Abstract

We demonstrate the capability of optical coherence tomography (OCT) to perform topography of metallic surfaces after being subjected to ductile or brittle fracturing. Two steel samples, OL 37 and OL 52, and an antifriction Sn–Sb–Cu alloy were analyzed. Using an in-house-built swept source OCT system, height profiles were generated for the surfaces of the two samples. Based on such profiles, it can be concluded that the first two samples were subjected to ductile fracture, while the third one was subjected to brittle fracture. The OCT potential for assessing the surface state of materials after fracture was evaluated by comparing OCT images with images generated using an established method for such investigations, scanning electron microscopy (SEM). Analysis of cause of fracture is essential in response to damage of machinery parts during various accidents. Currently the analysis is performed using SEM, on samples removed from the metallic parts, while OCT would allow in situ imaging using mobile units. To the best of our knowledge, this is the first time that the OCT capability to replace SEM has been demonstrated. SEM is a more costly and time-consuming method to use in the investigation of surfaces of microstructures of metallic materials.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparative study on the detection of early dental caries using thermo-photonic lock-in imaging and optical coherence tomography

Elnaz B. Shokouhi, Marjan Razani, Ashish Gupta, and Nima Tabatabaei
Biomed. Opt. Express 9(9) 3983-3997 (2018)

Laser-induced Hertzian fractures in silica initiated by metal micro-particles on the exit surface

Eyal Feigenbaum, Rajesh N. Raman, David Cross, C. W. Carr, and Manyalibo J. Matthews
Opt. Express 24(10) 10527-10536 (2016)

En-face scanning optical coherence tomography with ultra-high resolution for material investigation

Karin Wiesauer, Michael Pircher, Erich Götzinger, Siegfried Bauer, Rainer Engelke, Gisela Ahrens, Gabi Grützner, Christoph K. Hitzenberger, and David Stifter
Opt. Express 13(3) 1015-1024 (2005)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref]
  2. A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27, 464–499 (2008).
    [Crossref]
  3. K. A. Serrels, M. K. Renner, and D. T. Reid, “Optical coherence tomography for non-destructive investigation of silicon integrated-circuits,” Microelectron. Eng. 87, 1785–1791 (2010).
    [Crossref]
  4. K. Wiesauer, M. Pircher, E. Gotzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, “Investigation of glass–fibre reinforced polymers by polarisation-sensitive, ultra-high resolution optical coherence tomography: internal structures, defects and stress,” Compos. Sci. Technol. 67, 3051–3058 (2007).
    [Crossref]
  5. M. R. Strakowski, J. Plucinski, M. Jedrzejewska-Szczerska, R. Hypszer, M. Maciejewski, and B. B. Kosmowski, “Polarization sensitive optical coherence tomography for technical materials investigation,” Sens. Actuators A 142, 104–110 (2008).
    [Crossref]
  6. B. Heise, S. E. Schausberger, S. Häuser, B. Plank, D. Salaberger, E. Leiss-Holzinger, and D. Stifter, “Full-field optical coherence microscopy with a sub-nanosecond supercontinuum light source for material research,” Opt. Fiber Technol. 18, 403–410 (2012).
    [Crossref]
  7. E. Jonathan, “Non-contact and non-destructive testing of silicon V-grooves: a non-medical application of optical coherence tomography (OCT),” Opt. Lasers Eng. 44, 1117–1131 (2006).
    [Crossref]
  8. W. Laopornpichayanuwat, J. Visessamit, and M. Tianprateep, “3-D surface roughness profile of 316-stainless steel using vertical scanning interferometry with a superluminescent diode,” Measurement 45, 2400–2406 (2012).
    [Crossref]
  9. J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer, 2003).
  10. L. Xia and C. F. Shih, “Ductile crack growth—III. Transition to cleavage fracture incorporating statistics,” J. Mech. Phys. Solids 44, 603–639 (1996).
    [Crossref]
  11. T. Honomura, F. Yin, and K. Nagai, “Ductile-brittle transition temperature of ultrafine ferrite/cementite microstructure in low carbon steel controlled by effective grain size,” ISIJ Int. 44, 610–617 (2004).
    [Crossref]
  12. G. T. Camacho and M. Ortiz, “Computation modeling of impact damage in brittle materials,” Int. J. Solids Struct. 33, 2899–2938 (1996).
    [Crossref]
  13. Y. Tomota, Y. Xia, and K. Inoue, “Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels,” Acta Mater. 46, 1577–1587 (1998).
    [Crossref]
  14. X. Z. Zhang and J. F. Knott, “The statistical modeling of brittle fracture in homogenous and heterogeneous steel microstructures,” Acta Mater. 48, 2135–2146 (2000).
    [Crossref]
  15. A. Gh. Podoleanu and A. Bradu, “Master–slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography,” Opt. Express 21, 19324–19338 (2013).
    [Crossref]
  16. C. Marcauteanu, A. Bradu, C. Sinescu, F. I. Topala, M. L. Negrutiu, and A. Gh. Podoleanu, “Quantitative evaluation of dental abfraction and attrition using a swept-source optical coherence tomography system,” J. Biomed. Opt. 19, 021108 (2014).
    [Crossref]
  17. V. F. Duma, K.-S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt. 50, 5735–5749 (2011).
    [Crossref]
  18. W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58, 741–744 (2011).
    [Crossref]
  19. R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
    [Crossref]
  20. C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
    [Crossref]
  21. V. F. Duma, “Scanning in biomedical imaging: from classical devices to handheld heads and micro-systems,” Proc. SPIE 8925, 89250L (2014).
    [Crossref]
  22. D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med., doi: 10.1177/0954411914543963 (posted online August8, 2014).
    [Crossref]

