Abstract

Over the past 60 years, ground-based remote sensing measurements of the Earth’s mesospheric temperature have been performed using the nighttime hydroxyl (OH) emission, which originates at an altitude of 87km. Several types of instruments have been employed to date: spectrometers, Fabry–Perot or Michelson interferometers, scanning-radiometers, and more recently temperature mappers. Most of them measure the mesospheric temperature in a few sample directions and/or with a limited temporal resolution, restricting their research capabilities to the investigation of larger-scale perturbations such as inertial waves, tides, or planetary waves. The Advanced Mesospheric Temperature Mapper (AMTM) is a novel infrared digital imaging system that measures selected emission lines in the mesospheric OH (3,1) band (at 1.5μm) to create intensity and temperature maps of the mesosphere around 87 km. The data are obtained with an unprecedented spatial (0.5km) and temporal (typically 30″) resolution over a large 120° field of view, allowing detailed measurements of wave propagation and dissipation at the 87km level, even in the presence of strong aurora or under full moon conditions. This paper describes the AMTM characteristics, compares measured temperatures with values obtained by a collocated Na lidar instrument, and presents several examples of temperature maps and nightly keogram representations to illustrate the excellent capabilities of this new instrument.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Noctilucent clouds: modern ground-based photographic observations by a digital camera network

Audrius Dubietis, Peter Dalin, Ričardas Balčiūnas, Kazimieras Černis, Nikolay Pertsev, Vladimir Sukhodoev, Vladimir Perminov, Mark Zalcik, Alexander Zadorozhny, Martin Connors, Ian Schofield, Tom McEwan, Iain McEachran, Soeren Frandsen, Ole Hansen, Holger Andersen, Jesper Grønne, Dmitry Melnikov, Alexander Manevich, and Vitaly Romejko
Appl. Opt. 50(28) F72-F79 (2011)

Polar cap mesosphere wind observations: comparisons of simultaneous measurements with a Fabry–Perot interferometer and a field-widened Michelson interferometer

Genene M. Fisher, Timothy L. Killeen, Qian Wu, J. Michael Reeves, Paul B. Hays, William A. Gault, Stephen Brown, and Gordon G. Shepherd
Appl. Opt. 39(24) 4284-4291 (2000)

Three-dimensional tomographic reconstruction of mesospheric airglow structures using two-station ground-based image measurements

Vern P. Hart, Timothy E. Doyle, Michael J. Taylor, Brent L. Carruth, Pierre-Dominique Pautet, and Yucheng Zhao
Appl. Opt. 51(7) 963-974 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Goldberg, D. C. Fritts, F. J. Schmidlin, B. P. Williams, C. L. Croskey, J. D. Mitchell, M. Friedrich, J. M. Russell, U. Blum, and K. H. Fricke, “The MaCWAVE program to study gravity wave influences on the polar mesosphere,” Ann. Geophys. 24, 1159–1173 (2006).
  2. C. J. Mertens, M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell, “Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-mm Earth limb emission under non-LTE conditions,” Geophys. Res. Lett. 28, 1391–1394 (2001).
    [Crossref]
  3. J. R. Holton, An Introduction to Dynamic Meteorology, 3rd ed. (Academic, 1992).
  4. J. M. Forbes, “Tidal and planetary waves,” in The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, R. M. Johnson and T. L. Killeen, eds., Geophysical Monograph Series (AGU, 1995), Vol. 87, pp. 67–87.
  5. S. Chapman and R. S. Lindzen, Atmospheric Tides (Springer, 1970).
  6. C. O. Hines, “Internal atmospheric gravity waves,” Can. J. Phys. 38, 1441–1481 (1960).
    [Crossref]
  7. S. L. Vadas, D. C. Fritts, and M. J. Alexander, “Mechanism for the generation of secondary waves in wave breaking regions,” J. Atmos. Sci. 60, 194–214 (2003).
    [Crossref]
  8. J. R. Holton, “The influence of gravity wave breaking on the circulation of the middle atmosphere,” J. Atmos. Sci. 40, 2497–2507 (1983).
    [Crossref]
  9. D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (2003).
    [Crossref]
  10. M. J. Taylor and M. A. Hapgood, “On the origin of ripple-type wave structure in the OH nightglow emission,” Planet. Space Sci. 38, 1421–1430 (1990).
    [Crossref]
  11. D. C. Fritts, J. R. Isler, G. E. Thomas, and Ø. Andreassen, “Wave breaking signatures in noctilucent clouds,” Geophys. Res. Lett. 20, 2039–2042 (1993).
    [Crossref]
  12. D. C. Fritts, P.-D. Pautet, K. Bossert, M. J. Taylor, B. P. Williams, H. Iimura, T. Yuan, N. Mitchell, and G. Stöber, “Quantifying gravity wave momentum fluxes with mesospheric temperature mappers and correlative instrumentation,” J. Geophys. Res. (submitted).
  13. A. B. Meinel, “OH emission bands in the spectrum of the night sky,” Astrophys. J. 111, 555–564 (1950).
    [Crossref]
  14. L. Wallace, “The OH nightglow emission,” J. Atmos. Sci. 19, 1–16 (1962).
    [Crossref]
  15. U. B. Makhlouf, R. H. Picard, and J. R. Winick, “Photochemical-dynamical modeling of the measured response of airglow to gravity waves: 1. Basic model for OH airglow,” J. Geophys. Res. 100, 11289–11311 (1995).
    [Crossref]
  16. S. Adler-Golden, “Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements,” J. Geophys. Res. 102, 19969–19976 (1997).
    [Crossref]
  17. J. W. Meriwether, “A review of the photochemistry of selected nightglow emissions from the mesopause,” J. Geophys. Res. 94, 14629–14646 (1989).
    [Crossref]
  18. D. J. Baker and A. T. Stair, “Rocket measurements of the altitude distribution of the hydroxyl airglow,” Phys. Scr. 37, 611–622 (1988).
    [Crossref]
  19. I. C. McDade, “The altitude dependence of the OH (X2Π) vibrational distribution in the nightglow: some model expectations,” Planet. Space Sci. 39, 1049–1057 (1991).
    [Crossref]
  20. G. G. Sivjee and R. M. Hamwey, “Temperature and chemistry of the polar mesopause OH,” J. Geophys. Res. 92, 4663–4672 (1987).
    [Crossref]
  21. G. Hernandez, R. W. Smith, G. J. Fraser, and W. L. Jones, “Large-scale waves in the upper-mesosphere at Antarctic high-latitudes,” Geophys. Res. Lett. 19, 1347–1350 (1992).
    [Crossref]
  22. E. R. Reisin and J. Scheer, “Characteristics of atmospheric waves in the tidal period range derived from zenith observations of O2(0–1) atmospheric and OH(6-2) airglow at lower midlatitudes,” J. Geophys. Res. 101, 21223–21232 (1996).
    [Crossref]
  23. M. Bittner, K. Höppner, C. Pilger, and C. Schmidt, “Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards,” Nat. Hazards Earth Syst. Sci. 10, 1431–1442 (2010).
  24. R. P. Lowe, “Interferometric spectra of the Earth’s airglow (1.2 to 1.6  m),” Phil. Trans. R. Soc. A 264, 163–170 (1969).
  25. S. Sargoytchev, S. Brown, B. H. Solheim, Y.-M. Cho, G. G. Shepherd, and M. J. Lopez-Gonzalez, “Spectral airglow temperature imager (SATI)—a ground based instrument for temperature monitoring of the mesosphere region,” Appl. Opt. 43, 5712–5721 (2004).
    [Crossref]
  26. G. G. Sivjee and R. L. Walterscheid, “Six-hour zonally symmetric tidal oscillations of the winter mesosphere over the South Pole station,” Planet. Space Sci. 42, 447–453 (1994).
    [Crossref]
  27. F. J. Mulligan, D. F. Horgan, J. G. Galligan, and E. M. Griffin, “Mesopause temperatures and integrated band brightnesses calculated from airglow OH emissions recorded at Maynooth (53.2°N 6.4°W) during 1993,” J. Atmos. Terr. Phys. 57, 1623–1637 (1995).
    [Crossref]
  28. F. H. Mies, “Calculated vibrational transition probabilities of OH(X2Π),” J. Mol. Spectrosc. 53, 150–188 (1974).
    [Crossref]
  29. P. Rousselot, C. Lidman, J.-G. Cuby, G. Moreels, and G. Monnet, “Night-sky spectral atlas of OH emission lines in the near infrared,” Astron. Astrophys. 354, 1134–1150 (2000).
  30. J. W. Meriwether, “High latitude airglow observations of correlated short-term fluctuations in the hydroxyl Meinel 8–3 band intensity and rotational temperature,” Planet. Space Sci. 23, 1211–1221 (1975).
    [Crossref]
  31. W. R. Pendleton, P. J. Espy, and M. R. Hammond, “Evidence for non-local thermodynamic equilibrium rotation in the OH nightglow,” J. Geophys. Res. 98, 11567–11579 (1993).
    [Crossref]
  32. P. J. Espy and M. R. Hammond, “Atmospheric transmission coefficients for hydroxyl rotational lines used in rotational temperature determinations,” J. Quant. Spectrosc. Radiat. Transfer 54, 879–889 (1995).
    [Crossref]
  33. M. C. Abrams, D. P. Sumner, M. L. P. Rao, R. Engleman, and J. W. Brault, “High-resolution Fourier transform spectroscopy of the Meinel system of OH,” Astrophys. J. 93, 351–395 (1994).
    [Crossref]
  34. D. D. Nelson, A. Schiffman, D. J. Nesbitt, J. J. Orlando, and J. B. Burkholder, “H+O3 Fourier-transform H+O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Π) radical: an experimental dipole moment function and state-to-state Einstein A coefficients OH(X2Π) radical: an experimental dipole moment function and state-to-state Einstein A coefficients,” J. Chem. Phys. 93, 7003–7018 (1990).
    [Crossref]
  35. C. A. Tepley, R. G. Burnside, and J. W. Meriwether, “Horizontal thermal structure of the mesosphere from observations of OH (8-3) band emission,” Planet. Space Sci. 29, 1241–1249 (1981).
    [Crossref]
  36. W. R. Pendleton, M. J. Taylor, and L. C. Gardner, “Terdiurnal oscillations in OH Meinel rotational temperatures for fall conditions at northern midlatitude sites,” Geophys. Res. Lett. 27, 1799–1802 (2000).
    [Crossref]
  37. M. J. Taylor, L. C. Gardner, and W. R. Pendleton, “Long period wave signatures in mesospheric OH Meinel (6,2) band intensity and rotational temperature at midlatitudes,” Adv. Space Res. 27, 1171–1179 (2001).
    [Crossref]
  38. Y. Zhao, M. J. Taylor, H.-L. Liu, and R. G. Roble, “Seasonal oscillations in mesospheric temperatures at low-latitudes,” J. Atmos. Sol. Terr. Phys. 69, 2367–2378 (2007).
  39. M. J. Taylor, W. R. Pendleton, C. S. Gardner, and R. J. States, “Comparison of terdiurnal tidal oscillations in mesospheric OH rotational temperature and Na lidar temperature measurements at midlatitudes for fall/spring conditions,” Earth Planets Space 51, 877–885 (1999).
  40. Y. Zhao, M. J. Taylor, and X. Chu, “Comparison of simultaneous Na lidar and mesospheric nightglow temperature measurements and the effects of tides on the emission layer heights,” J. Geophys. Res. 110, D09S07 (2005).
  41. A. Taori, M. J. Taylor, and S. Franke, “Terdiurnal wave signatures in the upper mesospheric temperature and their association with the wind field at low latitudes (20°N),” J. Geophys. Res. 110, D09S06 (2005).
    [Crossref]
  42. A. Taori and M. J. Taylor, “Characteristics of wave induced oscillations in the mesospheric O2 emission intensity and temperature,” Geophys. Res. Lett.33(2006).
    [Crossref]
  43. D. B. Simkhada, J. B. Snively, M. J. Taylor, and S. J. Franke, “Analysis and modeling of ducted and evanescent gravity waves observed in the Hawaiian airglow,” Ann. Geophys. 27, 3213–3224 (2009).
  44. C. Y. She, J. R. Yu, H. Latifi, and R. E. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992).
    [Crossref]
  45. T. Yuan, C. Y. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, H. Schmidt, and S. Reising, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41°N, 105°W), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (2008).
    [Crossref]
  46. R. P. Lowe, L. M. Leblanc, and K. L. Gilbert, “WINDII/UARS observation of twilight behaviour of the hydroxyl airglow, at mid-latitude equinox,” J. Atmos. Terr. Phys. 58, 1863–1869 (1996).
    [Crossref]
  47. C.-Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105  km) over Fort Collins, CO (41°N, 105°W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
    [Crossref]
  48. G. G. Shepherd, C. McLandress, and B. H. Solheim, “Tidal influence on O(1  S) airglow altitudes and emission rates at the geographic equator observed by WINDII,” Geophys. Res. Lett. 22, 275–278 (1995).
    [Crossref]
  49. G. R. Swenson and C. S. Gardner, “Analytical models for the responses of the mesospheric OH and Na layers to atmospheric gravity waves,” J. Geophys. Res. 103, 6271–6294 (1998).
    [Crossref]
  50. J. Fujii, T. Nakamura, T. Tsuda, and K. Shiokawa, “Comparison of winds measured by MU radar and Fabry–Perot interferometer and effect of OI5577 airglow height variations,” J. Atmos. Sol. Terr. Phys. 66, 573–583 (2004).
    [Crossref]
  51. F. G. Garcia, M. J. Taylor, and M. C. Kelley, “Two-dimensional spectral analysis of mesospheric airglow image data,” Appl. Opt. 36, 7374–7385 (1997).
    [Crossref]
  52. P.-D. Pautet and G. Moreels, “Ground-based satellite-type images of the upper-atmosphere emissive layer,” Appl. Opt. 41, 823–831 (2002).
    [Crossref]
  53. M. R. Coble, G. C. Papen, and C. S. Gardner, “Computing two-dimensional unambiguous horizontal wavenumber spectra from OH airglow images,” IEEE Trans. Geosci. Remote Sens. 36, 368–382 (1998).
    [Crossref]
  54. M. J. Taylor, P.-D. Pautet, A. F. Medeiros, R. Buriti, J. Fechine, D. C. Fritts, S. L. Vadas, H. Takahashi, and F. T. São Sabbas, “Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign,” Ann. Geophys. 26, 1–12 (2008).
  55. T. Yuan, P.-D. Pautet, Y. Zhao, X. Cai, M. J. Taylor, and W. R. Pendleton, “Coordinated investigation of mid-latitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah,” J. Geophys. Res. 119, 3756–3769 (2014).
    [Crossref]
  56. K. Bossert, D. C. Fritts, P.-D. Pautet, M. J. Taylor, B. P. Williams, and W. R. Pendleton, “Investigation of a mesospheric gravity wave ducting event using coordinated sodium lidar and mesospheric mapper measurements at ALOMAR, Norway (69°N),” J. Geophys. Res., doi:10.1002/2014JD021460 (to be published).
  57. X. Cai, T. Yuan, Y. Zhao, P.-D. Pautet, M. J. Taylor, and W. R. Pendleton, “A coordinated investigation of the creation of two mesospheric dynamical instability layers by a Na Lidar and an Advanced Mesosphere Temperature Mapper over Logan, UT (42°N),” J. Geophys. Res., doi:10.1002/2014JA020131 (to be published).
  58. E. M. Dewan, W. R. Pendleton, N. Grossbard, and P. J. Espy, “Mesospheric OH airglow temperature fluctuations: a spectral analysis,” Geophys. Res. Lett. 19, 597–600 (1992).
    [Crossref]
  59. S. M. I. Azeem and G. G. Sivjee, “Multiyear observations of tidal oscillations in OH M(3,1) rotational temperatures at South Pole, Antarctica,” J. Geophys. Res. 114, A06312 (2009).
    [Crossref]

