Abstract

The speckle phenomenon is an annoyance in laser projection display systems. We propose a novel speckle suppression method that utilizes the interference concept on a pixel point, which reduces the speckle contrast (SC) of the project image by limiting the phase distribution range in the optical field. The SC formula is derived in the uniform interval phase range for partially developed speckle conditions, showing that the SC can be lowered by lessening the phase range limitation. In the ideal simulation model, the SC can be reduced from 98.77% to 0% as the phase range limitation varies from 2π to 0. The phase range limitation model is a novel method using a computer generated hologram to provide beam shaping and phase limitation. In a more realistic simulation model, the SC is reduced from 99.18% to 16.68%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography: an overview,” J. Biomed. Opt. 4, 95–105 (1999).
    [CrossRef]
  2. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).
  3. M. S. Brennesholtz and E. H. Stupp, Projection Displays (Wiley, 2008).
  4. Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A 27, 1812–1817 (2010).
    [CrossRef]
  5. A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
    [CrossRef]
  6. J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29, 11–13 (2004).
    [CrossRef]
  7. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [CrossRef]
  8. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
    [CrossRef]
  9. F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5, 1058–1065 (1988).
    [CrossRef]
  10. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  11. W.-F. Hsu, “Backward iterative quantization methods for designs of multilevel diffractive optical elements,” Opt. Express 13, 5052–5063 (2005).
    [CrossRef]
  12. Y.-S. Chang, C. H. Lin, K.-H. Hsu, and H. Y. Lin, “Speckle suppression by limited phase range in laser projection systems,” SID Symp. Dig. Tech. Papers 44, 909–911 (2013).
    [CrossRef]
  13. Y.-S. Chang, H. Y. Lin, and W.-F. Hsu, “Speckle suppression by 2D spatial light modulator in laser projection system,” SID Symp. Dig. Tech. Papers 42, 428–434 (2011).
    [CrossRef]

2013 (1)

Y.-S. Chang, C. H. Lin, K.-H. Hsu, and H. Y. Lin, “Speckle suppression by limited phase range in laser projection systems,” SID Symp. Dig. Tech. Papers 44, 909–911 (2013).
[CrossRef]

2011 (1)

Y.-S. Chang, H. Y. Lin, and W.-F. Hsu, “Speckle suppression by 2D spatial light modulator in laser projection system,” SID Symp. Dig. Tech. Papers 42, 428–434 (2011).
[CrossRef]

2010 (2)

2008 (1)

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[CrossRef]

2007 (1)

2005 (1)

2004 (1)

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography: an overview,” J. Biomed. Opt. 4, 95–105 (1999).
[CrossRef]

1988 (1)

Brennesholtz, M. S.

M. S. Brennesholtz and E. H. Stupp, Projection Displays (Wiley, 2008).

Bryngdahl, O.

Chang, Y.-S.

Y.-S. Chang, C. H. Lin, K.-H. Hsu, and H. Y. Lin, “Speckle suppression by limited phase range in laser projection systems,” SID Symp. Dig. Tech. Papers 44, 909–911 (2013).
[CrossRef]

Y.-S. Chang, H. Y. Lin, and W.-F. Hsu, “Speckle suppression by 2D spatial light modulator in laser projection system,” SID Symp. Dig. Tech. Papers 42, 428–434 (2011).
[CrossRef]

Cižmár, T.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[CrossRef]

Dholakia, K.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[CrossRef]

Furukawa, A.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

Hirata, S.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[CrossRef]

Hsu, K.-H.

Y.-S. Chang, C. H. Lin, K.-H. Hsu, and H. Y. Lin, “Speckle suppression by limited phase range in laser projection systems,” SID Symp. Dig. Tech. Papers 44, 909–911 (2013).
[CrossRef]

Hsu, W.-F.

Y.-S. Chang, H. Y. Lin, and W.-F. Hsu, “Speckle suppression by 2D spatial light modulator in laser projection system,” SID Symp. Dig. Tech. Papers 42, 428–434 (2011).
[CrossRef]

W.-F. Hsu, “Backward iterative quantization methods for designs of multilevel diffractive optical elements,” Opt. Express 13, 5052–5063 (2005).
[CrossRef]

Imanishi, D.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[CrossRef]

Ito, S.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[CrossRef]

Katagiri, B.

Kawakami, T.

Kuratomi, Y.

Lin, C. H.

Y.-S. Chang, C. H. Lin, K.-H. Hsu, and H. Y. Lin, “Speckle suppression by limited phase range in laser projection systems,” SID Symp. Dig. Tech. Papers 44, 909–911 (2013).
[CrossRef]

Lin, H. Y.