2014 (3)

C. Marcauteanu, A. Bradu, C. Sinescu, F. I. Topala, M. L. Negrutiu, and A. Gh. Podoleanu, “Quantitative evaluation of dental abfraction and attrition using a swept-source optical coherence tomography system,” J. Biomed. Opt. 19, 021108 (2014).
[Crossref]

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
[Crossref]

V. F. Duma, “Scanning in biomedical imaging: from classical devices to handheld heads and micro-systems,” Proc. SPIE 8925, 89250L (2014).
[Crossref]

2013 (1)

2012 (3)

B. Heise, S. E. Schausberger, S. Häuser, B. Plank, D. Salaberger, E. Leiss-Holzinger, and D. Stifter, “Full-field optical coherence microscopy with a sub-nanosecond supercontinuum light source for material research,” Opt. Fiber Technol. 18, 403–410 (2012).
[Crossref]

W. Laopornpichayanuwat, J. Visessamit, and M. Tianprateep, “3-D surface roughness profile of 316-stainless steel using vertical scanning interferometry with a superluminescent diode,” Measurement 45, 2400–2406 (2012).
[Crossref]

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
[Crossref]

2011 (2)

V. F. Duma, K.-S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt. 50, 5735–5749 (2011).
[Crossref]

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58, 741–744 (2011).
[Crossref]

2010 (1)

K. A. Serrels, M. K. Renner, and D. T. Reid, “Optical coherence tomography for non-destructive investigation of silicon integrated-circuits,” Microelectron. Eng. 87, 1785–1791 (2010).
[Crossref]

2008 (2)

A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27, 464–499 (2008).
[Crossref]

M. R. Strakowski, J. Plucinski, M. Jedrzejewska-Szczerska, R. Hypszer, M. Maciejewski, and B. B. Kosmowski, “Polarization sensitive optical coherence tomography for technical materials investigation,” Sens. Actuators A 142, 104–110 (2008).
[Crossref]

2007 (1)

K. Wiesauer, M. Pircher, E. Gotzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, “Investigation of glass–fibre reinforced polymers by polarisation-sensitive, ultra-high resolution optical coherence tomography: internal structures, defects and stress,” Compos. Sci. Technol. 67, 3051–3058 (2007).
[Crossref]

2006 (1)

E. Jonathan, “Non-contact and non-destructive testing of silicon V-grooves: a non-medical application of optical coherence tomography (OCT),” Opt. Lasers Eng. 44, 1117–1131 (2006).
[Crossref]

2004 (1)

T. Honomura, F. Yin, and K. Nagai, “Ductile-brittle transition temperature of ultrafine ferrite/cementite microstructure in low carbon steel controlled by effective grain size,” ISIJ Int. 44, 610–617 (2004).
[Crossref]

