Abstract

Digital in-line holography provides simultaneous particle size and three-dimensional position measurements. In general, the measurement accuracy varies locally, and tends to decrease where particles are closely spaced, due to noise resulting from diffraction by adjacent particles. Aggravating the situation is the identification of transversely adjoining particles as a single particle, which introduces significant errors in both size and position measurements. Here, we develop a refinement procedure that distinguishes such erroneous particles from accurately detected ones and further separates individual particles. Effectiveness of the refinement is characterized using simulations, experimental holograms of calibration fields, and a few practical applications to liquid breakup. Significant improvements in the accuracy of the measured particle sizes, positions, and displacements confirm the usefulness of the proposed method.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
    [CrossRef]
  2. J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt. 43, 5987–5995 (2004).
    [CrossRef]
  3. T. Khanam, M. N. Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci. 66, 2699–2706 (2011).
    [CrossRef]
  4. N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
    [CrossRef]
  5. L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010).
    [CrossRef]
  6. D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt. 50, H1–H9 (2011).
    [CrossRef]
  7. Y. Yang and B. S. Kang, “Digital particle holographic system for measurements of spray field characteristics,” Opt. Laser Eng. 49, 1254–1263 (2011).
    [CrossRef]
  8. F. Lamadie, L. Bruel, and M. Himbert, “Digital holographic measurement of liquid-liquid two-phase flows,” Opt. Laser Eng. 50, 1716–1725 (2012).
    [CrossRef]
  9. J. Gao, D. R. Guildenbecher, P. L. Reu, V. Kulkarni, P. E. Sojka, and J. Chen, “Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography,” Opt. Lett. 38, 1893–1895 (2013).
    [CrossRef]
  10. D. R. Guildenbecher, L. Engvall, J. Gao, T. W. Grasser, P. L. Reu, and J. Chen, “Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film,” Exp. Fluids 55, 1–9 (2014).
    [CrossRef]
  11. J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
    [CrossRef]
  12. Y.-S. Choi and S.-J. Lee, “Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy,” Appl. Opt. 48, 2983–2990 (2009).
    [CrossRef]
  13. Y. Wu, X. Wu, Z. Wang, L. Chen, and K. Cen, “Coal powder measurement by digital holography with expanded measurement area,” Appl. Opt. 50, H22–H29 (2011).
    [CrossRef]
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  15. J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21, 26432–26449 (2013).
    [CrossRef]
  16. D. Guildenbecher, P. L. Reu, J. Gao, and J. Chen, “Experimental methods to quantify the accuracy of 3D particle field measurements via digital holography,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2013), paper DTh4A.2.
  17. A. E. Mallahi and F. Dubois, “Separation of overlapped particles in digital holographic microscopy,” Opt. Express 21, 6466–6479 (2013).
    [CrossRef]
  18. N. Malpica, C. O. de Solrzano, J. J. Vaquero, A. Santos, I. Vallcorba, J. M. Garca-Sagredo, and F. del Pozo, “Applying watershed algorithms to the segmentation of clustered nuclei,” Cytometry 28, 289–297 (1997).
    [CrossRef]
  19. R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno, “2D Euclidean distance transform algorithms: a comparative survey,” ACM Comput. Surv. 40, 1–44 (2008).
    [CrossRef]
  20. D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52, 3790–3801 (2013).
    [CrossRef]
  21. J. Y. Kim, J. H. Chu, and S. Y. Lee, “Improvement of pattern recognition algorithm for drop size measurement,” Atomization Sprays 9, 313–329 (1999).
  22. M. Malek, D. Allano, S. Coëtmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field extraction,” Opt. Express 12, 2270–2279 (2004).
    [CrossRef]
  23. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
    [CrossRef]

2014 (1)

D. R. Guildenbecher, L. Engvall, J. Gao, T. W. Grasser, P. L. Reu, and J. Chen, “Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film,” Exp. Fluids 55, 1–9 (2014).
[CrossRef]

2013 (5)

2012 (1)

F. Lamadie, L. Bruel, and M. Himbert, “Digital holographic measurement of liquid-liquid two-phase flows,” Opt. Laser Eng. 50, 1716–1725 (2012).
[CrossRef]

2011 (4)