2014 (1)

T. Yuan, P.-D. Pautet, Y. Zhao, X. Cai, M. J. Taylor, and W. R. Pendleton, “Coordinated investigation of mid-latitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah,” J. Geophys. Res. 119, 3756–3769 (2014).
[Crossref]

2010 (1)

M. Bittner, K. Höppner, C. Pilger, and C. Schmidt, “Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards,” Nat. Hazards Earth Syst. Sci. 10, 1431–1442 (2010).

2009 (2)

D. B. Simkhada, J. B. Snively, M. J. Taylor, and S. J. Franke, “Analysis and modeling of ducted and evanescent gravity waves observed in the Hawaiian airglow,” Ann. Geophys. 27, 3213–3224 (2009).

S. M. I. Azeem and G. G. Sivjee, “Multiyear observations of tidal oscillations in OH M(3,1) rotational temperatures at South Pole, Antarctica,” J. Geophys. Res. 114, A06312 (2009).
[Crossref]

2008 (2)

M. J. Taylor, P.-D. Pautet, A. F. Medeiros, R. Buriti, J. Fechine, D. C. Fritts, S. L. Vadas, H. Takahashi, and F. T. São Sabbas, “Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign,” Ann. Geophys. 26, 1–12 (2008).

T. Yuan, C. Y. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, H. Schmidt, and S. Reising, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41°N, 105°W), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (2008).
[Crossref]

2007 (1)

Y. Zhao, M. J. Taylor, H.-L. Liu, and R. G. Roble, “Seasonal oscillations in mesospheric temperatures at low-latitudes,” J. Atmos. Sol. Terr. Phys. 69, 2367–2378 (2007).

2006 (1)

R. A. Goldberg, D. C. Fritts, F. J. Schmidlin, B. P. Williams, C. L. Croskey, J. D. Mitchell, M. Friedrich, J. M. Russell, U. Blum, and K. H. Fricke, “The MaCWAVE program to study gravity wave influences on the polar mesosphere,” Ann. Geophys. 24, 1159–1173 (2006).

2005 (2)

Y. Zhao, M. J. Taylor, and X. Chu, “Comparison of simultaneous Na lidar and mesospheric nightglow temperature measurements and the effects of tides on the emission layer heights,” J. Geophys. Res. 110, D09S07 (2005).

A. Taori, M. J. Taylor, and S. Franke, “Terdiurnal wave signatures in the upper mesospheric temperature and their association with the wind field at low latitudes (20°N),” J. Geophys. Res. 110, D09S06 (2005).
[Crossref]

2004 (2)

J. Fujii, T. Nakamura, T. Tsuda, and K. Shiokawa, “Comparison of winds measured by MU radar and Fabry–Perot interferometer and effect of OI5577 airglow height variations,” J. Atmos. Sol. Terr. Phys. 66, 573–583 (2004).
[Crossref]

S. Sargoytchev, S. Brown, B. H. Solheim, Y.-M. Cho, G. G. Shepherd, and M. J. Lopez-Gonzalez, “Spectral airglow temperature imager (SATI)—a ground based instrument for temperature monitoring of the mesosphere region,” Appl. Opt. 43, 5712–5721 (2004).
[Crossref]

2003 (2)

S. L. Vadas, D. C. Fritts, and M. J. Alexander, “Mechanism for the generation of secondary waves in wave breaking regions,” J. Atmos. Sci. 60, 194–214 (2003).
[Crossref]

D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (2003).
[Crossref]

2002 (1)

2001 (2)

M. J. Taylor, L. C. Gardner, and W. R. Pendleton, “Long period wave signatures in mesospheric OH Meinel (6,2) band intensity and rotational temperature at midlatitudes,” Adv. Space Res. 27, 1171–1179 (2001).
[Crossref]

C. J. Mertens, M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell, “Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-mm Earth limb emission under non-LTE conditions,” Geophys. Res. Lett. 28, 1391–1394 (2001).
[Crossref]

2000 (3)

P. Rousselot, C. Lidman, J.-G. Cuby, G. Moreels, and G. Monnet, “Night-sky spectral atlas of OH emission lines in the near infrared,” Astron. Astrophys. 354, 1134–1150 (2000).

W. R. Pendleton, M. J. Taylor, and L. C. Gardner, “Terdiurnal oscillations in OH Meinel rotational temperatures for fall conditions at northern midlatitude sites,” Geophys. Res. Lett. 27, 1799–1802 (2000).
[Crossref]

C.-Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105  km) over Fort Collins, CO (41°N, 105°W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[Crossref]

1999 (1)

M. J. Taylor, W. R. Pendleton, C. S. Gardner, and R. J. States, “Comparison of terdiurnal tidal oscillations in mesospheric OH rotational temperature and Na lidar temperature measurements at midlatitudes for fall/spring conditions,” Earth Planets Space 51, 877–885 (1999).

1998 (2)

G. R. Swenson and C. S. Gardner, “Analytical models for the responses of the mesospheric OH and Na layers to atmospheric gravity waves,” J. Geophys. Res. 103, 6271–6294 (1998).
[Crossref]

M. R. Coble, G. C. Papen, and C. S. Gardner, “Computing two-dimensional unambiguous horizontal wavenumber spectra from OH airglow images,” IEEE Trans. Geosci. Remote Sens. 36, 368–382 (1998).
[Crossref]

1997 (2)

F. G. Garcia, M. J. Taylor, and M. C. Kelley, “Two-dimensional spectral analysis of mesospheric airglow image data,” Appl. Opt. 36, 7374–7385 (1997).
[Crossref]

S. Adler-Golden, “Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements,” J. Geophys. Res. 102, 19969–19976 (1997).
[Crossref]

1996 (2)

E. R. Reisin and J. Scheer, “Characteristics of atmospheric waves in the tidal period range derived from zenith observations of O2(0–1) atmospheric and OH(6-2) airglow at lower midlatitudes,” J. Geophys. Res. 101, 21223–21232 (1996).
[Crossref]

R. P. Lowe, L. M. Leblanc, and K. L. Gilbert, “WINDII/UARS observation of twilight behaviour of the hydroxyl airglow, at mid-latitude equinox,” J. Atmos. Terr. Phys. 58, 1863–1869 (1996).
[Crossref]

1995 (4)

G. G. Shepherd, C. McLandress, and B. H. Solheim, “Tidal influence on O(1  S) airglow altitudes and emission rates at the geographic equator observed by WINDII,” Geophys. Res. Lett. 22, 275–278 (1995).
[Crossref]

U. B. Makhlouf, R. H. Picard, and J. R. Winick, “Photochemical-dynamical modeling of the measured response of airglow to gravity waves: 1. Basic model for OH airglow,” J. Geophys. Res. 100, 11289–11311 (1995).
[Crossref]

P. J. Espy and M. R. Hammond, “Atmospheric transmission coefficients for hydroxyl rotational lines used in rotational temperature determinations,” J. Quant. Spectrosc. Radiat. Transfer 54, 879–889 (1995).
[Crossref]

F. J. Mulligan, D. F. Horgan, J. G. Galligan, and E. M. Griffin, “Mesopause temperatures and integrated band brightnesses calculated from airglow OH emissions recorded at Maynooth (53.2°N 6.4°W) during 1993,” J. Atmos. Terr. Phys. 57, 1623–1637 (1995).
[Crossref]

1994 (2)

G. G. Sivjee and R. L. Walterscheid, “Six-hour zonally symmetric tidal oscillations of the winter mesosphere over the South Pole station,” Planet. Space Sci. 42, 447–453 (1994).
[Crossref]