2000 (1)

X. Z. Zhang and J. F. Knott, “The statistical modeling of brittle fracture in homogenous and heterogeneous steel microstructures,” Acta Mater. 48, 2135–2146 (2000).
[Crossref]

1998 (1)

Y. Tomota, Y. Xia, and K. Inoue, “Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels,” Acta Mater. 46, 1577–1587 (1998).
[Crossref]

1996 (2)

G. T. Camacho and M. Ortiz, “Computation modeling of impact damage in brittle materials,” Int. J. Solids Struct. 33, 2899–2938 (1996).
[Crossref]

L. Xia and C. F. Shih, “Ductile crack growth—III. Transition to cleavage fracture incorporating statistics,” J. Mech. Phys. Solids 44, 603–639 (1996).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Boppart, S. A.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58, 741–744 (2011).
[Crossref]

Bradu, A.

C. Marcauteanu, A. Bradu, C. Sinescu, F. I. Topala, M. L. Negrutiu, and A. Gh. Podoleanu, “Quantitative evaluation of dental abfraction and attrition using a swept-source optical coherence tomography system,” J. Biomed. Opt. 19, 021108 (2014).
[Crossref]

A. Gh. Podoleanu and A. Bradu, “Master–slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography,” Opt. Express 21, 19324–19338 (2013).
[Crossref]

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
[Crossref]

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med., doi: 10.1177/0954411914543963 (posted online August8, 2014).
[Crossref]

Cable, A. E.

Camacho, G. T.

G. T. Camacho and M. Ortiz, “Computation modeling of impact damage in brittle materials,” Int. J. Solids Struct. 33, 2899–2938 (1996).
[Crossref]

Cernat, R.

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
[Crossref]

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med., doi: 10.1177/0954411914543963 (posted online August8, 2014).
[Crossref]

Chaney, E. J.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58, 741–744 (2011).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Choi, W.

Demian, D.

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med., doi: 10.1177/0954411914543963 (posted online August8, 2014).
[Crossref]

Dobre, G.

Duker, J. S.

Duma, V. F.

V. F. Duma, “Scanning in biomedical imaging: from classical devices to handheld heads and micro-systems,” Proc. SPIE 8925, 89250L (2014).
[Crossref]

V. F. Duma, K.-S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt. 50, 5735–5749 (2011).
[Crossref]

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med., doi: 10.1177/0954411914543963 (posted online August8, 2014).
[Crossref]

Echlin, P.

J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer, 2003).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Fujimoto, J. G.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Gelikonov, G.

Gelikonov, V.

Goldstein, J.

J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer, 2003).

Gotzinger, E.

K. Wiesauer, M. Pircher, E. Gotzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, “Investigation of glass–fibre reinforced polymers by polarisation-sensitive, ultra-high resolution optical coherence tomography: internal structures, defects and stress,” Compos. Sci. Technol. 67, 3051–3058 (2007).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Häuser, S.

B. Heise, S. E. Schausberger, S. Häuser, B. Plank, D. Salaberger, E. Leiss-Holzinger, and D. Stifter, “Full-field optical coherence microscopy with a sub-nanosecond supercontinuum light source for material research,” Opt. Fiber Technol. 18, 403–410 (2012).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Heise, B.

B. Heise, S. E. Schausberger, S. Häuser, B. Plank, D. Salaberger, E. Leiss-Holzinger, and D. Stifter, “Full-field optical coherence microscopy with a sub-nanosecond supercontinuum light source for material research,” Opt. Fiber Technol. 18, 403–410 (2012).
[Crossref]

Hitzenberger, C. K.

K. Wiesauer, M. Pircher, E. Gotzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, “Investigation of glass–fibre reinforced polymers by polarisation-sensitive, ultra-high resolution optical coherence tomography: internal structures, defects and stress,” Compos. Sci. Technol. 67, 3051–3058 (2007).
[Crossref]

Honomura, T.

T. Honomura, F. Yin, and K. Nagai, “Ductile-brittle transition temperature of ultrafine ferrite/cementite microstructure in low carbon steel controlled by effective grain size,” ISIJ Int. 44, 610–617 (2004).
[Crossref]

Hornegger, J.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Hutiu, Gh.