T. Khanam, M. N. Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci. 66, 2699–2706 (2011).
[CrossRef]

Y. Yang and B. S. Kang, “Digital particle holographic system for measurements of spray field characteristics,” Opt. Laser Eng. 49, 1254–1263 (2011).
[CrossRef]

D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt. 50, H1–H9 (2011).
[CrossRef]

Y. Wu, X. Wu, Z. Wang, L. Chen, and K. Cen, “Coal powder measurement by digital holography with expanded measurement area,” Appl. Opt. 50, H22–H29 (2011).
[CrossRef]

2010 (2)

2009 (1)

2008 (1)

R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno, “2D Euclidean distance transform algorithms: a comparative survey,” ACM Comput. Surv. 40, 1–44 (2008).
[CrossRef]

2007 (1)

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
[CrossRef]

2004 (3)

1999 (1)

J. Y. Kim, J. H. Chu, and S. Y. Lee, “Improvement of pattern recognition algorithm for drop size measurement,” Atomization Sprays 9, 313–329 (1999).

1997 (1)

N. Malpica, C. O. de Solrzano, J. J. Vaquero, A. Santos, I. Vallcorba, J. M. Garca-Sagredo, and F. del Pozo, “Applying watershed algorithms to the segmentation of clustered nuclei,” Cytometry 28, 289–297 (1997).
[CrossRef]

Adolf, J.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
[CrossRef]

Allano, D.

Asundi, A. K.

T. Khanam, M. N. Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci. 66, 2699–2706 (2011).
[CrossRef]

Atkinson, C.

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
[CrossRef]

Barbastathis, G.

Belas, R.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
[CrossRef]

Boucheron, R.

Bruel, L.

F. Lamadie, L. Bruel, and M. Himbert, “Digital holographic measurement of liquid-liquid two-phase flows,” Opt. Laser Eng. 50, 1716–1725 (2012).
[CrossRef]

Bruno, O. M.

R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno, “2D Euclidean distance transform algorithms: a comparative survey,” ACM Comput. Surv. 40, 1–44 (2008).
[CrossRef]

Buchmann, N. A.

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
[CrossRef]

Cen, K.

Chen, J.

D. R. Guildenbecher, L. Engvall, J. Gao, T. W. Grasser, P. L. Reu, and J. Chen, “Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film,” Exp. Fluids 55, 1–9 (2014).
[CrossRef]

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52, 3790–3801 (2013).
[CrossRef]

J. Gao, D. R. Guildenbecher, P. L. Reu, V. Kulkarni, P. E. Sojka, and J. Chen, “Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography,” Opt. Lett. 38, 1893–1895 (2013).
[CrossRef]

J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21, 26432–26449 (2013).
[CrossRef]

D. Guildenbecher, P. L. Reu, J. Gao, and J. Chen, “Experimental methods to quantify the accuracy of 3D particle field measurements via digital holography,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2013), paper DTh4A.2.

Chen, L.

Choi, Y.-S.

Chu, J. H.

J. Y. Kim, J. H. Chu, and S. Y. Lee, “Improvement of pattern recognition algorithm for drop size measurement,” Atomization Sprays 9, 313–329 (1999).

Coëtmellec, S.

Corbin, F.

Costa, L. D. F.

R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno, “2D Euclidean distance transform algorithms: a comparative survey,” ACM Comput. Surv. 40, 1–44 (2008).
[CrossRef]

de Solrzano, C. O.

N. Malpica, C. O. de Solrzano, J. J. Vaquero, A. Santos, I. Vallcorba, J. M. Garca-Sagredo, and F. del Pozo, “Applying watershed algorithms to the segmentation of clustered nuclei,” Cytometry 28, 289–297 (1997).
[CrossRef]

del Pozo, F.

N. Malpica, C. O. de Solrzano, J. J. Vaquero, A. Santos, I. Vallcorba, J. M. Garca-Sagredo, and F. del Pozo, “Applying watershed algorithms to the segmentation of clustered nuclei,” Cytometry 28, 289–297 (1997).
[CrossRef]

Domínguez-Caballero, J. A.

Dubois, F.

Engvall, L.