M. C. Abrams, D. P. Sumner, M. L. P. Rao, R. Engleman, and J. W. Brault, “High-resolution Fourier transform spectroscopy of the Meinel system of OH,” Astrophys. J. 93, 351–395 (1994).
[Crossref]

1993 (2)

W. R. Pendleton, P. J. Espy, and M. R. Hammond, “Evidence for non-local thermodynamic equilibrium rotation in the OH nightglow,” J. Geophys. Res. 98, 11567–11579 (1993).
[Crossref]

D. C. Fritts, J. R. Isler, G. E. Thomas, and Ø. Andreassen, “Wave breaking signatures in noctilucent clouds,” Geophys. Res. Lett. 20, 2039–2042 (1993).
[Crossref]

1992 (3)

G. Hernandez, R. W. Smith, G. J. Fraser, and W. L. Jones, “Large-scale waves in the upper-mesosphere at Antarctic high-latitudes,” Geophys. Res. Lett. 19, 1347–1350 (1992).
[Crossref]

C. Y. She, J. R. Yu, H. Latifi, and R. E. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992).
[Crossref]

E. M. Dewan, W. R. Pendleton, N. Grossbard, and P. J. Espy, “Mesospheric OH airglow temperature fluctuations: a spectral analysis,” Geophys. Res. Lett. 19, 597–600 (1992).
[Crossref]

1991 (1)

I. C. McDade, “The altitude dependence of the OH (X2Π) vibrational distribution in the nightglow: some model expectations,” Planet. Space Sci. 39, 1049–1057 (1991).
[Crossref]

1990 (2)

M. J. Taylor and M. A. Hapgood, “On the origin of ripple-type wave structure in the OH nightglow emission,” Planet. Space Sci. 38, 1421–1430 (1990).
[Crossref]

D. D. Nelson, A. Schiffman, D. J. Nesbitt, J. J. Orlando, and J. B. Burkholder, “H+O3 Fourier-transform H+O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Π) radical: an experimental dipole moment function and state-to-state Einstein A coefficients OH(X2Π) radical: an experimental dipole moment function and state-to-state Einstein A coefficients,” J. Chem. Phys. 93, 7003–7018 (1990).
[Crossref]

1989 (1)

J. W. Meriwether, “A review of the photochemistry of selected nightglow emissions from the mesopause,” J. Geophys. Res. 94, 14629–14646 (1989).
[Crossref]

1988 (1)

D. J. Baker and A. T. Stair, “Rocket measurements of the altitude distribution of the hydroxyl airglow,” Phys. Scr. 37, 611–622 (1988).
[Crossref]

1987 (1)

G. G. Sivjee and R. M. Hamwey, “Temperature and chemistry of the polar mesopause OH,” J. Geophys. Res. 92, 4663–4672 (1987).
[Crossref]

1983 (1)

J. R. Holton, “The influence of gravity wave breaking on the circulation of the middle atmosphere,” J. Atmos. Sci. 40, 2497–2507 (1983).
[Crossref]

1981 (1)

C. A. Tepley, R. G. Burnside, and J. W. Meriwether, “Horizontal thermal structure of the mesosphere from observations of OH (8-3) band emission,” Planet. Space Sci. 29, 1241–1249 (1981).
[Crossref]

1975 (1)

J. W. Meriwether, “High latitude airglow observations of correlated short-term fluctuations in the hydroxyl Meinel 8–3 band intensity and rotational temperature,” Planet. Space Sci. 23, 1211–1221 (1975).
[Crossref]

1974 (1)

F. H. Mies, “Calculated vibrational transition probabilities of OH(X2Π),” J. Mol. Spectrosc. 53, 150–188 (1974).
[Crossref]

1969 (1)

R. P. Lowe, “Interferometric spectra of the Earth’s airglow (1.2 to 1.6  m),” Phil. Trans. R. Soc. A 264, 163–170 (1969).

1962 (1)

L. Wallace, “The OH nightglow emission,” J. Atmos. Sci. 19, 1–16 (1962).
[Crossref]

1960 (1)

C. O. Hines, “Internal atmospheric gravity waves,” Can. J. Phys. 38, 1441–1481 (1960).
[Crossref]

1950 (1)

A. B. Meinel, “OH emission bands in the spectrum of the night sky,” Astrophys. J. 111, 555–564 (1950).
[Crossref]

Abrams, M. C.

M. C. Abrams, D. P. Sumner, M. L. P. Rao, R. Engleman, and J. W. Brault, “High-resolution Fourier transform spectroscopy of the Meinel system of OH,” Astrophys. J. 93, 351–395 (1994).
[Crossref]

Adler-Golden, S.

S. Adler-Golden, “Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements,” J. Geophys. Res. 102, 19969–19976 (1997).
[Crossref]

Alexander, M. J.

S. L. Vadas, D. C. Fritts, and M. J. Alexander, “Mechanism for the generation of secondary waves in wave breaking regions,” J. Atmos. Sci. 60, 194–214 (2003).
[Crossref]

D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (2003).
[Crossref]

Andreassen, Ø.

D. C. Fritts, J. R. Isler, G. E. Thomas, and Ø. Andreassen, “Wave breaking signatures in noctilucent clouds,” Geophys. Res. Lett. 20, 2039–2042 (1993).
[Crossref]

Azeem, S. M. I.

S. M. I. Azeem and G. G. Sivjee, “Multiyear observations of tidal oscillations in OH M(3,1) rotational temperatures at South Pole, Antarctica,” J. Geophys. Res. 114, A06312 (2009).
[Crossref]

Baker, D. J.

D. J. Baker and A. T. Stair, “Rocket measurements of the altitude distribution of the hydroxyl airglow,” Phys. Scr. 37, 611–622 (1988).
[Crossref]

Bills, R. E.

Bittner, M.

M. Bittner, K. Höppner, C. Pilger, and C. Schmidt, “Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards,” Nat. Hazards Earth Syst. Sci. 10, 1431–1442 (2010).

Blum, U.

R. A. Goldberg, D. C. Fritts, F. J. Schmidlin, B. P. Williams, C. L. Croskey, J. D. Mitchell, M. Friedrich, J. M. Russell, U. Blum, and K. H. Fricke, “The MaCWAVE program to study gravity wave influences on the polar mesosphere,” Ann. Geophys. 24, 1159–1173 (2006).

Bossert, K.

D. C. Fritts, P.-D. Pautet, K. Bossert, M. J. Taylor, B. P. Williams, H. Iimura, T. Yuan, N. Mitchell, and G. Stöber, “Quantifying gravity wave momentum fluxes with mesospheric temperature mappers and correlative instrumentation,” J. Geophys. Res. (submitted).

K. Bossert, D. C. Fritts, P.-D. Pautet, M. J. Taylor, B. P. Williams, and W. R. Pendleton, “Investigation of a mesospheric gravity wave ducting event using coordinated sodium lidar and mesospheric mapper measurements at ALOMAR, Norway (69°N),” J. Geophys. Res., doi:10.1002/2014JD021460 (to be published).

Brault, J. W.

M. C. Abrams, D. P. Sumner, M. L. P. Rao, R. Engleman, and J. W. Brault, “High-resolution Fourier transform spectroscopy of the Meinel system of OH,” Astrophys. J. 93, 351–395 (1994).
[Crossref]

Brown, S.

Buriti, R.

M. J. Taylor, P.-D. Pautet, A. F. Medeiros, R. Buriti, J. Fechine, D. C. Fritts, S. L. Vadas, H. Takahashi, and F. T. São Sabbas, “Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign,” Ann. Geophys. 26, 1–12 (2008).

Burkholder, J. B.

D. D. Nelson, A. Schiffman, D. J. Nesbitt, J. J. Orlando, and J. B. Burkholder, “H+O3 Fourier-transform H+O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Π) radical: an experimental dipole moment function and state-to-state Einstein A coefficients OH(X2Π) radical: an experimental dipole moment function and state-to-state Einstein A coefficients,” J. Chem. Phys. 93, 7003–7018 (1990).
[Crossref]

Burnside, R. G.

C. A. Tepley, R. G. Burnside, and J. W. Meriwether, “Horizontal thermal structure of the mesosphere from observations of OH (8-3) band emission,” Planet. Space Sci. 29, 1241–1249 (1981).
[Crossref]

Cai, X.

T. Yuan, P.-D. Pautet, Y. Zhao, X. Cai, M. J. Taylor, and W. R. Pendleton, “Coordinated investigation of mid-latitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah,” J. Geophys. Res. 119, 3756–3769 (2014).
[Crossref]

X. Cai, T. Yuan, Y. Zhao, P.-D. Pautet, M. J. Taylor, and W. R. Pendleton, “A coordinated investigation of the creation of two mesospheric dynamical instability layers by a Na Lidar and an Advanced Mesosphere Temperature Mapper over Logan, UT (42°N),” J. Geophys. Res., doi:10.1002/2014JA020131 (to be published).

Chapman, S.

S. Chapman and R. S. Lindzen, Atmospheric Tides (Springer, 1970).

Chen, S.

C.-Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105  km) over Fort Collins, CO (41°N, 105°W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[Crossref]

Cho, Y.-M.

Chu, X.

Y. Zhao, M. J. Taylor, and X. Chu, “Comparison of simultaneous Na lidar and mesospheric nightglow temperature measurements and the effects of tides on the emission layer heights,” J. Geophys. Res. 110, D09S07 (2005).

Coble, M. R.

M. R. Coble, G. C. Papen, and C. S. Gardner, “Computing two-dimensional unambiguous horizontal wavenumber spectra from OH airglow images,” IEEE Trans. Geosci. Remote Sens. 36, 368–382 (1998).
[Crossref]

Croskey, C. L.

R. A. Goldberg, D. C. Fritts, F. J. Schmidlin, B. P. Williams, C. L. Croskey, J. D. Mitchell, M. Friedrich, J. M. Russell, U. Blum, and K. H. Fricke, “The MaCWAVE program to study gravity wave influences on the polar mesosphere,” Ann. Geophys. 24, 1159–1173 (2006).

Cuby, J.-G.

P. Rousselot, C. Lidman, J.-G. Cuby, G. Moreels, and G. Monnet, “Night-sky spectral atlas of OH emission lines in the near infrared,” Astron. Astrophys. 354, 1134–1150 (2000).

Dewan, E. M.

E. M. Dewan, W. R. Pendleton, N. Grossbard, and P. J. Espy, “Mesospheric OH airglow temperature fluctuations: a spectral analysis,” Geophys. Res. Lett. 19, 597–600 (1992).
[Crossref]

Engleman, R.

M. C. Abrams, D. P. Sumner, M. L. P. Rao, R. Engleman, and J. W. Brault, “High-resolution Fourier transform spectroscopy of the Meinel system of OH,” Astrophys. J. 93, 351–395 (1994).
[Crossref]

Espy, P. J.

P. J. Espy and M. R. Hammond, “Atmospheric transmission coefficients for hydroxyl rotational lines used in rotational temperature determinations,” J. Quant. Spectrosc. Radiat. Transfer 54, 879–889 (1995).
[Crossref]

W. R. Pendleton, P. J. Espy, and M. R. Hammond, “Evidence for non-local thermodynamic equilibrium rotation in the OH nightglow,” J. Geophys. Res. 98, 11567–11579 (1993).
[Crossref]

E. M. Dewan, W. R. Pendleton, N. Grossbard, and P. J. Espy, “Mesospheric OH airglow temperature fluctuations: a spectral analysis,” Geophys. Res. Lett. 19, 597–600 (1992).
[Crossref]

Fechine, J.

M. J. Taylor, P.-D. Pautet, A. F. Medeiros, R. Buriti, J. Fechine, D. C. Fritts, S. L. Vadas, H. Takahashi, and F. T. São Sabbas, “Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign,” Ann. Geophys. 26, 1–12 (2008).