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med., doi: 10.1177/0954411914543963 (posted online August8, 2014).
[Crossref]

Hypszer, R.

M. R. Strakowski, J. Plucinski, M. Jedrzejewska-Szczerska, R. Hypszer, M. Maciejewski, and B. B. Kosmowski, “Polarization sensitive optical coherence tomography for technical materials investigation,” Sens. Actuators A 142, 104–110 (2008).
[Crossref]

Inoue, K.

Y. Tomota, Y. Xia, and K. Inoue, “Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels,” Acta Mater. 46, 1577–1587 (1998).
[Crossref]

Jayaraman, V.

Jedrzejewska-Szczerska, M.

M. R. Strakowski, J. Plucinski, M. Jedrzejewska-Szczerska, R. Hypszer, M. Maciejewski, and B. B. Kosmowski, “Polarization sensitive optical coherence tomography for technical materials investigation,” Sens. Actuators A 142, 104–110 (2008).
[Crossref]

Jeon, M.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58, 741–744 (2011).
[Crossref]

Jonathan, E.

E. Jonathan, “Non-contact and non-destructive testing of silicon V-grooves: a non-medical application of optical coherence tomography (OCT),” Opt. Lasers Eng. 44, 1117–1131 (2006).
[Crossref]

Joy, D. C.

J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer, 2003).

Jung, W.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58, 741–744 (2011).
[Crossref]

Kim, J.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58, 741–744 (2011).
[Crossref]

Knott, J. F.

X. Z. Zhang and J. F. Knott, “The statistical modeling of brittle fracture in homogenous and heterogeneous steel microstructures,” Acta Mater. 48, 2135–2146 (2000).
[Crossref]

Kosmowski, B. B.

M. R. Strakowski, J. Plucinski, M. Jedrzejewska-Szczerska, R. Hypszer, M. Maciejewski, and B. B. Kosmowski, “Polarization sensitive optical coherence tomography for technical materials investigation,” Sens. Actuators A 142, 104–110 (2008).
[Crossref]

Kraus, M. F.

Laopornpichayanuwat, W.

W. Laopornpichayanuwat, J. Visessamit, and M. Tianprateep, “3-D surface roughness profile of 316-stainless steel using vertical scanning interferometry with a superluminescent diode,” Measurement 45, 2400–2406 (2012).
[Crossref]

Lee, K.-S.

Leiss-Holzinger, E.

B. Heise, S. E. Schausberger, S. Häuser, B. Plank, D. Salaberger, E. Leiss-Holzinger, and D. Stifter, “Full-field optical coherence microscopy with a sub-nanosecond supercontinuum light source for material research,” Opt. Fiber Technol. 18, 403–410 (2012).
[Crossref]

Lifshin, E.

J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer, 2003).

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Liu, J. J.

Lu, C. D.

Lyman, C. E.

J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer, 2003).

Maciejewski, M.

M. R. Strakowski, J. Plucinski, M. Jedrzejewska-Szczerska, R. Hypszer, M. Maciejewski, and B. B. Kosmowski, “Polarization sensitive optical coherence tomography for technical materials investigation,” Sens. Actuators A 142, 104–110 (2008).
[Crossref]

Marcauteanu, C.

C. Marcauteanu, A. Bradu, C. Sinescu, F. I. Topala, M. L. Negrutiu, and A. Gh. Podoleanu, “Quantitative evaluation of dental abfraction and attrition using a swept-source optical coherence tomography system,” J. Biomed. Opt. 19, 021108 (2014).
[Crossref]

Meemon, P.

Michael, J. R.

J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer, 2003).

Nagai, K.

T. Honomura, F. Yin, and K. Nagai, “Ductile-brittle transition temperature of ultrafine ferrite/cementite microstructure in low carbon steel controlled by effective grain size,” ISIJ Int. 44, 610–617 (2004).
[Crossref]

Negrutiu, M. L.

C. Marcauteanu, A. Bradu, C. Sinescu, F. I. Topala, M. L. Negrutiu, and A. Gh. Podoleanu, “Quantitative evaluation of dental abfraction and attrition using a swept-source optical coherence tomography system,” J. Biomed. Opt. 19, 021108 (2014).
[Crossref]

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med., doi: 10.1177/0954411914543963 (posted online August8, 2014).
[Crossref]

Newbury, D. E.

