Abstract

This paper deals with two issues affecting the application of digital holographic microscopy (DHM) for measuring the spatial distribution of particles in a dense suspension, namely discriminating between real and virtual images and accurate detection of the particle center. Previous methods to separate real and virtual fields have involved applications of multiple phase-shifted holograms, combining reconstructed fields of multiple axially displaced holograms, and analysis of intensity distributions of weakly scattering objects. Here, we introduce a simple approach based on simultaneously recording two in-line holograms, whose planes are separated by a short distance from each other. This distance is chosen to be longer than the elongated trace of the particle. During reconstruction, the real images overlap, whereas the virtual images are displaced by twice the distance between hologram planes. Data analysis is based on correlating the spatial intensity distributions of the two reconstructed fields to measure displacement between traces. This method has been implemented for both synthetic particles and a dense suspension of 2 μm particles. The correlation analysis readily discriminates between real and virtual images of a sample containing more than 1300 particles. Consequently, we can now implement DHM for three-dimensional tracking of particles when the hologram plane is located inside the sample volume. Spatial correlations within the same reconstructed field are also used to improve the detection of the axial location of the particle center, extending previously introduced procedures to suspensions of microscopic particles. For each cross section within a particle trace, we sum the correlations among intensity distributions in all planes located symmetrically on both sides of the section. This cumulative correlation has a sharp peak at the particle center. Using both synthetic and recorded particle fields, we show that the uncertainty in localizing the axial location of the center is reduced to about one particle’s diameter.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
    [CrossRef]
  2. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
  3. P. Langehanenberg, G. Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Res 2, 27 (2011).
    [CrossRef]
  4. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
    [CrossRef]
  5. S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24, 024004 (2013).
    [CrossRef]
  6. S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol. 22, 064004 (2011).
    [CrossRef]
  7. A. El Mallahi, C. Minetti, and F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources,” Appl. Opt. 52, A68–A80 (2013).
    [CrossRef]
  8. R. Liu, D. K. Dey, D. Boss, P. Marquet, and B. Javidi, “Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis,” J. Opt. Soc. Am. A 28, 1204–1210 (2011).
    [CrossRef]
  9. L. Wilson and R. J. Zhang, “3D localization of weak scatterers in digital holographic microscopy using Rayleigh–Sommerfeld back-propagation,” Opt. Express 20, 16735–16744 (2012).
    [CrossRef]
  10. S. H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15, 1505–1512 (2007).
    [CrossRef]
  11. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef]
  12. S. Lai, B. King, and M. A. Neifeld, “Wave front reconstruction by means of phase-shifting digital in-line holography,” Opt. Commun. 173, 155–160 (2000).
    [CrossRef]
  13. P. Y. Guo and A. J. Devaney, “Digital microscopy using phase-shifting digital holography with two reference waves,” Opt. Lett. 29, 857–859 (2004).
    [CrossRef]
  14. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416 (2006).
    [CrossRef]
  15. J. P. Liu and T. C. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett. 34, 250–252 (2009).
    [CrossRef]
  16. M. Lin, K. Nitta, O. Matoba, and Y. Awatsuji, “Parallel phase-shifting digital holography with adaptive function using phase-mode spatial light modulator,” Appl. Opt. 51, 2633–2637 (2012).
    [CrossRef]
  17. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183–D189 (2008).
    [CrossRef]
  18. H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev. 17, 176–180 (2010).
    [CrossRef]
  19. M. A. Araiza-Esquivel, L. Martinez-Leon, B. Javidi, P. Andres, J. Lancis, and E. Tajahuerce, “Single-shot color digital holography based on the fractional Talbot effect,” Appl. Opt. 50, B96–B101 (2011).
    [CrossRef]
  20. H. Toge, H. Fujiwara, and K. Sato, “One-shot digital holography for recording color 3-D images,” Proc. SPIE 6912, 69120U (2008).
    [CrossRef]
  21. S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography for three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys. 48, 09LB01 (2009).
  22. N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49, 2872–2878 (2010).
    [CrossRef]
  23. B. Das, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter,” Opt. Commun. 285, 4954–4960 (2012).
    [CrossRef]
  24. T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873–4877 (2006).
    [CrossRef]
  25. T. Tahara, K. Ito, M. Fujii, T. Kakue, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Experimental demonstration of parallel two-step phase-shifting digital holography,” Opt. Express 18, 18975–18980 (2010).
    [CrossRef]
  26. T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
    [CrossRef]
  27. V. Mico, J. Garcia, Z. Zalevsky, and B. Javidi, “Phase-shifting Gabor holography,” Opt. Lett. 34, 1492–1494 (2009).
    [CrossRef]
  28. L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 59140J (2005).
    [CrossRef]
  29. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29, 1787–1789 (2004).
    [CrossRef]
  30. G. Situ, J. P. Ryle, U. Gopinathan, and J. T. Sheridan, “Generalized in-line digital holographic technique based on intensity measurements at two different planes,” Appl. Opt. 47, 711–717 (2008).
    [CrossRef]
  31. B. Das and C. S. Yelleswarapu, “Dual plane in-line digital holographic microscopy,” Opt. Lett. 35, 3426–3428 (2010).
    [CrossRef]
  32. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express 11, 3234–3241 (2003).
    [CrossRef]
  33. L. Rong, F. Pan, W. Xiao, Y. Li, and F. J. Wang, “Twin image elimination from two in-line holograms via phase retrieval,” Chin. Opt. Lett. 10, 060902 (2012).
    [CrossRef]
  34. Y. J. Choo and B. S. Kang, “The characteristics of the particle position along an optical axis in particle holography,” Meas. Sci. Technol. 17, 761–770 (2006).
    [CrossRef]
  35. Y. Yang, B. S. Kang, and Y. J. Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt. 47, 817–824 (2008).
    [CrossRef]
  36. X. C. Wu, S. Meunier-Guttin-Cluzel, Y. C. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. H. Chen, S. Coetmellec, K. F. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).
    [CrossRef]
  37. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010).
    [CrossRef]
  38. F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz–Mie theory and its application to microholography,” Appl. Opt. 23, 4140–4148 (1984).
    [CrossRef]
  39. D. Kapfenberger, A. Sonn-Segev, and Y. Roichman, “Accurate holographic imaging of colloidal particle pairs by Rayleigh–Sommerfeld reconstruction,” Opt. Express 21, 12228–12237 (2013).
    [CrossRef]
  40. B. Tao, J. Katz, and C. Meneveau, “Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements,” J. Fluid Mech. 457, 35–78 (2002).
    [CrossRef]
  41. J. Sheng, E. Malkiel, and J. Katz, “Single beam two-views holographic particle image velocimetry,” Appl. Opt. 42, 235–250 (2003).
    [CrossRef]
  42. N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
    [CrossRef]