Forbes, J. M.

J. M. Forbes, “Tidal and planetary waves,” in The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, R. M. Johnson and T. L. Killeen, eds., Geophysical Monograph Series (AGU, 1995), Vol. 87, pp. 67–87.

Franke, S.

A. Taori, M. J. Taylor, and S. Franke, “Terdiurnal wave signatures in the upper mesospheric temperature and their association with the wind field at low latitudes (20°N),” J. Geophys. Res. 110, D09S06 (2005).
[Crossref]

Franke, S. J.

D. B. Simkhada, J. B. Snively, M. J. Taylor, and S. J. Franke, “Analysis and modeling of ducted and evanescent gravity waves observed in the Hawaiian airglow,” Ann. Geophys. 27, 3213–3224 (2009).

Fraser, G. J.

G. Hernandez, R. W. Smith, G. J. Fraser, and W. L. Jones, “Large-scale waves in the upper-mesosphere at Antarctic high-latitudes,” Geophys. Res. Lett. 19, 1347–1350 (1992).
[Crossref]

Fricke, K. H.

R. A. Goldberg, D. C. Fritts, F. J. Schmidlin, B. P. Williams, C. L. Croskey, J. D. Mitchell, M. Friedrich, J. M. Russell, U. Blum, and K. H. Fricke, “The MaCWAVE program to study gravity wave influences on the polar mesosphere,” Ann. Geophys. 24, 1159–1173 (2006).

Friedrich, M.

R. A. Goldberg, D. C. Fritts, F. J. Schmidlin, B. P. Williams, C. L. Croskey, J. D. Mitchell, M. Friedrich, J. M. Russell, U. Blum, and K. H. Fricke, “The MaCWAVE program to study gravity wave influences on the polar mesosphere,” Ann. Geophys. 24, 1159–1173 (2006).

Fritts, D. C.

M. J. Taylor, P.-D. Pautet, A. F. Medeiros, R. Buriti, J. Fechine, D. C. Fritts, S. L. Vadas, H. Takahashi, and F. T. São Sabbas, “Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign,” Ann. Geophys. 26, 1–12 (2008).

R. A. Goldberg, D. C. Fritts, F. J. Schmidlin, B. P. Williams, C. L. Croskey, J. D. Mitchell, M. Friedrich, J. M. Russell, U. Blum, and K. H. Fricke, “The MaCWAVE program to study gravity wave influences on the polar mesosphere,” Ann. Geophys. 24, 1159–1173 (2006).

S. L. Vadas, D. C. Fritts, and M. J. Alexander, “Mechanism for the generation of secondary waves in wave breaking regions,” J. Atmos. Sci. 60, 194–214 (2003).
[Crossref]

D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (2003).
[Crossref]

D. C. Fritts, J. R. Isler, G. E. Thomas, and Ø. Andreassen, “Wave breaking signatures in noctilucent clouds,” Geophys. Res. Lett. 20, 2039–2042 (1993).
[Crossref]

D. C. Fritts, P.-D. Pautet, K. Bossert, M. J. Taylor, B. P. Williams, H. Iimura, T. Yuan, N. Mitchell, and G. Stöber, “Quantifying gravity wave momentum fluxes with mesospheric temperature mappers and correlative instrumentation,” J. Geophys. Res. (submitted).

K. Bossert, D. C. Fritts, P.-D. Pautet, M. J. Taylor, B. P. Williams, and W. R. Pendleton, “Investigation of a mesospheric gravity wave ducting event using coordinated sodium lidar and mesospheric mapper measurements at ALOMAR, Norway (69°N),” J. Geophys. Res., doi:10.1002/2014JD021460 (to be published).

Fujii, J.

J. Fujii, T. Nakamura, T. Tsuda, and K. Shiokawa, “Comparison of winds measured by MU radar and Fabry–Perot interferometer and effect of OI5577 airglow height variations,” J. Atmos. Sol. Terr. Phys. 66, 573–583 (2004).
[Crossref]

Galligan, J. G.

F. J. Mulligan, D. F. Horgan, J. G. Galligan, and E. M. Griffin, “Mesopause temperatures and integrated band brightnesses calculated from airglow OH emissions recorded at Maynooth (53.2°N 6.4°W) during 1993,” J. Atmos. Terr. Phys. 57, 1623–1637 (1995).
[Crossref]

Garcia, F. G.

Garcia, R.

T. Yuan, C. Y. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, H. Schmidt, and S. Reising, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41°N, 105°W), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (2008).
[Crossref]

Gardner, C. S.

M. J. Taylor, W. R. Pendleton, C. S. Gardner, and R. J. States, “Comparison of terdiurnal tidal oscillations in mesospheric OH rotational temperature and Na lidar temperature measurements at midlatitudes for fall/spring conditions,” Earth Planets Space 51, 877–885 (1999).

G. R. Swenson and C. S. Gardner, “Analytical models for the responses of the mesospheric OH and Na layers to atmospheric gravity waves,” J. Geophys. Res. 103, 6271–6294 (1998).
[Crossref]

M. R. Coble, G. C. Papen, and C. S. Gardner, “Computing two-dimensional unambiguous horizontal wavenumber spectra from OH airglow images,” IEEE Trans. Geosci. Remote Sens. 36, 368–382 (1998).
[Crossref]

Gardner, L. C.

M. J. Taylor, L. C. Gardner, and W. R. Pendleton, “Long period wave signatures in mesospheric OH Meinel (6,2) band intensity and rotational temperature at midlatitudes,” Adv. Space Res. 27, 1171–1179 (2001).
[Crossref]

W. R. Pendleton, M. J. Taylor, and L. C. Gardner, “Terdiurnal oscillations in OH Meinel rotational temperatures for fall conditions at northern midlatitude sites,” Geophys. Res. Lett. 27, 1799–1802 (2000).
[Crossref]

Gilbert, K. L.

R. P. Lowe, L. M. Leblanc, and K. L. Gilbert, “WINDII/UARS observation of twilight behaviour of the hydroxyl airglow, at mid-latitude equinox,” J. Atmos. Terr. Phys. 58, 1863–1869 (1996).
[Crossref]

Goldberg, R. A.

R. A. Goldberg, D. C. Fritts, F. J. Schmidlin, B. P. Williams, C. L. Croskey, J. D. Mitchell, M. Friedrich, J. M. Russell, U. Blum, and K. H. Fricke, “The MaCWAVE program to study gravity wave influences on the polar mesosphere,” Ann. Geophys. 24, 1159–1173 (2006).

Gordley, L. L.

C. J. Mertens, M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell, “Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-mm Earth limb emission under non-LTE conditions,” Geophys. Res. Lett. 28, 1391–1394 (2001).
[Crossref]

Griffin, E. M.

F. J. Mulligan, D. F. Horgan, J. G. Galligan, and E. M. Griffin, “Mesopause temperatures and integrated band brightnesses calculated from airglow OH emissions recorded at Maynooth (53.2°N 6.4°W) during 1993,” J. Atmos. Terr. Phys. 57, 1623–1637 (1995).
[Crossref]

Grossbard, N.

E. M. Dewan, W. R. Pendleton, N. Grossbard, and P. J. Espy, “Mesospheric OH airglow temperature fluctuations: a spectral analysis,” Geophys. Res. Lett. 19, 597–600 (1992).
[Crossref]

Hammond, M. R.

P. J. Espy and M. R. Hammond, “Atmospheric transmission coefficients for hydroxyl rotational lines used in rotational temperature determinations,” J. Quant. Spectrosc. Radiat. Transfer 54, 879–889 (1995).
[Crossref]

W. R. Pendleton, P. J. Espy, and M. R. Hammond, “Evidence for non-local thermodynamic equilibrium rotation in the OH nightglow,” J. Geophys. Res. 98, 11567–11579 (1993).
[Crossref]

Hamwey, R. M.

G. G. Sivjee and R. M. Hamwey, “Temperature and chemistry of the polar mesopause OH,” J. Geophys. Res. 92, 4663–4672 (1987).
[Crossref]

Hapgood, M. A.

M. J. Taylor and M. A. Hapgood, “On the origin of ripple-type wave structure in the OH nightglow emission,” Planet. Space Sci. 38, 1421–1430 (1990).
[Crossref]

Hernandez, G.

G. Hernandez, R. W. Smith, G. J. Fraser, and W. L. Jones, “Large-scale waves in the upper-mesosphere at Antarctic high-latitudes,” Geophys. Res. Lett. 19, 1347–1350 (1992).
[Crossref]

Hines, C. O.

C. O. Hines, “Internal atmospheric gravity waves,” Can. J. Phys. 38, 1441–1481 (1960).
[Crossref]

Holton, J. R.

J. R. Holton, “The influence of gravity wave breaking on the circulation of the middle atmosphere,” J. Atmos. Sci. 40, 2497–2507 (1983).
[Crossref]

J. R. Holton, An Introduction to Dynamic Meteorology, 3rd ed. (Academic, 1992).

Höppner, K.

M. Bittner, K. Höppner, C. Pilger, and C. Schmidt, “Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards,” Nat. Hazards Earth Syst. Sci. 10, 1431–1442 (2010).

Horgan, D. F.

F. J. Mulligan, D. F. Horgan, J. G. Galligan, and E. M. Griffin, “Mesopause temperatures and integrated band brightnesses calculated from airglow OH emissions recorded at Maynooth (53.2°N 6.4°W) during 1993,” J. Atmos. Terr. Phys. 57, 1623–1637 (1995).
[Crossref]

Hu, Z.

C.-Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105  km) over Fort Collins, CO (41°N, 105°W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[Crossref]

Iimura, H.

D. C. Fritts, P.-D. Pautet, K. Bossert, M. J. Taylor, B. P. Williams, H. Iimura, T. Yuan, N. Mitchell, and G. Stöber, “Quantifying gravity wave momentum fluxes with mesospheric temperature mappers and correlative instrumentation,” J. Geophys. Res. (submitted).

Isler, J. R.

D. C. Fritts, J. R. Isler, G. E. Thomas, and Ø. Andreassen, “Wave breaking signatures in noctilucent clouds,” Geophys. Res. Lett. 20, 2039–2042 (1993).
[Crossref]

Jones, W. L.

G. Hernandez, R. W. Smith, G. J. Fraser, and W. L. Jones, “Large-scale waves in the upper-mesosphere at Antarctic high-latitudes,” Geophys. Res. Lett. 19, 1347–1350 (1992).
[Crossref]

Kelley, M. C.

Krueger, D. A.

T. Yuan, C. Y. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, H. Schmidt, and S. Reising, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41°N, 105°W), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (2008).
[Crossref]

C.-Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105  km) over Fort Collins, CO (41°N, 105°W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[Crossref]

Latifi, H.

Leblanc, L. M.

R. P. Lowe, L. M. Leblanc, and K. L. Gilbert, “WINDII/UARS observation of twilight behaviour of the hydroxyl airglow, at mid-latitude equinox,” J. Atmos. Terr. Phys. 58, 1863–1869 (1996).
[Crossref]

Lidman, C.

P. Rousselot, C. Lidman, J.-G. Cuby, G. Moreels, and G. Monnet, “Night-sky spectral atlas of OH emission lines in the near infrared,” Astron. Astrophys. 354, 1134–1150 (2000).

Lindzen, R. S.

S. Chapman and R. S. Lindzen, Atmospheric Tides (Springer, 1970).

Liu, H.

T. Yuan, C. Y. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, H. Schmidt, and S. Reising, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41°N, 105°W), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (2008).
[Crossref]

Liu, H.-L.

Y. Zhao, M. J. Taylor, H.-L. Liu, and R. G. Roble, “Seasonal oscillations in mesospheric temperatures at low-latitudes,” J. Atmos. Sol. Terr. Phys. 69, 2367–2378 (2007).