J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer, 2003).

Ortiz, M.

G. T. Camacho and M. Ortiz, “Computation modeling of impact damage in brittle materials,” Int. J. Solids Struct. 33, 2899–2938 (1996).
[Crossref]

Oster, R.

K. Wiesauer, M. Pircher, E. Gotzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, “Investigation of glass–fibre reinforced polymers by polarisation-sensitive, ultra-high resolution optical coherence tomography: internal structures, defects and stress,” Compos. Sci. Technol. 67, 3051–3058 (2007).
[Crossref]

Pang, J.

Pircher, M.

K. Wiesauer, M. Pircher, E. Gotzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, “Investigation of glass–fibre reinforced polymers by polarisation-sensitive, ultra-high resolution optical coherence tomography: internal structures, defects and stress,” Compos. Sci. Technol. 67, 3051–3058 (2007).
[Crossref]

Plank, B.

B. Heise, S. E. Schausberger, S. Häuser, B. Plank, D. Salaberger, E. Leiss-Holzinger, and D. Stifter, “Full-field optical coherence microscopy with a sub-nanosecond supercontinuum light source for material research,” Opt. Fiber Technol. 18, 403–410 (2012).
[Crossref]

Plucinski, J.

M. R. Strakowski, J. Plucinski, M. Jedrzejewska-Szczerska, R. Hypszer, M. Maciejewski, and B. B. Kosmowski, “Polarization sensitive optical coherence tomography for technical materials investigation,” Sens. Actuators A 142, 104–110 (2008).
[Crossref]

Podoleanu, A. Gh.

C. Marcauteanu, A. Bradu, C. Sinescu, F. I. Topala, M. L. Negrutiu, and A. Gh. Podoleanu, “Quantitative evaluation of dental abfraction and attrition using a swept-source optical coherence tomography system,” J. Biomed. Opt. 19, 021108 (2014).
[Crossref]

A. Gh. Podoleanu and A. Bradu, “Master–slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography,” Opt. Express 21, 19324–19338 (2013).
[Crossref]

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
[Crossref]

A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27, 464–499 (2008).
[Crossref]

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med., doi: 10.1177/0954411914543963 (posted online August8, 2014).
[Crossref]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Reid, D. T.

K. A. Serrels, M. K. Renner, and D. T. Reid, “Optical coherence tomography for non-destructive investigation of silicon integrated-circuits,” Microelectron. Eng. 87, 1785–1791 (2010).
[Crossref]

Renner, M. K.

K. A. Serrels, M. K. Renner, and D. T. Reid, “Optical coherence tomography for non-destructive investigation of silicon integrated-circuits,” Microelectron. Eng. 87, 1785–1791 (2010).
[Crossref]

Rolland, J. P.

Rosen, R. B.

A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27, 464–499 (2008).
[Crossref]

Salaberger, D.

B. Heise, S. E. Schausberger, S. Häuser, B. Plank, D. Salaberger, E. Leiss-Holzinger, and D. Stifter, “Full-field optical coherence microscopy with a sub-nanosecond supercontinuum light source for material research,” Opt. Fiber Technol. 18, 403–410 (2012).
[Crossref]

Sawyer, L.

J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer, 2003).

Schausberger, S. E.

B. Heise, S. E. Schausberger, S. Häuser, B. Plank, D. Salaberger, E. Leiss-Holzinger, and D. Stifter, “Full-field optical coherence microscopy with a sub-nanosecond supercontinuum light source for material research,” Opt. Fiber Technol. 18, 403–410 (2012).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Serrels, K. A.

K. A. Serrels, M. K. Renner, and D. T. Reid, “Optical coherence tomography for non-destructive investigation of silicon integrated-circuits,” Microelectron. Eng. 87, 1785–1791 (2010).
[Crossref]

Shih, C. F.

L. Xia and C. F. Shih, “Ductile crack growth—III. Transition to cleavage fracture incorporating statistics,” J. Mech. Phys. Solids 44, 603–639 (1996).
[Crossref]

Sinescu, C.