2013

S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24, 024004 (2013).
[CrossRef]

A. El Mallahi, C. Minetti, and F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources,” Appl. Opt. 52, A68–A80 (2013).
[CrossRef]

D. Kapfenberger, A. Sonn-Segev, and Y. Roichman, “Accurate holographic imaging of colloidal particle pairs by Rayleigh–Sommerfeld reconstruction,” Opt. Express 21, 12228–12237 (2013).
[CrossRef]

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
[CrossRef]

2012

X. C. Wu, S. Meunier-Guttin-Cluzel, Y. C. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. H. Chen, S. Coetmellec, K. F. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).
[CrossRef]

L. Wilson and R. J. Zhang, “3D localization of weak scatterers in digital holographic microscopy using Rayleigh–Sommerfeld back-propagation,” Opt. Express 20, 16735–16744 (2012).
[CrossRef]

M. Lin, K. Nitta, O. Matoba, and Y. Awatsuji, “Parallel phase-shifting digital holography with adaptive function using phase-mode spatial light modulator,” Appl. Opt. 51, 2633–2637 (2012).
[CrossRef]

B. Das, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter,” Opt. Commun. 285, 4954–4960 (2012).
[CrossRef]

L. Rong, F. Pan, W. Xiao, Y. Li, and F. J. Wang, “Twin image elimination from two in-line holograms via phase retrieval,” Chin. Opt. Lett. 10, 060902 (2012).
[CrossRef]

2011

2010

2009

V. Mico, J. Garcia, Z. Zalevsky, and B. Javidi, “Phase-shifting Gabor holography,” Opt. Lett. 34, 1492–1494 (2009).
[CrossRef]

S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography for three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys. 48, 09LB01 (2009).