Y.-S. Chang, C. H. Lin, K.-H. Hsu, and H. Y. Lin, “Speckle suppression by limited phase range in laser projection systems,” SID Symp. Dig. Tech. Papers 44, 909–911 (2013).
[CrossRef]

Y.-S. Chang, H. Y. Lin, and W.-F. Hsu, “Speckle suppression by 2D spatial light modulator in laser projection system,” SID Symp. Dig. Tech. Papers 42, 428–434 (2011).
[CrossRef]

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[CrossRef]

Mosk, A. P.

Ohse, N.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[CrossRef]

Sato, Y.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[CrossRef]

Satoh, H.

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography: an overview,” J. Biomed. Opt. 4, 95–105 (1999).
[CrossRef]

Sekiya, K.

Stupp, E. H.

M. S. Brennesholtz and E. H. Stupp, Projection Displays (Wiley, 2008).

Suzuki, Y.

Tamamura, K.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[CrossRef]

Tomiyama, T.

Trisnadi, J. I.

Uchida, T.

Vellekoop, I. M.

Wakabayashi, K.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[CrossRef]

Wyrowski, F.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography: an overview,” J. Biomed. Opt. 4, 95–105 (1999).
[CrossRef]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography: an overview,” J. Biomed. Opt. 4, 95–105 (1999).
[CrossRef]

J. Biomed. Opt. (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography: an overview,” J. Biomed. Opt. 4, 95–105 (1999).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nat. Photonics (1)

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T (2008).
[CrossRef]

SID Symp. Dig. Tech. Papers (2)

Y.-S. Chang, C. H. Lin, K.-H. Hsu, and H. Y. Lin, “Speckle suppression by limited phase range in laser projection systems,” SID Symp. Dig. Tech. Papers 44, 909–911 (2013).
[CrossRef]

Y.-S. Chang, H. Y. Lin, and W.-F. Hsu, “Speckle suppression by 2D spatial light modulator in laser projection system,” SID Symp. Dig. Tech. Papers 42, 428–434 (2011).
[CrossRef]

Other (3)

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

M. S. Brennesholtz and E. H. Stupp, Projection Displays (Wiley, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Ideal simulation model in a fundamental projection display system. (b) Pupil mask for square shape in the ideal simulation model.

Fig. 2.
Fig. 2.

IFTA flow chart.

Fig. 3.
Fig. 3.

(a) Computer generated hologram (CGH). (b) Diffraction square intensity distribution.

Fig. 4.
Fig. 4.

Phase range limitation model.

Fig. 5.
Fig. 5.

Phase distribution range versus SC.

Fig. 6.
Fig. 6.

(a) SC value. (b) Uniformity of the two models we design in this paper.

Fig. 7.
Fig. 7.

Phase ranges of the speckle pattern are shown in 2π, 1π, and 0π (a) in the ideal simulation model and (b) in the phase range limitation model.

Tables (1)

Tables Icon

Table 1. (Simulation) Speckle Contrast of the ISM and the PRLM

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

h(u,v;ξ,η)=1λ2z2P(x,y)exp{j2πλz[(uξ)x+(vη)y]}dxdy,
h(u,v)=P(λzx˜,λzy˜)exp{j2π[ux˜+vy˜]}dx˜dy˜.
Ui(u,v)=h(uξ,vη)Uo(ξ,η)dξdη,
Ui(u,v)=h(u,v)Uo(u,v).
Is=n=1NIn,
Is¯=n=1NIn¯,
Is2¯=n=1Nm=1NInIm¯.
Is2¯=n=1Nm=1NInIm¯=n=1NIn2¯+n=1Nm=1,nmNIn¯Im¯.
Is2¯=2n=1NIn¯2+n=1Nm=1,nmNIn¯Im¯=n=1NIn¯2+n=1Nm=1,n=mNIn¯Im¯+n=1Nm=1,nmNIn¯Im¯=n=1NIn¯2+(n=1NIn¯)(m=1NIm¯)=n=1NIn¯2+(n=1NIn¯)2=n=1NIn¯2+Is2¯
σs=Is2¯Is¯2=n=1NIn¯2.
SC=n=1NIn¯2/n=1NIn¯.
A=1Nn=1Nanejϕn,
I=AA*=1Nn=1Nm=1Nanamej(ϕnϕm).
Is¯=1Nn=1Nm=1Nanamej(ϕnϕm)¯=1Nn=1Nan2¯+1Nn=1Nm=1,mnNanam¯Mϕ(1)Mϕ(1),
Mϕ(ω)=sin(23πσϕω)23πσϕω.
SC=σs/Is¯=(Is2¯Is¯2)/Is¯2
SC=(11N){1+Mϕ2(1)(2N4)+Mϕ4(1)(4N+6)+Mϕ2(1)Mϕ(2)(2N4)+Mϕ2(2)}1+2(N1)Mϕ2(1)+(N1)2Mϕ4(1).
Uniformity=ImaxIminI¯,

Metrics