C. Marcauteanu, A. Bradu, C. Sinescu, F. I. Topala, M. L. Negrutiu, and A. Gh. Podoleanu, “Quantitative evaluation of dental abfraction and attrition using a swept-source optical coherence tomography system,” J. Biomed. Opt. 19, 021108 (2014).
[Crossref]

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med., doi: 10.1177/0954411914543963 (posted online August8, 2014).
[Crossref]

Stewart, C. N.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58, 741–744 (2011).
[Crossref]

Stifter, D.

B. Heise, S. E. Schausberger, S. Häuser, B. Plank, D. Salaberger, E. Leiss-Holzinger, and D. Stifter, “Full-field optical coherence microscopy with a sub-nanosecond supercontinuum light source for material research,” Opt. Fiber Technol. 18, 403–410 (2012).
[Crossref]

K. Wiesauer, M. Pircher, E. Gotzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, “Investigation of glass–fibre reinforced polymers by polarisation-sensitive, ultra-high resolution optical coherence tomography: internal structures, defects and stress,” Compos. Sci. Technol. 67, 3051–3058 (2007).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Strakowski, M. R.

M. R. Strakowski, J. Plucinski, M. Jedrzejewska-Szczerska, R. Hypszer, M. Maciejewski, and B. B. Kosmowski, “Polarization sensitive optical coherence tomography for technical materials investigation,” Sens. Actuators A 142, 104–110 (2008).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Tadrous, P. J.

Tatla, T. S.

Tianprateep, M.

W. Laopornpichayanuwat, J. Visessamit, and M. Tianprateep, “3-D surface roughness profile of 316-stainless steel using vertical scanning interferometry with a superluminescent diode,” Measurement 45, 2400–2406 (2012).
[Crossref]

Tomota, Y.

Y. Tomota, Y. Xia, and K. Inoue, “Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels,” Acta Mater. 46, 1577–1587 (1998).
[Crossref]

Topala, F. I.

C. Marcauteanu, A. Bradu, C. Sinescu, F. I. Topala, M. L. Negrutiu, and A. Gh. Podoleanu, “Quantitative evaluation of dental abfraction and attrition using a swept-source optical coherence tomography system,” J. Biomed. Opt. 19, 021108 (2014).
[Crossref]

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med., doi: 10.1177/0954411914543963 (posted online August8, 2014).
[Crossref]

Visessamit, J.

W. Laopornpichayanuwat, J. Visessamit, and M. Tianprateep, “3-D surface roughness profile of 316-stainless steel using vertical scanning interferometry with a superluminescent diode,” Measurement 45, 2400–2406 (2012).
[Crossref]

Wiesauer, K.

K. Wiesauer, M. Pircher, E. Gotzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, “Investigation of glass–fibre reinforced polymers by polarisation-sensitive, ultra-high resolution optical coherence tomography: internal structures, defects and stress,” Compos. Sci. Technol. 67, 3051–3058 (2007).
[Crossref]

Xia, L.

L. Xia and C. F. Shih, “Ductile crack growth—III. Transition to cleavage fracture incorporating statistics,” J. Mech. Phys. Solids 44, 603–639 (1996).
[Crossref]

Xia, Y.

Y. Tomota, Y. Xia, and K. Inoue, “Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels,” Acta Mater. 46, 1577–1587 (1998).
[Crossref]

Yin, F.

T. Honomura, F. Yin, and K. Nagai, “Ductile-brittle transition temperature of ultrafine ferrite/cementite microstructure in low carbon steel controlled by effective grain size,” ISIJ Int. 44, 610–617 (2004).
[Crossref]

Zhang, X. Z.

