C. Tian, K. A. Nugent, P. P. Zhu, and Z. Y. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78, 023817 (2008).
[CrossRef]

Yaras, F.

L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011).
[CrossRef]

Yaroslavsky, L.

L. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2004).

Yaroslavsky, L. P.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavsky, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

Yoshida, T.

Yoshimori, K.

Young, N. O.

L. Mertz and N. O. Young, “Fresnel transformations of images,” in Proceedings of the ICO Conference on Optical instruments and Techniques, K. J. Habell, ed. (Chapman and Hall, 1962), pp. 305–310.

Yu, X.

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53, 112306 (2014).
[CrossRef]

Zhang, F.

F. Zhang and J. M. Rodenburg, “Phase retrieval based on wave-front relay and modulation,” Phys. Rev. B 82, 121104(R) (2010).
[CrossRef]

P. Bao, F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval using multiple illumination wavelengths,” Opt. Lett. 33, 309–311 (2008).
[CrossRef]

F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75, 043805 (2007).
[CrossRef]

Zhang, Y.

Zhu, P. P.

Y. J. Liu, B. Chen, E. R. Li, J. Y. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. C. Tian, K. A. Nugent, P. P. Zhu, and Z. Y. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78, 023817 (2008).
[CrossRef]

Zwick, S.

S. Zwick, T. Haist, M. Warber, and W. Osten, “Dynamic holography using pixelated light modulators,” Appl. Opt. 49, F47–F58 (2010).
[CrossRef]

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” J. Disp. Technol. 6, 490–499 (2010).
[CrossRef]

Adv. Opt. Photon.

Appl. Opt.

S. Zwick, T. Haist, M. Warber, and W. Osten, “Dynamic holography using pixelated light modulators,” Appl. Opt. 49, F47–F58 (2010).
[CrossRef]

M. Gronle, W. Lyda, M. Wilke, C. Kohler, and W. Osten, “Itom: an open source metrology, automation and data evaluation software,” Appl. Opt. 53, 2974–2982 (2014).
[CrossRef]

P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45, 8596–8605 (2006).
[CrossRef]

O. Bryngdahl and A. Lohmann, “Variable magnification in incoherent holography,” Appl. Opt. 9, 231–232 (1970).
[CrossRef]

F. Roddier, “Wavefront sensing and the irradiance transport equation,” Appl. Opt. 29, 1402–1403 (1990).
[CrossRef]

T. Baumbach, W. Osten, C. Kopylow, and W. Jueptner, “Remote metrology by comparative digital holography,” Appl. Opt. 45, 925–934 (2006).
[CrossRef]

C. Kohler, X. Schwab, and W. Osten, “Optimally tuned spatial light modulators for digital holography,” Appl. Opt. 45, 960–967 (2006).
[CrossRef]

A. Mudassar and A. Hussain, “Super-resolution of active spatial frequency heterodyning using holographic approach,” Appl. Opt. 49, 3434–3441 (2010).
[CrossRef]

P. Bon, S. Monneret, and B. Wattellier, “Noniterative boundary-artifact-free wavefront reconstruction from its derivatives,” Appl. Opt. 51, 5698–5704 (2012).
[CrossRef]

S. Dong, T. Haist, and W. Osten, “Hybrid wavefront sensor for the fast detection of wavefront disturbances,” Appl. Opt. 51, 6268–6274 (2012).
[CrossRef]

S. Teeranutranont and K. Yoshimori, “Digital holographic three-dimensional imaging spectrometry,” Appl. Opt. 52, A388–A396 (2013).
[CrossRef]

T. H. Demetrakopoulos and R. Mitra, “Digital and optical reconstruction of images from suboptical patterns,” Appl. Opt. 13, 665–670 (1974).
[CrossRef]

K. Itoh, T. Inoue, T. Yoshida, and Y. Ichioka, “Interferometric supermultispectral imaging,” Appl. Opt. 29, 1625–1630 (1990).
[CrossRef]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).
[CrossRef]

J. B. Costa, “Modulation effect of the atmosphere in a pyramid wave-front sensor,” Appl. Opt. 44, 60–66 (2005).
[CrossRef]

Appl. Phys. Lett.