Lopez-Gonzalez, M. J.

Lopez-Puertas, M.

C. J. Mertens, M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell, “Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-mm Earth limb emission under non-LTE conditions,” Geophys. Res. Lett. 28, 1391–1394 (2001).
[Crossref]

Lowe, R. P.

R. P. Lowe, L. M. Leblanc, and K. L. Gilbert, “WINDII/UARS observation of twilight behaviour of the hydroxyl airglow, at mid-latitude equinox,” J. Atmos. Terr. Phys. 58, 1863–1869 (1996).
[Crossref]

R. P. Lowe, “Interferometric spectra of the Earth’s airglow (1.2 to 1.6  m),” Phil. Trans. R. Soc. A 264, 163–170 (1969).

Makhlouf, U. B.

U. B. Makhlouf, R. H. Picard, and J. R. Winick, “Photochemical-dynamical modeling of the measured response of airglow to gravity waves: 1. Basic model for OH airglow,” J. Geophys. Res. 100, 11289–11311 (1995).
[Crossref]

McDade, I. C.

I. C. McDade, “The altitude dependence of the OH (X2Π) vibrational distribution in the nightglow: some model expectations,” Planet. Space Sci. 39, 1049–1057 (1991).
[Crossref]

McLandress, C.

G. G. Shepherd, C. McLandress, and B. H. Solheim, “Tidal influence on O(1  S) airglow altitudes and emission rates at the geographic equator observed by WINDII,” Geophys. Res. Lett. 22, 275–278 (1995).
[Crossref]

Medeiros, A. F.

M. J. Taylor, P.-D. Pautet, A. F. Medeiros, R. Buriti, J. Fechine, D. C. Fritts, S. L. Vadas, H. Takahashi, and F. T. São Sabbas, “Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign,” Ann. Geophys. 26, 1–12 (2008).

Meinel, A. B.

A. B. Meinel, “OH emission bands in the spectrum of the night sky,” Astrophys. J. 111, 555–564 (1950).
[Crossref]

Meriwether, J. W.

J. W. Meriwether, “A review of the photochemistry of selected nightglow emissions from the mesopause,” J. Geophys. Res. 94, 14629–14646 (1989).
[Crossref]

C. A. Tepley, R. G. Burnside, and J. W. Meriwether, “Horizontal thermal structure of the mesosphere from observations of OH (8-3) band emission,” Planet. Space Sci. 29, 1241–1249 (1981).
[Crossref]

J. W. Meriwether, “High latitude airglow observations of correlated short-term fluctuations in the hydroxyl Meinel 8–3 band intensity and rotational temperature,” Planet. Space Sci. 23, 1211–1221 (1975).
[Crossref]

Mertens, C. J.

C. J. Mertens, M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell, “Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-mm Earth limb emission under non-LTE conditions,” Geophys. Res. Lett. 28, 1391–1394 (2001).
[Crossref]

Mies, F. H.

F. H. Mies, “Calculated vibrational transition probabilities of OH(X2Π),” J. Mol. Spectrosc. 53, 150–188 (1974).
[Crossref]

Mitchell, J. D.

R. A. Goldberg, D. C. Fritts, F. J. Schmidlin, B. P. Williams, C. L. Croskey, J. D. Mitchell, M. Friedrich, J. M. Russell, U. Blum, and K. H. Fricke, “The MaCWAVE program to study gravity wave influences on the polar mesosphere,” Ann. Geophys. 24, 1159–1173 (2006).

Mitchell, N.

D. C. Fritts, P.-D. Pautet, K. Bossert, M. J. Taylor, B. P. Williams, H. Iimura, T. Yuan, N. Mitchell, and G. Stöber, “Quantifying gravity wave momentum fluxes with mesospheric temperature mappers and correlative instrumentation,” J. Geophys. Res. (submitted).

Mlynczak, M. G.

C. J. Mertens, M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell, “Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-mm Earth limb emission under non-LTE conditions,” Geophys. Res. Lett. 28, 1391–1394 (2001).
[Crossref]

Monnet, G.

P. Rousselot, C. Lidman, J.-G. Cuby, G. Moreels, and G. Monnet, “Night-sky spectral atlas of OH emission lines in the near infrared,” Astron. Astrophys. 354, 1134–1150 (2000).

Moreels, G.

P.-D. Pautet and G. Moreels, “Ground-based satellite-type images of the upper-atmosphere emissive layer,” Appl. Opt. 41, 823–831 (2002).
[Crossref]

P. Rousselot, C. Lidman, J.-G. Cuby, G. Moreels, and G. Monnet, “Night-sky spectral atlas of OH emission lines in the near infrared,” Astron. Astrophys. 354, 1134–1150 (2000).

Mulligan, F. J.

F. J. Mulligan, D. F. Horgan, J. G. Galligan, and E. M. Griffin, “Mesopause temperatures and integrated band brightnesses calculated from airglow OH emissions recorded at Maynooth (53.2°N 6.4°W) during 1993,” J. Atmos. Terr. Phys. 57, 1623–1637 (1995).
[Crossref]

Nakamura, T.

J. Fujii, T. Nakamura, T. Tsuda, and K. Shiokawa, “Comparison of winds measured by MU radar and Fabry–Perot interferometer and effect of OI5577 airglow height variations,” J. Atmos. Sol. Terr. Phys. 66, 573–583 (2004).
[Crossref]

Nelson, D. D.

D. D. Nelson, A. Schiffman, D. J. Nesbitt, J. J. Orlando, and J. B. Burkholder, “H+O3 Fourier-transform H+O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Π) radical: an experimental dipole moment function and state-to-state Einstein A coefficients OH(X2Π) radical: an experimental dipole moment function and state-to-state Einstein A coefficients,” J. Chem. Phys. 93, 7003–7018 (1990).
[Crossref]

Nesbitt, D. J.

D. D. Nelson, A. Schiffman, D. J. Nesbitt, J. J. Orlando, and J. B. Burkholder, “H+O3 Fourier-transform H+O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Π) radical: an experimental dipole moment function and state-to-state Einstein A coefficients OH(X2Π) radical: an experimental dipole moment function and state-to-state Einstein A coefficients,” J. Chem. Phys. 93, 7003–7018 (1990).
[Crossref]

Orlando, J. J.

D. D. Nelson, A. Schiffman, D. J. Nesbitt, J. J. Orlando, and J. B. Burkholder, “H+O3 Fourier-transform H+O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Π) radical: an experimental dipole moment function and state-to-state Einstein A coefficients OH(X2Π) radical: an experimental dipole moment function and state-to-state Einstein A coefficients,” J. Chem. Phys. 93, 7003–7018 (1990).
[Crossref]

Papen, G. C.

M. R. Coble, G. C. Papen, and C. S. Gardner, “Computing two-dimensional unambiguous horizontal wavenumber spectra from OH airglow images,” IEEE Trans. Geosci. Remote Sens. 36, 368–382 (1998).
[Crossref]

Pautet, P.-D.

T. Yuan, P.-D. Pautet, Y. Zhao, X. Cai, M. J. Taylor, and W. R. Pendleton, “Coordinated investigation of mid-latitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah,” J. Geophys. Res. 119, 3756–3769 (2014).
[Crossref]

M. J. Taylor, P.-D. Pautet, A. F. Medeiros, R. Buriti, J. Fechine, D. C. Fritts, S. L. Vadas, H. Takahashi, and F. T. São Sabbas, “Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign,” Ann. Geophys. 26, 1–12 (2008).

P.-D. Pautet and G. Moreels, “Ground-based satellite-type images of the upper-atmosphere emissive layer,” Appl. Opt. 41, 823–831 (2002).
[Crossref]

X. Cai, T. Yuan, Y. Zhao, P.-D. Pautet, M. J. Taylor, and W. R. Pendleton, “A coordinated investigation of the creation of two mesospheric dynamical instability layers by a Na Lidar and an Advanced Mesosphere Temperature Mapper over Logan, UT (42°N),” J. Geophys. Res., doi:10.1002/2014JA020131 (to be published).

K. Bossert, D. C. Fritts, P.-D. Pautet, M. J. Taylor, B. P. Williams, and W. R. Pendleton, “Investigation of a mesospheric gravity wave ducting event using coordinated sodium lidar and mesospheric mapper measurements at ALOMAR, Norway (69°N),” J. Geophys. Res., doi:10.1002/2014JD021460 (to be published).

D. C. Fritts, P.-D. Pautet, K. Bossert, M. J. Taylor, B. P. Williams, H. Iimura, T. Yuan, N. Mitchell, and G. Stöber, “Quantifying gravity wave momentum fluxes with mesospheric temperature mappers and correlative instrumentation,” J. Geophys. Res. (submitted).

Pendleton, W. R.

T. Yuan, P.-D. Pautet, Y. Zhao, X. Cai, M. J. Taylor, and W. R. Pendleton, “Coordinated investigation of mid-latitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah,” J. Geophys. Res. 119, 3756–3769 (2014).
[Crossref]

M. J. Taylor, L. C. Gardner, and W. R. Pendleton, “Long period wave signatures in mesospheric OH Meinel (6,2) band intensity and rotational temperature at midlatitudes,” Adv. Space Res. 27, 1171–1179 (2001).
[Crossref]

W. R. Pendleton, M. J. Taylor, and L. C. Gardner, “Terdiurnal oscillations in OH Meinel rotational temperatures for fall conditions at northern midlatitude sites,” Geophys. Res. Lett. 27, 1799–1802 (2000).
[Crossref]

M. J. Taylor, W. R. Pendleton, C. S. Gardner, and R. J. States, “Comparison of terdiurnal tidal oscillations in mesospheric OH rotational temperature and Na lidar temperature measurements at midlatitudes for fall/spring conditions,” Earth Planets Space 51, 877–885 (1999).

W. R. Pendleton, P. J. Espy, and M. R. Hammond, “Evidence for non-local thermodynamic equilibrium rotation in the OH nightglow,” J. Geophys. Res. 98, 11567–11579 (1993).
[Crossref]

E. M. Dewan, W. R. Pendleton, N. Grossbard, and P. J. Espy, “Mesospheric OH airglow temperature fluctuations: a spectral analysis,” Geophys. Res. Lett. 19, 597–600 (1992).
[Crossref]

X. Cai, T. Yuan, Y. Zhao, P.-D. Pautet, M. J. Taylor, and W. R. Pendleton, “A coordinated investigation of the creation of two mesospheric dynamical instability layers by a Na Lidar and an Advanced Mesosphere Temperature Mapper over Logan, UT (42°N),” J. Geophys. Res., doi:10.1002/2014JA020131 (to be published).

K. Bossert, D. C. Fritts, P.-D. Pautet, M. J. Taylor, B. P. Williams, and W. R. Pendleton, “Investigation of a mesospheric gravity wave ducting event using coordinated sodium lidar and mesospheric mapper measurements at ALOMAR, Norway (69°N),” J. Geophys. Res., doi:10.1002/2014JD021460 (to be published).

Picard, R. H.

C. J. Mertens, M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell, “Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-mm Earth limb emission under non-LTE conditions,” Geophys. Res. Lett. 28, 1391–1394 (2001).
[Crossref]

U. B. Makhlouf, R. H. Picard, and J. R. Winick, “Photochemical-dynamical modeling of the measured response of airglow to gravity waves: 1. Basic model for OH airglow,” J. Geophys. Res. 100, 11289–11311 (1995).
[Crossref]

Pilger, C.

M. Bittner, K. Höppner, C. Pilger, and C. Schmidt, “Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards,” Nat. Hazards Earth Syst. Sci. 10, 1431–1442 (2010).

Rao, M. L. P.