D. R. Guildenbecher, L. Engvall, J. Gao, T. W. Grasser, P. L. Reu, and J. Chen, “Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film,” Exp. Fluids 55, 1–9 (2014).
[CrossRef]

Fabbri, R.

R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno, “2D Euclidean distance transform algorithms: a comparative survey,” ACM Comput. Surv. 40, 1–44 (2008).
[CrossRef]

Fréchou, D.

Fugal, J. P.

Gao, J.

D. R. Guildenbecher, L. Engvall, J. Gao, T. W. Grasser, P. L. Reu, and J. Chen, “Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film,” Exp. Fluids 55, 1–9 (2014).
[CrossRef]

J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21, 26432–26449 (2013).
[CrossRef]

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52, 3790–3801 (2013).
[CrossRef]

J. Gao, D. R. Guildenbecher, P. L. Reu, V. Kulkarni, P. E. Sojka, and J. Chen, “Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography,” Opt. Lett. 38, 1893–1895 (2013).
[CrossRef]

D. Guildenbecher, P. L. Reu, J. Gao, and J. Chen, “Experimental methods to quantify the accuracy of 3D particle field measurements via digital holography,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2013), paper DTh4A.2.

Garca-Sagredo, J. M.

N. Malpica, C. O. de Solrzano, J. J. Vaquero, A. Santos, I. Vallcorba, J. M. Garca-Sagredo, and F. del Pozo, “Applying watershed algorithms to the segmentation of clustered nuclei,” Cytometry 28, 289–297 (1997).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Grasser, T. W.

D. R. Guildenbecher, L. Engvall, J. Gao, T. W. Grasser, P. L. Reu, and J. Chen, “Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film,” Exp. Fluids 55, 1–9 (2014).
[CrossRef]

Guildenbecher, D.

D. Guildenbecher, P. L. Reu, J. Gao, and J. Chen, “Experimental methods to quantify the accuracy of 3D particle field measurements via digital holography,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2013), paper DTh4A.2.

Guildenbecher, D. R.

Himbert, M.

F. Lamadie, L. Bruel, and M. Himbert, “Digital holographic measurement of liquid-liquid two-phase flows,” Opt. Laser Eng. 50, 1716–1725 (2012).
[CrossRef]

Kang, B. S.

Y. Yang and B. S. Kang, “Digital particle holographic system for measurements of spray field characteristics,” Opt. Laser Eng. 49, 1254–1263 (2011).
[CrossRef]

Kariwala, V.

T. Khanam, M. N. Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci. 66, 2699–2706 (2011).
[CrossRef]

Katz, J.

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
[CrossRef]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
[CrossRef]

Khanam, T.

T. Khanam, M. N. Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci. 66, 2699–2706 (2011).
[CrossRef]

Kim, J. Y.

J. Y. Kim, J. H. Chu, and S. Y. Lee, “Improvement of pattern recognition algorithm for drop size measurement,” Atomization Sprays 9, 313–329 (1999).

Kulkarni, V.

Lamadie, F.

F. Lamadie, L. Bruel, and M. Himbert, “Digital holographic measurement of liquid-liquid two-phase flows,” Opt. Laser Eng. 50, 1716–1725 (2012).
[CrossRef]

Lebrun, D.

Lee, S. Y.

J. Y. Kim, J. H. Chu, and S. Y. Lee, “Improvement of pattern recognition algorithm for drop size measurement,” Atomization Sprays 9, 313–329 (1999).

Lee, S.-J.

Loomis, N.

Malek, M.

Malkiel, E.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
[CrossRef]

Mallahi, A. E.

Malpica, N.

N. Malpica, C. O. de Solrzano, J. J. Vaquero, A. Santos, I. Vallcorba, J. M. Garca-Sagredo, and F. del Pozo, “Applying watershed algorithms to the segmentation of clustered nuclei,” Cytometry 28, 289–297 (1997).
[CrossRef]

Méès, L.

Meng, H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Pan, G.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Place, A. R.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
[CrossRef]

Pu, Y.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Rahman, M. N.

T. Khanam, M. N. Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci. 66, 2699–2706 (2011).
[CrossRef]

Rajendran, A.

T. Khanam, M. N. Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci. 66, 2699–2706 (2011).
[CrossRef]

Reu, P. L.