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4798 (2004).
[CrossRef]

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Biomed. Opt. Express

IEEE Trans. Image Process.

E. Darakis and J. J. Soraghan, “Use of Fresnelets for phase-shifting digital hologram compression,” IEEE Trans. Image Process. 15, 3804–3811 (2006).
[CrossRef]

J. Biomed. Opt.

A. Faridian, G. Pedrini, and W. Osten, “High-contrast multilayer imaging of biological organisms through dark-field digital refocusing,” J. Biomed. Opt. 18, 086009 (2013).
[CrossRef]

J. Disp. Technol.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” J. Disp. Technol. 6, 490–499 (2010).
[CrossRef]

J. Microsc.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Refr. Surg.

B. C. Platt and R. Shack, “History and principles of Shack–Hartmann wavefront sensing,” J. Refr. Surg. 17, S573–S577 (2001).

Laser Photonics Rev.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5, 81–101 (2011).
[CrossRef]

Nat. Commun.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[CrossRef]

Nat. Photonics

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[CrossRef]

Nature

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[CrossRef]

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Opt. Commun.

J. Liesener, M. Reicherter, and H. J. Tiziani, “Determination and compensation of aberrations using SLMs,” Opt. Commun. 233, 161–166 (2004).
[CrossRef]

Opt. Eng.

W. Osten, M. Wilke, and G. Pedrini, “Remote laboratories for optical metrology: from the lab to the cloud,” Opt. Eng. 52, 101914 (2013).
[CrossRef]

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53, 112306 (2014).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

M. Sutkowski and M. Kujawinska, “Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000).
[CrossRef]

Opt. Lett.

M. Reicherter, J. Liesener, T. Haist, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written in a liquid crystal display,” Opt. Lett. 9, 508–510 (1999).

G. Pedrini, W. Osten, and Y. Zhang, “Wave-front reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30, 833–835 (2005).
[CrossRef]

W. Osten, T. Baumbach, and W. Jueptner, “Comparative digital holography,” Opt. Lett. 27, 1764–1766 (2002).
[CrossRef]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 1705–1707 (2006).
[CrossRef]

P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328–1330 (2013).
[CrossRef]

J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912–914 (2007).
[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[CrossRef]

P. Bao, F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval using multiple illumination wavelengths,” Opt. Lett. 33, 309–311 (2008).
[CrossRef]

A. Singh, A. Faridian, P. Gao, G. Pedrini, and W. Osten, “Quantitative phase imaging using deep UV LED source,” Opt. Lett. 39, 3468–3471 (2014).
[CrossRef]

G. Pedrini, H. Li, A. Faridian, and W. Osten, “Digital holography of self-luminous objects by using a Mach-Zehnder setup,” Opt. Lett. 37, 713–715 (2012).
[CrossRef]

D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach–Zehnder radial-shearing interferometer,” Opt. Lett. 39, 1857–1860 (2014).
[CrossRef]

P. Gao, G. Pedrini, and W. Osten, “Phase retrieval with resolution enhancement by using structured illumination,” Opt. Lett. 38, 5204–5207 (2013).
[CrossRef]

Phys. Rev. A

T. B. Edo, D. J. Batey, A. M. Maiden, C. Rau, U. Wagner, Z. D. Pesic, T. A. Waigh, and J. M. Rodenburg, “Sampling in x-ray ptychography,” Phys. Rev. A 87, 053850 (2013).
[CrossRef]

Y. J. Liu, B. Chen, E. R. Li, J. Y. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. C. Tian, K. A. Nugent, P. P. Zhu, and Z. Y. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78, 023817 (2008).
[CrossRef]

F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75, 043805 (2007).
[CrossRef]

Phys. Rev. B

F. Zhang and J. M. Rodenburg, “Phase retrieval based on wave-front relay and modulation,” Phys. Rev. B 82, 121104(R) (2010).
[CrossRef]

Phys. Rev. Lett.