J. P. Liu and T. C. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett. 34, 250–252 (2009).
[CrossRef]

2008

2007

2006

2005

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 59140J (2005).
[CrossRef]

2004

2003

2002

B. Tao, J. Katz, and C. Meneveau, “Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements,” J. Fluid Mech. 457, 35–78 (2002).
[CrossRef]

2000

S. Lai, B. King, and M. A. Neifeld, “Wave front reconstruction by means of phase-shifting digital in-line holography,” Opt. Commun. 173, 155–160 (2000).
[CrossRef]

1997

1984

Allano, D.

Andres, P.

Araiza-Esquivel, M. A.

Atkinson, C.

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
[CrossRef]

Awatsuji, Y.

Bally, G.

P. Langehanenberg, G. Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Res 2, 27 (2011).
[CrossRef]

Boss, D.

Brunel, M.

X. C. Wu, S. Meunier-Guttin-Cluzel, Y. C. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. H. Chen, S. Coetmellec, K. F. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).
[CrossRef]

Buchmann, N. A.

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
[CrossRef]

Cai, L. Z.

Cen, K. F.

X. C. Wu, S. Meunier-Guttin-Cluzel, Y. C. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. H. Chen, S. Coetmellec, K. F. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).
[CrossRef]

Chen, L. H.

X. C. Wu, S. Meunier-Guttin-Cluzel, Y. C. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. H. Chen, S. Coetmellec, K. F. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).
[CrossRef]

Cheong, F. C.

Choi, Y. S.

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol. 22, 064004 (2011).
[CrossRef]

Choo, Y. J.

Y. Yang, B. S. Kang, and Y. J. Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt. 47, 817–824 (2008).
[CrossRef]

Y. J. Choo and B. S. Kang, “The characteristics of the particle position along an optical axis in particle holography,” Meas. Sci. Technol. 17, 761–770 (2006).
[CrossRef]

Coetmellec, S.

X. C. Wu, S. Meunier-Guttin-Cluzel, Y. C. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. H. Chen, S. Coetmellec, K. F. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).
[CrossRef]

Das, B.

B. Das, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter,” Opt. Commun. 285, 4954–4960 (2012).
[CrossRef]

B. Das and C. S. Yelleswarapu, “Dual plane in-line digital holographic microscopy,” Opt. Lett. 35, 3426–3428 (2010).
[CrossRef]

Denis, L.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 59140J (2005).
[CrossRef]

Devaney, A. J.

Dey, D. K.

Dong, G. Y.

Dubois, F.

Ducottet, C.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 59140J (2005).
[CrossRef]

Ehlers, M. D.

El Mallahi, A.

Fournel, T.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 59140J (2005).
[CrossRef]

Fournier, C.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 59140J (2005).
[CrossRef]

Fujii, M.

Fujiwara, H.

H. Toge, H. Fujiwara, and K. Sato, “One-shot digital holography for recording color 3-D images,” Proc. SPIE 6912, 69120U (2008).
[CrossRef]

Garcia, J.

Gopinathan, U.

Gouesbet, G.

Grehan, G.

X. C. Wu, S. Meunier-Guttin-Cluzel, Y. C. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. H. Chen, S. Coetmellec, K. F. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).
[CrossRef]

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz–Mie theory and its application to microholography,” Appl. Opt. 23, 4140–4148 (1984).
[CrossRef]

Grier, D. G.

Guo, P. Y.

Harada, D.

S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography for three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys. 48, 09LB01 (2009).

Ito, K.

Javidi, B.

Kakue, T.

Kaneko, A.

Kang, B. S.

Y. Yang, B. S. Kang, and Y. J. Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt. 47, 817–824 (2008).
[CrossRef]

Y. J. Choo and B. S. Kang, “The characteristics of the particle position along an optical axis in particle holography,” Meas. Sci. Technol. 17, 761–770 (2006).
[CrossRef]

Kapfenberger, D.

Katz, J.