M. C. Abrams, D. P. Sumner, M. L. P. Rao, R. Engleman, and J. W. Brault, “High-resolution Fourier transform spectroscopy of the Meinel system of OH,” Astrophys. J. 93, 351–395 (1994).
[Crossref]

Reisin, E. R.

E. R. Reisin and J. Scheer, “Characteristics of atmospheric waves in the tidal period range derived from zenith observations of O2(0–1) atmospheric and OH(6-2) airglow at lower midlatitudes,” J. Geophys. Res. 101, 21223–21232 (1996).
[Crossref]

Reising, S.

T. Yuan, C. Y. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, H. Schmidt, and S. Reising, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41°N, 105°W), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (2008).
[Crossref]

Roble, R. G.

T. Yuan, C. Y. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, H. Schmidt, and S. Reising, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41°N, 105°W), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (2008).
[Crossref]

Y. Zhao, M. J. Taylor, H.-L. Liu, and R. G. Roble, “Seasonal oscillations in mesospheric temperatures at low-latitudes,” J. Atmos. Sol. Terr. Phys. 69, 2367–2378 (2007).

Rousselot, P.

P. Rousselot, C. Lidman, J.-G. Cuby, G. Moreels, and G. Monnet, “Night-sky spectral atlas of OH emission lines in the near infrared,” Astron. Astrophys. 354, 1134–1150 (2000).

Russell, J. M.

R. A. Goldberg, D. C. Fritts, F. J. Schmidlin, B. P. Williams, C. L. Croskey, J. D. Mitchell, M. Friedrich, J. M. Russell, U. Blum, and K. H. Fricke, “The MaCWAVE program to study gravity wave influences on the polar mesosphere,” Ann. Geophys. 24, 1159–1173 (2006).

C. J. Mertens, M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell, “Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-mm Earth limb emission under non-LTE conditions,” Geophys. Res. Lett. 28, 1391–1394 (2001).
[Crossref]

São Sabbas, F. T.

M. J. Taylor, P.-D. Pautet, A. F. Medeiros, R. Buriti, J. Fechine, D. C. Fritts, S. L. Vadas, H. Takahashi, and F. T. São Sabbas, “Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign,” Ann. Geophys. 26, 1–12 (2008).

Sargoytchev, S.

Sassi, F.

T. Yuan, C. Y. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, H. Schmidt, and S. Reising, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41°N, 105°W), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (2008).
[Crossref]

Scheer, J.

E. R. Reisin and J. Scheer, “Characteristics of atmospheric waves in the tidal period range derived from zenith observations of O2(0–1) atmospheric and OH(6-2) airglow at lower midlatitudes,” J. Geophys. Res. 101, 21223–21232 (1996).
[Crossref]

Schiffman, A.

D. D. Nelson, A. Schiffman, D. J. Nesbitt, J. J. Orlando, and J. B. Burkholder, “H+O3 Fourier-transform H+O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Π) radical: an experimental dipole moment function and state-to-state Einstein A coefficients OH(X2Π) radical: an experimental dipole moment function and state-to-state Einstein A coefficients,” J. Chem. Phys. 93, 7003–7018 (1990).
[Crossref]

Schmidlin, F. J.

R. A. Goldberg, D. C. Fritts, F. J. Schmidlin, B. P. Williams, C. L. Croskey, J. D. Mitchell, M. Friedrich, J. M. Russell, U. Blum, and K. H. Fricke, “The MaCWAVE program to study gravity wave influences on the polar mesosphere,” Ann. Geophys. 24, 1159–1173 (2006).

Schmidt, C.

M. Bittner, K. Höppner, C. Pilger, and C. Schmidt, “Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards,” Nat. Hazards Earth Syst. Sci. 10, 1431–1442 (2010).

Schmidt, H.

T. Yuan, C. Y. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, H. Schmidt, and S. Reising, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41°N, 105°W), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (2008).
[Crossref]

She, C. Y.

T. Yuan, C. Y. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, H. Schmidt, and S. Reising, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41°N, 105°W), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (2008).
[Crossref]

C. Y. She, J. R. Yu, H. Latifi, and R. E. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992).
[Crossref]

She, C.-Y.

C.-Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105  km) over Fort Collins, CO (41°N, 105°W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[Crossref]

Shepherd, G. G.

S. Sargoytchev, S. Brown, B. H. Solheim, Y.-M. Cho, G. G. Shepherd, and M. J. Lopez-Gonzalez, “Spectral airglow temperature imager (SATI)—a ground based instrument for temperature monitoring of the mesosphere region,” Appl. Opt. 43, 5712–5721 (2004).
[Crossref]

G. G. Shepherd, C. McLandress, and B. H. Solheim, “Tidal influence on O(1  S) airglow altitudes and emission rates at the geographic equator observed by WINDII,” Geophys. Res. Lett. 22, 275–278 (1995).
[Crossref]

Sherman, J.

C.-Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105  km) over Fort Collins, CO (41°N, 105°W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[Crossref]

Shiokawa, K.

J. Fujii, T. Nakamura, T. Tsuda, and K. Shiokawa, “Comparison of winds measured by MU radar and Fabry–Perot interferometer and effect of OI5577 airglow height variations,” J. Atmos. Sol. Terr. Phys. 66, 573–583 (2004).
[Crossref]

Simkhada, D. B.

D. B. Simkhada, J. B. Snively, M. J. Taylor, and S. J. Franke, “Analysis and modeling of ducted and evanescent gravity waves observed in the Hawaiian airglow,” Ann. Geophys. 27, 3213–3224 (2009).

Sivjee, G. G.

S. M. I. Azeem and G. G. Sivjee, “Multiyear observations of tidal oscillations in OH M(3,1) rotational temperatures at South Pole, Antarctica,” J. Geophys. Res. 114, A06312 (2009).
[Crossref]

G. G. Sivjee and R. L. Walterscheid, “Six-hour zonally symmetric tidal oscillations of the winter mesosphere over the South Pole station,” Planet. Space Sci. 42, 447–453 (1994).
[Crossref]

G. G. Sivjee and R. M. Hamwey, “Temperature and chemistry of the polar mesopause OH,” J. Geophys. Res. 92, 4663–4672 (1987).
[Crossref]

Smith, R. W.

G. Hernandez, R. W. Smith, G. J. Fraser, and W. L. Jones, “Large-scale waves in the upper-mesosphere at Antarctic high-latitudes,” Geophys. Res. Lett. 19, 1347–1350 (1992).
[Crossref]

Snively, J. B.

D. B. Simkhada, J. B. Snively, M. J. Taylor, and S. J. Franke, “Analysis and modeling of ducted and evanescent gravity waves observed in the Hawaiian airglow,” Ann. Geophys. 27, 3213–3224 (2009).

Solheim, B. H.

S. Sargoytchev, S. Brown, B. H. Solheim, Y.-M. Cho, G. G. Shepherd, and M. J. Lopez-Gonzalez, “Spectral airglow temperature imager (SATI)—a ground based instrument for temperature monitoring of the mesosphere region,” Appl. Opt. 43, 5712–5721 (2004).
[Crossref]

G. G. Shepherd, C. McLandress, and B. H. Solheim, “Tidal influence on O(1  S) airglow altitudes and emission rates at the geographic equator observed by WINDII,” Geophys. Res. Lett. 22, 275–278 (1995).
[Crossref]

Stair, A. T.

D. J. Baker and A. T. Stair, “Rocket measurements of the altitude distribution of the hydroxyl airglow,” Phys. Scr. 37, 611–622 (1988).
[Crossref]

States, R. J.

M. J. Taylor, W. R. Pendleton, C. S. Gardner, and R. J. States, “Comparison of terdiurnal tidal oscillations in mesospheric OH rotational temperature and Na lidar temperature measurements at midlatitudes for fall/spring conditions,” Earth Planets Space 51, 877–885 (1999).

Stöber, G.

D. C. Fritts, P.-D. Pautet, K. Bossert, M. J. Taylor, B. P. Williams, H. Iimura, T. Yuan, N. Mitchell, and G. Stöber, “Quantifying gravity wave momentum fluxes with mesospheric temperature mappers and correlative instrumentation,” J. Geophys. Res. (submitted).

Sumner, D. P.

M. C. Abrams, D. P. Sumner, M. L. P. Rao, R. Engleman, and J. W. Brault, “High-resolution Fourier transform spectroscopy of the Meinel system of OH,” Astrophys. J. 93, 351–395 (1994).
[Crossref]

Swenson, G. R.

G. R. Swenson and C. S. Gardner, “Analytical models for the responses of the mesospheric OH and Na layers to atmospheric gravity waves,” J. Geophys. Res. 103, 6271–6294 (1998).
[Crossref]

Takahashi, H.

M. J. Taylor, P.-D. Pautet, A. F. Medeiros, R. Buriti, J. Fechine, D. C. Fritts, S. L. Vadas, H. Takahashi, and F. T. São Sabbas, “Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign,” Ann. Geophys. 26, 1–12 (2008).

Taori, A.

A. Taori, M. J. Taylor, and S. Franke, “Terdiurnal wave signatures in the upper mesospheric temperature and their association with the wind field at low latitudes (20°N),” J. Geophys. Res. 110, D09S06 (2005).
[Crossref]

A. Taori and M. J. Taylor, “Characteristics of wave induced oscillations in the mesospheric O2 emission intensity and temperature,” Geophys. Res. Lett.33(2006).
[Crossref]

Taylor, M. J.

T. Yuan, P.-D. Pautet, Y. Zhao, X. Cai, M. J. Taylor, and W. R. Pendleton, “Coordinated investigation of mid-latitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah,” J. Geophys. Res. 119, 3756–3769 (2014).
[Crossref]

D. B. Simkhada, J. B. Snively, M. J. Taylor, and S. J. Franke, “Analysis and modeling of ducted and evanescent gravity waves observed in the Hawaiian airglow,” Ann. Geophys. 27, 3213–3224 (2009).

M. J. Taylor, P.-D. Pautet, A. F. Medeiros, R. Buriti, J. Fechine, D. C. Fritts, S. L. Vadas, H. Takahashi, and F. T. São Sabbas, “Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign,” Ann. Geophys. 26, 1–12 (2008).

Y. Zhao, M. J. Taylor, H.-L. Liu, and R. G. Roble, “Seasonal oscillations in mesospheric temperatures at low-latitudes,” J. Atmos. Sol. Terr. Phys. 69, 2367–2378 (2007).

A. Taori, M. J. Taylor, and S. Franke, “Terdiurnal wave signatures in the upper mesospheric temperature and their association with the wind field at low latitudes (20°N),” J. Geophys. Res. 110, D09S06 (2005).
[Crossref]

Y. Zhao, M. J. Taylor, and X. Chu, “Comparison of simultaneous Na lidar and mesospheric nightglow temperature measurements and the effects of tides on the emission layer heights,” J. Geophys. Res. 110, D09S07 (2005).

M. J. Taylor, L. C. Gardner, and W. R. Pendleton, “Long period wave signatures in mesospheric OH Meinel (6,2) band intensity and rotational temperature at midlatitudes,” Adv. Space Res. 27, 1171–1179 (2001).
[Crossref]

W. R. Pendleton, M. J. Taylor, and L. C. Gardner, “Terdiurnal oscillations in OH Meinel rotational temperatures for fall conditions at northern midlatitude sites,” Geophys. Res. Lett. 27, 1799–1802 (2000).
[Crossref]

M. J. Taylor, W. R. Pendleton, C. S. Gardner, and R. J. States, “Comparison of terdiurnal tidal oscillations in mesospheric OH rotational temperature and Na lidar temperature measurements at midlatitudes for fall/spring conditions,” Earth Planets Space 51, 877–885 (1999).