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[CrossRef]

Proc. IEEE

L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011).
[CrossRef]

T. Huang, “Digital holography,” Proc. IEEE 59, 1335–1346 (1971).
[CrossRef]

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636–653 (2006).
[CrossRef]

Proc. Natl. Acad. Sci. USA

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[CrossRef]

Proc. SPIE

M. Wilke, A. K. Singh, A. Faridian, T. Richter, G. Pedrini, and W. Osten, “Statistics of Fresnelet coefficients in PSI holograms,” Proc. SPIE 8499, 849904 (2012).
[CrossRef]

K. Körner, G. Pedrini, I. Alexeenko, W. Lyda, T. Steinmetz, R. Holzwarth, and W. Osten, “Multi-level optical sectioning based on digital holography with a femtosecond frequency comb laser,” Proc. SPIE 8430, 843004 (2012).
[CrossRef]

W. Osten, T. Baumbach, and W. Jüptner, “A new sensor for remote interferometry,” Proc. SPIE 4596, 158–168 (2001).
[CrossRef]

Science

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999).
[CrossRef]

Sov. Phys. Tech. Phys.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavsky, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

Other

T. Haist, M. Hasler, W. Osten, and M. Baranek, “Programmable microscopy,” in Multidimensional Imaging, B. Javidi, E. Tajahuerce, and P. Andrés, eds. (Wiley, 2014), pp. 153–174.

P. Marquet and C. Depeursinge, “Digital holographic microscopy: a new imaging technique to quantitatively explore cell dynamics with nanometer sensitivity,” in Multidimensional Imaging, B. Javidi, E. Tajahuerce, and P. Andrés, eds. (Wiley, 2014), pp. 197–212.

B. Lee and Y. Kim, “Three-dimensional display and imaging: status and prospects,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 31–56.

T. Kreis, Handbook of Holographic Interferometry–Optical and Digital Methods (Wiley-VCH, 2005).

H. J. Coufal, D. Psaltis, G. T. Sincerbox, A. M. Glass, and M. J. Cardillo, eds., Holographic Data Storage (Springer-Verlag, 2000).

L. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2004).

HOLOEYE Photonic AG, http://holoeye.com/ .

G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), pp. 1–29.

HAMAMTSU Photonics K.K., http://www.hamamatsu.com/jp/en/technology/innovation/lcos-slm/index.html .

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

L. Mertz and N. O. Young, “Fresnel transformations of images,” in Proceedings of the ICO Conference on Optical instruments and Techniques, K. J. Habell, ed. (Chapman and Hall, 1962), pp. 305–310.

D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Recording of 3D spatial and spectral information of self-luminous objects using a Mach-Zehnder radial shearing interferometer,” in 7th International Workshop on Advanced Optical Imaging and Metrology-Fringe 2013, W. Osten, ed. (Springer, 2013), pp. 715–718.

K. Körner, G. Pedrini, C. Pruss, and W. Osten, “Verfahren und Anordnung zur Kurz-Kohärenz-Holografie,” Deutsches PatentDE 10 2011 016 660 B4 (October 25, 2012).

A. Ball and M. Duke, “How to cite datasets and link to publications,” Digital Curation Centre (2011), http://www.dcc.ac.uk/resources/how-guides/cite-datasets .

A. Coble, A. Smallbone, A. Bhave, R. Watson, A. Braumann, and M. Kraft, “Delivering authentic experiences for engineering students and professionals through e-labs,” in IEEE EDUCON Education Engineering (2010), pp. 1085–1090.

B. Javidi and F. Okano, Three Dimensional Television, Video, and Display Technologies (Springer, 2002).

Remote Laboratory, http://remotelaboratory.com/ .

University of South Australia NetLab, http://netlab.unisa.edu.au/index.xhtml .