S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24, 024004 (2013).
[CrossRef]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Single beam two-views holographic particle image velocimetry,” Appl. Opt. 42, 235–250 (2003).
[CrossRef]

B. Tao, J. Katz, and C. Meneveau, “Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements,” J. Fluid Mech. 457, 35–78 (2002).
[CrossRef]

Kemper, B.

P. Langehanenberg, G. Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Res 2, 27 (2011).
[CrossRef]

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

King, B.

S. Lai, B. King, and M. A. Neifeld, “Wave front reconstruction by means of phase-shifting digital in-line holography,” Opt. Commun. 173, 155–160 (2000).
[CrossRef]

Koyama, T.

Krishnatreya, B. J.

Kubota, T.

Lai, S.

S. Lai, B. King, and M. A. Neifeld, “Wave front reconstruction by means of phase-shifting digital in-line holography,” Opt. Commun. 173, 155–160 (2000).
[CrossRef]

Lancis, J.

Langehanenberg, P.

P. Langehanenberg, G. Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Res 2, 27 (2011).
[CrossRef]

Lebrun, D.

X. C. Wu, S. Meunier-Guttin-Cluzel, Y. C. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. H. Chen, S. Coetmellec, K. F. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).
[CrossRef]

Lee, S. H.

Lee, S. J.

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol. 22, 064004 (2011).
[CrossRef]

Li, Y.

Lin, M.

Liu, J. P.

Liu, R.

Malkiel, E.

Marquet, P.

Martinez-Leon, L.

Matoba, O.

Meneveau, C.

B. Tao, J. Katz, and C. Meneveau, “Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements,” J. Fluid Mech. 457, 35–78 (2002).
[CrossRef]

Meng, X. F.

Meunier-Guttin-Cluzel, S.

X. C. Wu, S. Meunier-Guttin-Cluzel, Y. C. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. H. Chen, S. Coetmellec, K. F. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).
[CrossRef]

Mico, V.

Minetti, C.

Murata, S.

S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography for three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys. 48, 09LB01 (2009).

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873–4877 (2006).
[CrossRef]

Neifeld, M. A.

S. Lai, B. King, and M. A. Neifeld, “Wave front reconstruction by means of phase-shifting digital in-line holography,” Opt. Commun. 173, 155–160 (2000).
[CrossRef]

Newpher, T. M.

Nishio, K.

Nitanai, E.

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev. 17, 176–180 (2010).
[CrossRef]

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873–4877 (2006).
[CrossRef]

Nitta, K.

Nomura, T.

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev. 17, 176–180 (2010).
[CrossRef]

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873–4877 (2006).
[CrossRef]

Numata, T.

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev. 17, 176–180 (2010).
[CrossRef]

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873–4877 (2006).
[CrossRef]

Osten, W.

Pan, F.

Pedrini, G.

Poon, T. C.

Rao, D. V. G. L. N.

B. Das, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter,” Opt. Commun. 285, 4954–4960 (2012).
[CrossRef]

Roichman, Y.

Rong, L.

Ryle, J. P.

Saengkaew, S.

X. C. Wu, S. Meunier-Guttin-Cluzel, Y. C. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. H. Chen, S. Coetmellec, K. F. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).
[CrossRef]

Sato, K.

H. Toge, H. Fujiwara, and K. Sato, “One-shot digital holography for recording color 3-D images,” Proc. SPIE 6912, 69120U (2008).
[CrossRef]

Seo, K. W.

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol. 22, 064004 (2011).
[CrossRef]

Shaked, N. T.

Shen, X. X.

Sheng, J.

Sheridan, J. T.

Shimozato, Y.

Situ, G.

Slimani, F.

Sohn, M. H.

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol. 22, 064004 (2011).
[CrossRef]

Sonn-Segev, A.

Soria, J.

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
[CrossRef]

Suzuki, H.

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev. 17, 176–180 (2010).
[CrossRef]

Tahara, T.

Tajahuerce, E.

Talapatra, S.

S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24, 024004 (2013).
[CrossRef]

Tanaka, Y.

S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography for three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys. 48, 09LB01 (2009).

Tao, B.

B. Tao, J. Katz, and C. Meneveau, “Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements,” J. Fluid Mech. 457, 35–78 (2002).
[CrossRef]

Tiziani, H. J.