F. G. Garcia, M. J. Taylor, and M. C. Kelley, “Two-dimensional spectral analysis of mesospheric airglow image data,” Appl. Opt. 36, 7374–7385 (1997).
[Crossref]

M. J. Taylor and M. A. Hapgood, “On the origin of ripple-type wave structure in the OH nightglow emission,” Planet. Space Sci. 38, 1421–1430 (1990).
[Crossref]

D. C. Fritts, P.-D. Pautet, K. Bossert, M. J. Taylor, B. P. Williams, H. Iimura, T. Yuan, N. Mitchell, and G. Stöber, “Quantifying gravity wave momentum fluxes with mesospheric temperature mappers and correlative instrumentation,” J. Geophys. Res. (submitted).

A. Taori and M. J. Taylor, “Characteristics of wave induced oscillations in the mesospheric O2 emission intensity and temperature,” Geophys. Res. Lett.33(2006).
[Crossref]

X. Cai, T. Yuan, Y. Zhao, P.-D. Pautet, M. J. Taylor, and W. R. Pendleton, “A coordinated investigation of the creation of two mesospheric dynamical instability layers by a Na Lidar and an Advanced Mesosphere Temperature Mapper over Logan, UT (42°N),” J. Geophys. Res., doi:10.1002/2014JA020131 (to be published).

K. Bossert, D. C. Fritts, P.-D. Pautet, M. J. Taylor, B. P. Williams, and W. R. Pendleton, “Investigation of a mesospheric gravity wave ducting event using coordinated sodium lidar and mesospheric mapper measurements at ALOMAR, Norway (69°N),” J. Geophys. Res., doi:10.1002/2014JD021460 (to be published).

Tepley, C. A.

C. A. Tepley, R. G. Burnside, and J. W. Meriwether, “Horizontal thermal structure of the mesosphere from observations of OH (8-3) band emission,” Planet. Space Sci. 29, 1241–1249 (1981).
[Crossref]

Thomas, G. E.

D. C. Fritts, J. R. Isler, G. E. Thomas, and Ø. Andreassen, “Wave breaking signatures in noctilucent clouds,” Geophys. Res. Lett. 20, 2039–2042 (1993).
[Crossref]

Tsuda, T.

J. Fujii, T. Nakamura, T. Tsuda, and K. Shiokawa, “Comparison of winds measured by MU radar and Fabry–Perot interferometer and effect of OI5577 airglow height variations,” J. Atmos. Sol. Terr. Phys. 66, 573–583 (2004).
[Crossref]

Vadas, S. L.

M. J. Taylor, P.-D. Pautet, A. F. Medeiros, R. Buriti, J. Fechine, D. C. Fritts, S. L. Vadas, H. Takahashi, and F. T. São Sabbas, “Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign,” Ann. Geophys. 26, 1–12 (2008).

S. L. Vadas, D. C. Fritts, and M. J. Alexander, “Mechanism for the generation of secondary waves in wave breaking regions,” J. Atmos. Sci. 60, 194–214 (2003).
[Crossref]

Vance, J. D.

C.-Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105  km) over Fort Collins, CO (41°N, 105°W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[Crossref]

Vasoli, V.

C.-Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105  km) over Fort Collins, CO (41°N, 105°W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[Crossref]

Wallace, L.

L. Wallace, “The OH nightglow emission,” J. Atmos. Sci. 19, 1–16 (1962).
[Crossref]

Walterscheid, R. L.

G. G. Sivjee and R. L. Walterscheid, “Six-hour zonally symmetric tidal oscillations of the winter mesosphere over the South Pole station,” Planet. Space Sci. 42, 447–453 (1994).
[Crossref]

White, M. A.

C.-Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105  km) over Fort Collins, CO (41°N, 105°W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[Crossref]

Williams, B. P.

R. A. Goldberg, D. C. Fritts, F. J. Schmidlin, B. P. Williams, C. L. Croskey, J. D. Mitchell, M. Friedrich, J. M. Russell, U. Blum, and K. H. Fricke, “The MaCWAVE program to study gravity wave influences on the polar mesosphere,” Ann. Geophys. 24, 1159–1173 (2006).

D. C. Fritts, P.-D. Pautet, K. Bossert, M. J. Taylor, B. P. Williams, H. Iimura, T. Yuan, N. Mitchell, and G. Stöber, “Quantifying gravity wave momentum fluxes with mesospheric temperature mappers and correlative instrumentation,” J. Geophys. Res. (submitted).

K. Bossert, D. C. Fritts, P.-D. Pautet, M. J. Taylor, B. P. Williams, and W. R. Pendleton, “Investigation of a mesospheric gravity wave ducting event using coordinated sodium lidar and mesospheric mapper measurements at ALOMAR, Norway (69°N),” J. Geophys. Res., doi:10.1002/2014JD021460 (to be published).

Winick, J. R.

C. J. Mertens, M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell, “Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-mm Earth limb emission under non-LTE conditions,” Geophys. Res. Lett. 28, 1391–1394 (2001).
[Crossref]

U. B. Makhlouf, R. H. Picard, and J. R. Winick, “Photochemical-dynamical modeling of the measured response of airglow to gravity waves: 1. Basic model for OH airglow,” J. Geophys. Res. 100, 11289–11311 (1995).
[Crossref]

Wintersteiner, P. P.

C. J. Mertens, M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell, “Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-mm Earth limb emission under non-LTE conditions,” Geophys. Res. Lett. 28, 1391–1394 (2001).
[Crossref]

Yu, J.

C.-Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105  km) over Fort Collins, CO (41°N, 105°W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[Crossref]

Yu, J. R.

Yuan, T.

T. Yuan, P.-D. Pautet, Y. Zhao, X. Cai, M. J. Taylor, and W. R. Pendleton, “Coordinated investigation of mid-latitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah,” J. Geophys. Res. 119, 3756–3769 (2014).
[Crossref]

T. Yuan, C. Y. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, H. Schmidt, and S. Reising, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41°N, 105°W), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (2008).
[Crossref]

D. C. Fritts, P.-D. Pautet, K. Bossert, M. J. Taylor, B. P. Williams, H. Iimura, T. Yuan, N. Mitchell, and G. Stöber, “Quantifying gravity wave momentum fluxes with mesospheric temperature mappers and correlative instrumentation,” J. Geophys. Res. (submitted).

X. Cai, T. Yuan, Y. Zhao, P.-D. Pautet, M. J. Taylor, and W. R. Pendleton, “A coordinated investigation of the creation of two mesospheric dynamical instability layers by a Na Lidar and an Advanced Mesosphere Temperature Mapper over Logan, UT (42°N),” J. Geophys. Res., doi:10.1002/2014JA020131 (to be published).

Zhao, Y.

T. Yuan, P.-D. Pautet, Y. Zhao, X. Cai, M. J. Taylor, and W. R. Pendleton, “Coordinated investigation of mid-latitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah,” J. Geophys. Res. 119, 3756–3769 (2014).
[Crossref]

Y. Zhao, M. J. Taylor, H.-L. Liu, and R. G. Roble, “Seasonal oscillations in mesospheric temperatures at low-latitudes,” J. Atmos. Sol. Terr. Phys. 69, 2367–2378 (2007).

Y. Zhao, M. J. Taylor, and X. Chu, “Comparison of simultaneous Na lidar and mesospheric nightglow temperature measurements and the effects of tides on the emission layer heights,” J. Geophys. Res. 110, D09S07 (2005).

X. Cai, T. Yuan, Y. Zhao, P.-D. Pautet, M. J. Taylor, and W. R. Pendleton, “A coordinated investigation of the creation of two mesospheric dynamical instability layers by a Na Lidar and an Advanced Mesosphere Temperature Mapper over Logan, UT (42°N),” J. Geophys. Res., doi:10.1002/2014JA020131 (to be published).

Adv. Space Res. (1)

M. J. Taylor, L. C. Gardner, and W. R. Pendleton, “Long period wave signatures in mesospheric OH Meinel (6,2) band intensity and rotational temperature at midlatitudes,” Adv. Space Res. 27, 1171–1179 (2001).
[Crossref]

Ann. Geophys. (3)

R. A. Goldberg, D. C. Fritts, F. J. Schmidlin, B. P. Williams, C. L. Croskey, J. D. Mitchell, M. Friedrich, J. M. Russell, U. Blum, and K. H. Fricke, “The MaCWAVE program to study gravity wave influences on the polar mesosphere,” Ann. Geophys. 24, 1159–1173 (2006).

D. B. Simkhada, J. B. Snively, M. J. Taylor, and S. J. Franke, “Analysis and modeling of ducted and evanescent gravity waves observed in the Hawaiian airglow,” Ann. Geophys. 27, 3213–3224 (2009).

M. J. Taylor, P.-D. Pautet, A. F. Medeiros, R. Buriti, J. Fechine, D. C. Fritts, S. L. Vadas, H. Takahashi, and F. T. São Sabbas, “Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign,” Ann. Geophys. 26, 1–12 (2008).

Appl. Opt. (4)

Astron. Astrophys. (1)

P. Rousselot, C. Lidman, J.-G. Cuby, G. Moreels, and G. Monnet, “Night-sky spectral atlas of OH emission lines in the near infrared,” Astron. Astrophys. 354, 1134–1150 (2000).

Astrophys. J. (2)

M. C. Abrams, D. P. Sumner, M. L. P. Rao, R. Engleman, and J. W. Brault, “High-resolution Fourier transform spectroscopy of the Meinel system of OH,” Astrophys. J. 93, 351–395 (1994).
[Crossref]

A. B. Meinel, “OH emission bands in the spectrum of the night sky,” Astrophys. J. 111, 555–564 (1950).
[Crossref]

Can. J. Phys. (1)

C. O. Hines, “Internal atmospheric gravity waves,” Can. J. Phys. 38, 1441–1481 (1960).
[Crossref]

Earth Planets Space (1)

M. J. Taylor, W. R. Pendleton, C. S. Gardner, and R. J. States, “Comparison of terdiurnal tidal oscillations in mesospheric OH rotational temperature and Na lidar temperature measurements at midlatitudes for fall/spring conditions,” Earth Planets Space 51, 877–885 (1999).

Geophys. Res. Lett. (7)

W. R. Pendleton, M. J. Taylor, and L. C. Gardner, “Terdiurnal oscillations in OH Meinel rotational temperatures for fall conditions at northern midlatitude sites,” Geophys. Res. Lett. 27, 1799–1802 (2000).
[Crossref]

C.-Y. She, S. Chen, Z. Hu, J. Sherman, J. D. Vance, V. Vasoli, M. A. White, J. Yu, and D. A. Krueger, “Eight-year climatology of nocturnal temperature and sodium density in the mesopause region (80 to 105  km) over Fort Collins, CO (41°N, 105°W),” Geophys. Res. Lett. 27, 3289–3292 (2000).
[Crossref]

G. G. Shepherd, C. McLandress, and B. H. Solheim, “Tidal influence on O(1  S) airglow altitudes and emission rates at the geographic equator observed by WINDII,” Geophys. Res. Lett. 22, 275–278 (1995).
[Crossref]

E. M. Dewan, W. R. Pendleton, N. Grossbard, and P. J. Espy, “Mesospheric OH airglow temperature fluctuations: a spectral analysis,” Geophys. Res. Lett. 19, 597–600 (1992).
[Crossref]

C. J. Mertens, M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell, “Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-mm Earth limb emission under non-LTE conditions,” Geophys. Res. Lett. 28, 1391–1394 (2001).
[Crossref]

D. C. Fritts, J. R. Isler, G. E. Thomas, and Ø. Andreassen, “Wave breaking signatures in noctilucent clouds,” Geophys. Res. Lett. 20, 2039–2042 (1993).
[Crossref]

G. Hernandez, R. W. Smith, G. J. Fraser, and W. L. Jones, “Large-scale waves in the upper-mesosphere at Antarctic high-latitudes,” Geophys. Res. Lett. 19, 1347–1350 (1992).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

M. R. Coble, G. C. Papen, and C. S. Gardner, “Computing two-dimensional unambiguous horizontal wavenumber spectra from OH airglow images,” IEEE Trans. Geosci. Remote Sens. 36, 368–382 (1998).
[Crossref]

J. Atmos. Sci. (3)

L. Wallace, “The OH nightglow emission,” J. Atmos. Sci. 19, 1–16 (1962).
[Crossref]

S. L. Vadas, D. C. Fritts, and M. J. Alexander, “Mechanism for the generation of secondary waves in wave breaking regions,” J. Atmos. Sci. 60, 194–214 (2003).
[Crossref]

J. R. Holton, “The influence of gravity wave breaking on the circulation of the middle atmosphere,” J. Atmos. Sci. 40, 2497–2507 (1983).
[Crossref]

J. Atmos. Sol. Terr. Phys. (2)

Y. Zhao, M. J. Taylor, H.-L. Liu, and R. G. Roble, “Seasonal oscillations in mesospheric temperatures at low-latitudes,” J. Atmos. Sol. Terr. Phys. 69, 2367–2378 (2007).