University of South Australia NetLab, http://netlab.unisa.edu.au/index.xhtml .

Johns Hopkins University Virtual Lab, http://www.jhu.edu/virtlab/virtlab.html .

Open Wonderland, http://openwonderland.org/ .

eSciDoc, https://www.escidoc.org/ .

W. Osten, “Holography and virtual 3D-testing,” in Proceedings of the 1st International Berlin Workshop HoloMet 2000 “New Prospects of Holography and 3D-Metrology,”W. Osten and W. Jüptner, eds. (Strahltechnik Band 14, 2000), pp. 14–17.

A. Hyvärinen, P. O. Hoyer, and E. Oja, “Sparse code shrinkage: denoising by nonlinear maximum likelihood estimation,” in Proceedings of Advances in Neural Information Processing Systems, Vol. 11 (MIT, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (32)

Fig. 1.
Fig. 1.

Schematic of the off-axis digital-holographic microscope setup. “L” and “M” stand for “lens” and “mirror,” respectively. Insight, the custom-designed objective; right, aspheric lens system; left, objective holder, which is also designed to adjust the reference beam using a built-in mirror.

Fig. 2.
Fig. 2.

Diagram shows the principle of the oblique illumination method. (a) Direct (on-axis) illumination: the zeroth, first, and 1st components are collected. (b) Oblique illumination: the second component is replaced by the 1st component. (c) Performing a sequentially symmetric illumination by moving the mirror M5.

Fig. 3.
Fig. 3.

(a) Scanning electron microscope image of the nanostructured template. (b) Image taken by a conventional optical microscope with NA=0.75, 100× objective. (c),(d) Reconstructed synthesized (c) amplitude and (d) phase of the object.

Fig. 4.
Fig. 4.

(a) Schematics of the DHM setup. (b) Four groups of structured illuminations with different directions. (c) Frequency spectrum of the generated hologram.

Fig. 5.
Fig. 5.

Experimental results for resolution enhancement. (a),(b) Reconstructed phase images by using (a) plane wave illumination and (b) structured illumination. (c) Phase distributions along the two lines drawn in (a) and (b).

Fig. 6.
Fig. 6.

(a) Typical dark-field holograms and their Fourier transforms. (b) Reconstructed dark-field image for different image planes through digital refocusing for sea urchin larva. The holograms are taken by a bright-/dark-field objective (20×, NA=0.45).

Fig. 7.
Fig. 7.

Setup of an opposed-view dark-field digital-holographic microscope.

Fig. 8.
Fig. 8.

Reconstructed image of a Drosophila embryo. (a) Fused image obtained using pixel-based approach. (b) Top and bottom view images of the regions marked with numbers in (a). The arrows represent some of the structures visible in one view, while missing in the other. (c) Images of the same regions as (a) after performing image fusion process. The scale bar in (a) is 25 μm.

Fig. 9.
Fig. 9.

Recording arrangement. BS1 and BS2 are beam splitters, M1 and M2 are mirrors, NDF is a neutral density filter, and PH is a pinhole. M1 is used for phase shifting.

Fig. 10.
Fig. 10.

(a) Intensity image of the object recorded using light passing only through the arm of the interferometer with mirror M2. (b) Recorded interference pattern. (c) Wrapped phase obtained by phase shifting. (d)–(f) Digital reconstructions of the wavefront.

Fig. 11.
Fig. 11.

Sagnac radial-shearing interferometer for measuring the complex spatial coherence function.

Fig. 12.
Fig. 12.

(a) One of the recorded interferograms. (b) Fringe contrast and (c) fringe phase that jointly represent the complex spatial coherence function at the back focal plane of lens L1. (d)–(f) show the combined image of amplitude and phase of the reconstructed object at z=1, 0, and +1mm, respectively.

Fig. 13.
Fig. 13.

Mach–Zehnder radial-shearing interferometer for measurement of the spatiotemporal coherence function.

Fig. 14.
Fig. 14.