Toge, H.

H. Toge, H. Fujiwara, and K. Sato, “One-shot digital holography for recording color 3-D images,” Proc. SPIE 6912, 69120U (2008).
[CrossRef]

Ura, S.

Wang, F. J.

Wang, Y. R.

Wax, A.

Wilson, L.

Wu, X. C.

X. C. Wu, S. Meunier-Guttin-Cluzel, Y. C. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. H. Chen, S. Coetmellec, K. F. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).
[CrossRef]

Wu, Y. C.

X. C. Wu, S. Meunier-Guttin-Cluzel, Y. C. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. H. Chen, S. Coetmellec, K. F. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).
[CrossRef]

Xiao, W.

Xu, X. F.

Yamaguchi, I.

Yang, X. L.

Yang, Y.

Yelleswarapu, C. S.

B. Das, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter,” Opt. Commun. 285, 4954–4960 (2012).
[CrossRef]

B. Das and C. S. Yelleswarapu, “Dual plane in-line digital holographic microscopy,” Opt. Lett. 35, 3426–3428 (2010).
[CrossRef]

Yonesaka, R.

Zalevsky, Z.

Zhang, R. J.

Zhang, T.

Zhang, Y.

3D Res

P. Langehanenberg, G. Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Res 2, 27 (2011).
[CrossRef]

Annu. Rev. Fluid Mech.

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
[CrossRef]

Appl. Opt.

M. Lin, K. Nitta, O. Matoba, and Y. Awatsuji, “Parallel phase-shifting digital holography with adaptive function using phase-mode spatial light modulator,” Appl. Opt. 51, 2633–2637 (2012).
[CrossRef]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183–D189 (2008).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef]

A. El Mallahi, C. Minetti, and F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources,” Appl. Opt. 52, A68–A80 (2013).
[CrossRef]

M. A. Araiza-Esquivel, L. Martinez-Leon, B. Javidi, P. Andres, J. Lancis, and E. Tajahuerce, “Single-shot color digital holography based on the fractional Talbot effect,” Appl. Opt. 50, B96–B101 (2011).
[CrossRef]

N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49, 2872–2878 (2010).
[CrossRef]

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873–4877 (2006).
[CrossRef]

G. Situ, J. P. Ryle, U. Gopinathan, and J. T. Sheridan, “Generalized in-line digital holographic technique based on intensity measurements at two different planes,” Appl. Opt. 47, 711–717 (2008).
[CrossRef]

Y. Yang, B. S. Kang, and Y. J. Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt. 47, 817–824 (2008).
[CrossRef]

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz–Mie theory and its application to microholography,” Appl. Opt. 23, 4140–4148 (1984).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Single beam two-views holographic particle image velocimetry,” Appl. Opt. 42, 235–250 (2003).
[CrossRef]

Chin. Opt. Lett.

J. Fluid Mech.

B. Tao, J. Katz, and C. Meneveau, “Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements,” J. Fluid Mech. 457, 35–78 (2002).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography for three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys. 48, 09LB01 (2009).

Meas. Sci. Technol.

Y. J. Choo and B. S. Kang, “The characteristics of the particle position along an optical axis in particle holography,” Meas. Sci. Technol. 17, 761–770 (2006).
[CrossRef]

S. Talapatra and J. Katz, “Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching,” Meas. Sci. Technol. 24, 024004 (2013).
[CrossRef]

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol. 22, 064004 (2011).
[CrossRef]

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol. 24, 024005 (2013).
[CrossRef]

Opt. Commun.

S. Lai, B. King, and M. A. Neifeld, “Wave front reconstruction by means of phase-shifting digital in-line holography,” Opt. Commun. 173, 155–160 (2000).
[CrossRef]

X. C. Wu, S. Meunier-Guttin-Cluzel, Y. C. Wu, S. Saengkaew, D. Lebrun, M. Brunel, L. H. Chen, S. Coetmellec, K. F. Cen, and G. Grehan, “Holography and micro-holography of particle fields: a numerical standard,” Opt. Commun. 285, 3013–3020 (2012).
[CrossRef]

B. Das, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter,” Opt. Commun. 285, 4954–4960 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev. 17, 176–180 (2010).
[CrossRef]

Proc. SPIE

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 59140J (2005).
[CrossRef]

H. Toge, H. Fujiwara, and K. Sato, “One-shot digital holography for recording color 3-D images,” Proc. SPIE 6912, 69120U (2008).
[CrossRef]

SPIE Rev.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Setup for recording two inline holograms in planes separated by a short distance.