D. R. Guildenbecher, L. Engvall, J. Gao, T. W. Grasser, P. L. Reu, and J. Chen, “Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film,” Exp. Fluids 55, 1–9 (2014).
[CrossRef]

J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21, 26432–26449 (2013).
[CrossRef]

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52, 3790–3801 (2013).
[CrossRef]

J. Gao, D. R. Guildenbecher, P. L. Reu, V. Kulkarni, P. E. Sojka, and J. Chen, “Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography,” Opt. Lett. 38, 1893–1895 (2013).
[CrossRef]

D. Guildenbecher, P. L. Reu, J. Gao, and J. Chen, “Experimental methods to quantify the accuracy of 3D particle field measurements via digital holography,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2013), paper DTh4A.2.

Santos, A.

N. Malpica, C. O. de Solrzano, J. J. Vaquero, A. Santos, I. Vallcorba, J. M. Garca-Sagredo, and F. del Pozo, “Applying watershed algorithms to the segmentation of clustered nuclei,” Cytometry 28, 289–297 (1997).
[CrossRef]

Saw, E. W.

Sergeyev, A. V.

Shaw, R. A.

Sheng, J.

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
[CrossRef]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
[CrossRef]

Sojka, P. E.

Soria, J.

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
[CrossRef]

Tian, L.

Torelli, J. C.

R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno, “2D Euclidean distance transform algorithms: a comparative survey,” ACM Comput. Surv. 40, 1–44 (2008).
[CrossRef]

Vallcorba, I.

N. Malpica, C. O. de Solrzano, J. J. Vaquero, A. Santos, I. Vallcorba, J. M. Garca-Sagredo, and F. del Pozo, “Applying watershed algorithms to the segmentation of clustered nuclei,” Cytometry 28, 289–297 (1997).
[CrossRef]

Vaquero, J. J.

N. Malpica, C. O. de Solrzano, J. J. Vaquero, A. Santos, I. Vallcorba, J. M. Garca-Sagredo, and F. del Pozo, “Applying watershed algorithms to the segmentation of clustered nuclei,” Cytometry 28, 289–297 (1997).
[CrossRef]

Walle, F.

Wang, Z.

Woodward, S. H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Wu, X.

Wu, Y.

Yang, Y.

Y. Yang and B. S. Kang, “Digital particle holographic system for measurements of spray field characteristics,” Opt. Laser Eng. 49, 1254–1263 (2011).
[CrossRef]

ACM Comput. Surv. (1)

R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno, “2D Euclidean distance transform algorithms: a comparative survey,” ACM Comput. Surv. 40, 1–44 (2008).
[CrossRef]

Annu. Rev. Fluid Mech. (1)

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
[CrossRef]

Appl. Opt. (6)

Atomization Sprays (1)

J. Y. Kim, J. H. Chu, and S. Y. Lee, “Improvement of pattern recognition algorithm for drop size measurement,” Atomization Sprays 9, 313–329 (1999).

Chem. Eng. Sci. (1)

T. Khanam, M. N. Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci. 66, 2699–2706 (2011).
[CrossRef]

Cytometry (1)

N. Malpica, C. O. de Solrzano, J. J. Vaquero, A. Santos, I. Vallcorba, J. M. Garca-Sagredo, and F. del Pozo, “Applying watershed algorithms to the segmentation of clustered nuclei,” Cytometry 28, 289–297 (1997).
[CrossRef]

Exp. Fluids (1)

D. R. Guildenbecher, L. Engvall, J. Gao, T. W. Grasser, P. L. Reu, and J. Chen, “Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film,” Exp. Fluids 55, 1–9 (2014).
[CrossRef]

Meas. Sci. Technol. (2)

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
[CrossRef]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Opt. Express (3)

Opt. Laser Eng. (2)

Y. Yang and B. S. Kang, “Digital particle holographic system for measurements of spray field characteristics,” Opt. Laser Eng. 49, 1254–1263 (2011).
[CrossRef]

F. Lamadie, L. Bruel, and M. Himbert, “Digital holographic measurement of liquid-liquid two-phase flows,” Opt. Laser Eng. 50, 1716–1725 (2012).
[CrossRef]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. USA (1)

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
[CrossRef]

Other (2)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

D. Guildenbecher, P. L. Reu, J. Gao, and J. Chen, “Experimental methods to quantify the accuracy of 3D particle field measurements via digital holography,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2013), paper DTh4A.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Experimental setup of DIH, (b) a portion of a particle hologram taken from the synthetic holograms described in Subsection 4.A, and (c) particle 2D morphology extracted by the hybrid method. Inset in (c): image reconstructed at the detected z position of the false particle enclosed in the red rectangle. Notice, no particles appear in-focus. The scale bars represent 0.5 mm.