(a) Recorded interferogram. (b) Intensity modulation of the central peak.

Fig. 15.
Fig. 15.

(a) Residuals of the path delay after a linear fit. (b) Total path delay in meters across the CCD after 500 shift steps of PZT.

Fig. 16.
Fig. 16.

Combined image of amplitude and phase (a) at z=0 for λ=625nm, (b) at z=0 for λ=530nm, (c) at z=+3mm for λ=625nm, and (d) at z=8mm for λ=530nm.

Fig. 17.
Fig. 17.

(a) Toy aircraft as polychromatic object. Its reconstructions at z=1mm for (b) λ=625nm, (c) λ=530nm, and (d) λ=450nm. The point source from the He–Ne laser used for calibration is kept masked in (b).

Fig. 18.
Fig. 18.

(a) Experimental geometry, (b) part of the recorded hologram, and (c) visualized object in case of transmissive diffuser. (d)–(f) Counterparts of (a)–(c) in case of reflective scatterer.

Fig. 19.
Fig. 19.

Experimental setup for lensless short coherence digital holography with a fc-laser at 532 nm with a pulse distance in space Y=50.00mm referenced to a rubidium atomic clock.

Fig. 20.
Fig. 20.

(a) Schematic of the rough metallic cone used for the investigations: base diameter 36mm, height 80mm, and half angle 12°. (b)–(d) Reconstruction of holograms at three different planes separated by 25.00 mm (Y=50.00mm).

Fig. 21.
Fig. 21.

Numerical reconstruction of a part of the rough metallic continuous cone.

Fig. 22.
Fig. 22.

(a) Experimental setup of phase retrieval using modulated illumination. (b) Illumination patterns loaded on SLM. (c) Generated diffraction patterns on CCD camera.

Fig. 23.
Fig. 23.

Phase retrieval on the wing of a mosquito. (a) Diffraction patterns under five spatially modulated illuminations. (b) Phase distribution of the wavefront transmitted by the wing of the mosquito.

Fig. 24.
Fig. 24.

Resolution comparison: (a) reconstructed phase images obtained by the DHM with plane wave illumination (left part) and by the phase retrieval with structured illumination (right part). (b) Resolution comparison of the rectangular areas marked in (a). I and II denote the phase images reconstructed by the DHM and phase-retrieval method for the selected areas.

Fig. 25.
Fig. 25.

Experimental setup with Deep UV LED as the light source. The ray diagram is shown to visualize the imaging of the object using MO. I1,I2,I3In are the intensity samplings at the S1,S2,S3Sn planes, respectively.

Fig. 26.
Fig. 26.

(a) SEM image of “ITO logo,” (b) amplitude image in the image plane, (c) phase image, (d) height variation of the dashed line segment shown in (c), and (e) phase profile of the sample in 3D. The scale bar is 3 μm.

Fig. 27.
Fig. 27.

Schematic system architecture and software components of the remote metrology laboratory.

Fig. 28.
Fig. 28.

Photo of an automated multifunctional digital-holographic microscope implemented in remote e-lab [46].

Fig. 29.
Fig. 29.

Screenshot of the graphic user interface with life picture of the remote setup and control panels.

Fig. 30.
Fig. 30.

(a) Compression performance JPEG versus JPEG 2000 on reconstructed hologram (amplitude). (b) Compression performance of JPEG2000 in the CCD plane versus the reconstructed hologram in the object plane (amplitude).

Fig. 31.
Fig. 31.

Schematic overview of the statistical analysis.

Fig. 32.
Fig. 32.

Statistics of the wavelet coefficients of the horizontally low-pass, vertically high-pass filtered band in the first cascade, plotted as log(log(P(x))) over log(x).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R=κ1λNAimg+NAillum,
U(x,y,z+Δz)=U˜(fx,fy,z)PFexp[i2π(fxx+fyy)]dfxdfy,
P(x)=Cexp(β|xσ|2)
y=u+σ2βαsign(u)|u|α1.

Metrics