Fig. 2.
Fig. 2.

Locations of reconstructed images of a particle, as determined from the two holograms.

Fig. 3.
Fig. 3.

(a) Numerically generated holograms of a 2 μm spherical particle with a refractive index of 1.33+2000i, based on Mie scattering theory, in planes 1 and 2. Relevant parameters are λ=523nm, resolution of 0.55μm/pixel (10× magnification, digital sensor with 5.5μm/pixels), and medium refractive index of 1.33. (b) Reconstructed intensity distribution in the x=0 planes of hologram 1 (bottom) and hologram 2 (top).

Fig. 4.
Fig. 4.

Elongation of reconstructed traces of particles for difference particle sizes. Dots are experimentally measured values for 500 particles. The curve is a parabolic least-squares fit of those dots.

Fig. 5.
Fig. 5.

Sample reconstructed real and virtual particle traces of holograms 1 (black) and 2 (white).

Fig. 6.
Fig. 6.

Distribution of cross-plane displacement of particle traces for the entire field. Contours denote the magnitude of the displacement measured in pixels.

Fig. 7.
Fig. 7.

Distributions of C (δz) for the sample real and virtual particle traces shown in Fig. 5.

Fig. 8.
Fig. 8.

PDF of dz/D and the corresponding Cm obtained by analyzing 1514 traces located at zt1<27μm. The incremental increase between contour lines is 0.1.

Fig. 9.
Fig. 9.

(a) Two-dimensional projection of the spatial distribution of 826 real particles (red dots) and 546 virtual particles (green dots) on the same side of the hologram plane and (b) a 3D plot showing the location of real particle images in space.

Fig. 10.
Fig. 10.

Spatial distribution of D(x,y) across the image plane. The incremental increase between contour lines is 0.1 μm.

Fig. 11.
Fig. 11.

Comparison of a reconstructed part of a plane located 348 μm (174d) form hologram 1. (a) Intensity-based reconstruction using Eq. (3) and (b) reconstruction using the phase retrieval method [28].

Fig. 12.
Fig. 12.

Profiles of E(z)/Em and ψ(z) of a numerically generated trace.

Fig. 13.
Fig. 13.

Profiles of E1(z), ψ1(z), E2(z), and ψ2(z) of traces of the same particle reconstructed from hologram 1 and 2.

Fig. 14.
Fig. 14.

Histograms of |dz|ED(x,y) and |dz|ψD(x,y), both normalized by d, based on analysis of 903 particles.

Fig. 15.
Fig. 15.

(a) Pair of particle traces obtained from holograms 1 (solid) and 2 (mesh), (b) the same particle traces after alignment, (c) profiles of E(z) and ψ(z) for the traces in (a), and (d) profiles of E(z) for the traces in (a) and ψ(z) for the aligned traces shown in (b).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I1(x,y;z=0)=11*+11*+1*1+11*,
I2(x,y;z=D)=22*+22*+2*2+22*.
U1(x,y,z)=(I111*)h(x,y,z)[1*1]h+[11*]h,
U2(x,y,z)=(I222*)h(x,y,zD)[2*2+22*]h(x,y,zD).
h=zexp(ikx2+y2+z2)/iλ(x2+y2+z2),
h=zexp(ikz)exp(ik(x2+y2)/2z)/iλz.
E(z)=I¯x,yS(z)I¯x,yP(z).
C(δz)=x,y,zVI1(x,y,z)I2(x+dx,y+dy,z+δz)x,y,zVI12(x,y,z)x,y,zVI22(x+dx,y+dy,z+δz),
ψ(z)=i=1Nx,yPI1(x,y,ziΔz)I1(x,y,z+iΔz)i=1Nx,yPI12(x,y,ziΔz)x,yPI12(x,y,z+iΔz),

Metrics