Fig. 2.
Fig. 2.

Sharpness profile of the false particle encircled in Fig. 1(c).

Fig. 3.
Fig. 3.

(a)–(c) Intensity images reconstructed at the valid peaks in Fig. 2, (d)–(f) corresponding sharpness images, and (g)–(i) extracted binary images of particles a, b, and c.

Fig. 4.
Fig. 4.

(a) Sharpness profile of the false particle in (j), (b) I(k,l,zα), intensity image reconstructed at zα, (c) T(k,l,zα), sharpness image at zα, (d) Tt(zα){I(k,l,zα)}, initially extracted particle 2D morphology at zα, (e) extracted edge pixels of particle α, (f) I(k,l,zβ), intensity image reconstructed at zβ, (g) T(k,l,zβ), sharpness image at zβ, (h) Tt(zβ){I(k,l,zβ)}, initially extracted particle 2D morphology at zβ, (i) extracted edge pixels of particle β, (j) initial false particle, (k) separated particle α, and (l) separated particle β.

Fig. 5.
Fig. 5.

(a) Portion of a synthetic hologram at L=6.5cm, (b) actual particle image with color indicating the particle depth, (c) particle image obtained before refinement with color indicating the measured particle depth, and (d) particle image obtained after refinement with color indicating the measured particle depth. The scale bars represent 0.5 mm.

Fig. 6.
Fig. 6.

Improvement in z-position and size accuracy achieved by the refinement applied to synthetic holograms. (a) Cumulative distribution function (CDF) of relative depth error. (b) Measured particle size distribution. zd, determined particle depth; z0, actual particle depth; D0, actual particle diameter.

Fig. 7.
Fig. 7.

(a) Experimental configuration to capture calibration holograms and (b) sample holograms of calibration particle fields, sets “A” and “B”. The scale bars represent 3 mm.

Fig. 8.
Fig. 8.

(a) Experimental DIH setup for characterization of aerodynamic breakup of a single drop and (b) a sample hologram. (c) A sample hologram taken of drop impact on a thin film. Inset in (a): air nozzle viewed from the z direction. The scale bars represent 5 mm.

Fig. 9.
Fig. 9.

Droplet velocity vectors of aerodynamic drop fragmentation measured with and without the refinement. (a) Comparison of in-plane (xy) velocity vectors, (b) velocity vectors extracted without the refinement viewed from the x direction, (c) velocity vectors extracted with the refinement viewed from the x direction. Note that relative velocities with respect to the rim, i.e., V=VdropVrim, are plotted in (b) and (c). Vy and Vz are the mean relative velocities in the y and z directions of the droplets in the four quadrants. The blue arrows show the directions of the mean relative velocities. The magenta vectors are those obtained from false particles and the corresponding refined particles.

Fig. 10.
Fig. 10.

Droplet velocity vectors produced by drop impact extracted with and without the refinement. The magenta vectors are those obtained from false particles and the corresponding refined particles.

Tables (3)

Tables Icon

Table 1. Performance of the Refinement Applied to Synthetic Holograms

Tables Icon

Table 2. Performance and Improvement Achieved by the Refinement Applied to Experimental Calibration Holograms

Tables Icon

Table 3. Performance of the Refinement Applied to Practical Holograms

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E(x,y,z)=F1{F{h(x,y)}·G(fx,fy,z)}.
G(fx,fy,z)=exp[j2πzλ1(λfx)2(λfy)2]
S(z)=k,lWE{Tt(z){I(k,l,z)}}·T(k,l,z)k,lWE{Tt(z){I(k,l,z)}},
T(k,l,z)=[A(k,l,z)Kx]2+[A(k,l,z)Ky]2,

Metrics