X. Z. Zhang and J. F. Knott, “The statistical modeling of brittle fracture in homogenous and heterogeneous steel microstructures,” Acta Mater. 48, 2135–2146 (2000).
[Crossref]

Acta Mater. (2)

Y. Tomota, Y. Xia, and K. Inoue, “Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels,” Acta Mater. 46, 1577–1587 (1998).
[Crossref]

X. Z. Zhang and J. F. Knott, “The statistical modeling of brittle fracture in homogenous and heterogeneous steel microstructures,” Acta Mater. 48, 2135–2146 (2000).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Compos. Sci. Technol. (1)

K. Wiesauer, M. Pircher, E. Gotzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, “Investigation of glass–fibre reinforced polymers by polarisation-sensitive, ultra-high resolution optical coherence tomography: internal structures, defects and stress,” Compos. Sci. Technol. 67, 3051–3058 (2007).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58, 741–744 (2011).
[Crossref]

Int. J. Solids Struct. (1)

G. T. Camacho and M. Ortiz, “Computation modeling of impact damage in brittle materials,” Int. J. Solids Struct. 33, 2899–2938 (1996).
[Crossref]

ISIJ Int. (1)

T. Honomura, F. Yin, and K. Nagai, “Ductile-brittle transition temperature of ultrafine ferrite/cementite microstructure in low carbon steel controlled by effective grain size,” ISIJ Int. 44, 610–617 (2004).
[Crossref]

J. Biomed. Opt. (1)

C. Marcauteanu, A. Bradu, C. Sinescu, F. I. Topala, M. L. Negrutiu, and A. Gh. Podoleanu, “Quantitative evaluation of dental abfraction and attrition using a swept-source optical coherence tomography system,” J. Biomed. Opt. 19, 021108 (2014).
[Crossref]

J. Mech. Phys. Solids (1)

L. Xia and C. F. Shih, “Ductile crack growth—III. Transition to cleavage fracture incorporating statistics,” J. Mech. Phys. Solids 44, 603–639 (1996).
[Crossref]

Measurement (1)

W. Laopornpichayanuwat, J. Visessamit, and M. Tianprateep, “3-D surface roughness profile of 316-stainless steel using vertical scanning interferometry with a superluminescent diode,” Measurement 45, 2400–2406 (2012).
[Crossref]

Microelectron. Eng. (1)

K. A. Serrels, M. K. Renner, and D. T. Reid, “Optical coherence tomography for non-destructive investigation of silicon integrated-circuits,” Microelectron. Eng. 87, 1785–1791 (2010).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

B. Heise, S. E. Schausberger, S. Häuser, B. Plank, D. Salaberger, E. Leiss-Holzinger, and D. Stifter, “Full-field optical coherence microscopy with a sub-nanosecond supercontinuum light source for material research,” Opt. Fiber Technol. 18, 403–410 (2012).
[Crossref]

Opt. Lasers Eng. (1)

E. Jonathan, “Non-contact and non-destructive testing of silicon V-grooves: a non-medical application of optical coherence tomography (OCT),” Opt. Lasers Eng. 44, 1117–1131 (2006).
[Crossref]

Proc. SPIE (1)

V. F. Duma, “Scanning in biomedical imaging: from classical devices to handheld heads and micro-systems,” Proc. SPIE 8925, 89250L (2014).
[Crossref]

Prog. Retin. Eye Res. (1)

A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27, 464–499 (2008).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Sens. Actuators A (1)

M. R. Strakowski, J. Plucinski, M. Jedrzejewska-Szczerska, R. Hypszer, M. Maciejewski, and B. B. Kosmowski, “Polarization sensitive optical coherence tomography for technical materials investigation,” Sens. Actuators A 142, 104–110 (2008).
[Crossref]

Other (2)

J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer, 2003).

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med., doi: 10.1177/0954411914543963 (posted online August8, 2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic diagram of the SS-OCT system. SS, swept source; DC1, 20/80 single-mode directional coupler; DC2, 50/50 single-mode directional coupler; XYSH, two-dimensional lateral scanning head; L1 to L4, achromatic lenses; S, sample; PhD, photodetector; M1 and M2, flat mirrors; TS, translation stage.
Fig. 2.
Fig. 2. Imaging the fracture of OL 37 steel: (a) frontal SEM overview of the entire sample; (b) SEM image; (c) OCT image of the same area.
Fig. 3.
Fig. 3. Imaging the fracture of OL 52 steel: (a) SEM overview of the entire sample; (b) SEM image; (c) OCT image of the same area.
Fig. 4.
Fig. 4. Imaging the fracture of the Sn–Sb–Cu antifriction alloy: (a) SEM overview of the entire sample; (b) SEM image; (c) OCT image of the same area.

Metrics