J. Fujii, T. Nakamura, T. Tsuda, and K. Shiokawa, “Comparison of winds measured by MU radar and Fabry–Perot interferometer and effect of OI5577 airglow height variations,” J. Atmos. Sol. Terr. Phys. 66, 573–583 (2004).
[Crossref]

J. Atmos. Terr. Phys. (2)

R. P. Lowe, L. M. Leblanc, and K. L. Gilbert, “WINDII/UARS observation of twilight behaviour of the hydroxyl airglow, at mid-latitude equinox,” J. Atmos. Terr. Phys. 58, 1863–1869 (1996).
[Crossref]

F. J. Mulligan, D. F. Horgan, J. G. Galligan, and E. M. Griffin, “Mesopause temperatures and integrated band brightnesses calculated from airglow OH emissions recorded at Maynooth (53.2°N 6.4°W) during 1993,” J. Atmos. Terr. Phys. 57, 1623–1637 (1995).
[Crossref]

J. Chem. Phys. (1)

D. D. Nelson, A. Schiffman, D. J. Nesbitt, J. J. Orlando, and J. B. Burkholder, “H+O3 Fourier-transform H+O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Π) radical: an experimental dipole moment function and state-to-state Einstein A coefficients OH(X2Π) radical: an experimental dipole moment function and state-to-state Einstein A coefficients,” J. Chem. Phys. 93, 7003–7018 (1990).
[Crossref]

J. Geophys. Res. (12)

W. R. Pendleton, P. J. Espy, and M. R. Hammond, “Evidence for non-local thermodynamic equilibrium rotation in the OH nightglow,” J. Geophys. Res. 98, 11567–11579 (1993).
[Crossref]

E. R. Reisin and J. Scheer, “Characteristics of atmospheric waves in the tidal period range derived from zenith observations of O2(0–1) atmospheric and OH(6-2) airglow at lower midlatitudes,” J. Geophys. Res. 101, 21223–21232 (1996).
[Crossref]

U. B. Makhlouf, R. H. Picard, and J. R. Winick, “Photochemical-dynamical modeling of the measured response of airglow to gravity waves: 1. Basic model for OH airglow,” J. Geophys. Res. 100, 11289–11311 (1995).
[Crossref]

S. Adler-Golden, “Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements,” J. Geophys. Res. 102, 19969–19976 (1997).
[Crossref]

J. W. Meriwether, “A review of the photochemistry of selected nightglow emissions from the mesopause,” J. Geophys. Res. 94, 14629–14646 (1989).
[Crossref]

G. G. Sivjee and R. M. Hamwey, “Temperature and chemistry of the polar mesopause OH,” J. Geophys. Res. 92, 4663–4672 (1987).
[Crossref]

T. Yuan, C. Y. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, H. Schmidt, and S. Reising, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41°N, 105°W), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (2008).
[Crossref]

Y. Zhao, M. J. Taylor, and X. Chu, “Comparison of simultaneous Na lidar and mesospheric nightglow temperature measurements and the effects of tides on the emission layer heights,” J. Geophys. Res. 110, D09S07 (2005).

A. Taori, M. J. Taylor, and S. Franke, “Terdiurnal wave signatures in the upper mesospheric temperature and their association with the wind field at low latitudes (20°N),” J. Geophys. Res. 110, D09S06 (2005).
[Crossref]

G. R. Swenson and C. S. Gardner, “Analytical models for the responses of the mesospheric OH and Na layers to atmospheric gravity waves,” J. Geophys. Res. 103, 6271–6294 (1998).
[Crossref]

T. Yuan, P.-D. Pautet, Y. Zhao, X. Cai, M. J. Taylor, and W. R. Pendleton, “Coordinated investigation of mid-latitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah,” J. Geophys. Res. 119, 3756–3769 (2014).
[Crossref]

S. M. I. Azeem and G. G. Sivjee, “Multiyear observations of tidal oscillations in OH M(3,1) rotational temperatures at South Pole, Antarctica,” J. Geophys. Res. 114, A06312 (2009).
[Crossref]

J. Mol. Spectrosc. (1)

F. H. Mies, “Calculated vibrational transition probabilities of OH(X2Π),” J. Mol. Spectrosc. 53, 150–188 (1974).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

P. J. Espy and M. R. Hammond, “Atmospheric transmission coefficients for hydroxyl rotational lines used in rotational temperature determinations,” J. Quant. Spectrosc. Radiat. Transfer 54, 879–889 (1995).
[Crossref]

Nat. Hazards Earth Syst. Sci. (1)

M. Bittner, K. Höppner, C. Pilger, and C. Schmidt, “Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards,” Nat. Hazards Earth Syst. Sci. 10, 1431–1442 (2010).

Phil. Trans. R. Soc. A (1)

R. P. Lowe, “Interferometric spectra of the Earth’s airglow (1.2 to 1.6  m),” Phil. Trans. R. Soc. A 264, 163–170 (1969).

Phys. Scr. (1)

D. J. Baker and A. T. Stair, “Rocket measurements of the altitude distribution of the hydroxyl airglow,” Phys. Scr. 37, 611–622 (1988).
[Crossref]

Planet. Space Sci. (5)

I. C. McDade, “The altitude dependence of the OH (X2Π) vibrational distribution in the nightglow: some model expectations,” Planet. Space Sci. 39, 1049–1057 (1991).
[Crossref]

M. J. Taylor and M. A. Hapgood, “On the origin of ripple-type wave structure in the OH nightglow emission,” Planet. Space Sci. 38, 1421–1430 (1990).
[Crossref]

G. G. Sivjee and R. L. Walterscheid, “Six-hour zonally symmetric tidal oscillations of the winter mesosphere over the South Pole station,” Planet. Space Sci. 42, 447–453 (1994).
[Crossref]

J. W. Meriwether, “High latitude airglow observations of correlated short-term fluctuations in the hydroxyl Meinel 8–3 band intensity and rotational temperature,” Planet. Space Sci. 23, 1211–1221 (1975).
[Crossref]

C. A. Tepley, R. G. Burnside, and J. W. Meriwether, “Horizontal thermal structure of the mesosphere from observations of OH (8-3) band emission,” Planet. Space Sci. 29, 1241–1249 (1981).
[Crossref]

Rev. Geophys. (1)

D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (2003).
[Crossref]

Other (7)

J. R. Holton, An Introduction to Dynamic Meteorology, 3rd ed. (Academic, 1992).

J. M. Forbes, “Tidal and planetary waves,” in The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, R. M. Johnson and T. L. Killeen, eds., Geophysical Monograph Series (AGU, 1995), Vol. 87, pp. 67–87.

S. Chapman and R. S. Lindzen, Atmospheric Tides (Springer, 1970).

D. C. Fritts, P.-D. Pautet, K. Bossert, M. J. Taylor, B. P. Williams, H. Iimura, T. Yuan, N. Mitchell, and G. Stöber, “Quantifying gravity wave momentum fluxes with mesospheric temperature mappers and correlative instrumentation,” J. Geophys. Res. (submitted).

K. Bossert, D. C. Fritts, P.-D. Pautet, M. J. Taylor, B. P. Williams, and W. R. Pendleton, “Investigation of a mesospheric gravity wave ducting event using coordinated sodium lidar and mesospheric mapper measurements at ALOMAR, Norway (69°N),” J. Geophys. Res., doi:10.1002/2014JD021460 (to be published).

X. Cai, T. Yuan, Y. Zhao, P.-D. Pautet, M. J. Taylor, and W. R. Pendleton, “A coordinated investigation of the creation of two mesospheric dynamical instability layers by a Na Lidar and an Advanced Mesosphere Temperature Mapper over Logan, UT (42°N),” J. Geophys. Res., doi:10.1002/2014JA020131 (to be published).

A. Taori and M. J. Taylor, “Characteristics of wave induced oscillations in the mesospheric O2 emission intensity and temperature,” Geophys. Res. Lett.33(2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. The (3,1) band of the OH emission spectrum and superposed transmission curves of the narrow-band filters used in the AMTM, as modified from Rousselot et al. [29].
Fig. 2.
Fig. 2. (Left) AMTM as operated at the Amundsen–Scott South Pole Station (90°S). (Right) Solid sketch design of the AMTM optical system and ray paths for different angles of view.
Fig. 3.
Fig. 3. (a) Zenith temperature time series (black) measured by the AMTM during the night of 4–5 September 2012, from Logan, Utah (41.7°N), compared with the Gaussian height-weighted Na lidar temperature measurements (gray) for the same night. (b) The temperature difference between the two instruments. The slowly increasing trend over the course of the night is most probably due to a semi-diurnal tide modifying the altitude of the OH layer.
Fig. 4.
Fig. 4. Comparison of the AMTM temperature nightly averages with the Gaussian height-weighted Na lidar measurements using 50 nights of coincident observations from Logan, Utah (41.7°N), obtained during the summers of 2011, 2012, and 2013.
Fig. 5.
Fig. 5. Distribution of the difference between the AMTM and Na lidar temperatures as a function of the day of the year.
Fig. 6.
Fig. 6. Sample data set showing the zenith intensity profiles of the three emissions measured by the AMTM [P1(2), P1(4), and BG] on 20 July 2013 from Logan, Utah. The dots correspond to the raw intensities while the lines correspond to the filtered values.
Fig. 7.
Fig. 7. (Top) OH (3,1) rotational temperature and (bottom) intensity maps taken from Logan, Utah (41.7°N), on 1 June 2013 at 6:47 UT. The perturbations created by a small-scale GW (observed period 6.4min) propagating through the OH layer are clearly resolved in both images.
Fig. 8.
Fig. 8. (a) NS and WE keogram summary of the AMTM temperature measurements obtained during the night of 24 May 2013, from Logan, Utah (41.7°N). Small-scale as well as large-scale perturbations are visible during the whole night. (b) NS keogram filtered using a 5–20 min bandpass Butterworth filter to emphasize the small-period temperature perturbations. (c) NS keogram filtered using a 30–120 min Butterworth filter to emphasize the long-period (11.5h) temperature perturbations.

Tables (3)

Tables Icon

Table 1. AMTM Instrument Specifications

Tables Icon

Table 2. Total Days (Hours) of Observations

Tables Icon

Table 3. Performances of Instruments Measuring the OH (3,1) Rotational Temperature

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H+O3OH*(ν9)+O2+3.3eV.
exp[(Er/kTr]exp[(259.58/Tr)].
[N1(J=3.5)/N1(J=1.5)]=B[P1(4)]/A[P1(4)]B[P1(2)]/A[P1(2)],
Tr=259.58ln(2.644R),

Metrics