Abstract

Minimizing subsurface damage (SSD) is in high demand for optics during grinding, lapping, and polishing. A fixed-abrasive diamond pellet (FADP) has been validated as a potential tool in fast lapping and polishing of hard optical materials. This study inspects and measures the SSD of fused silica developed in lapping and microlapping by FADPs tool through a taper polishing method, assisted with profile measurement and microexamination. A series of experiments is conducted to reveal the influence of lapping parameters on SSD depth and surface roughness, including diamond size, lapping pressure, and velocity, as well as rubber type. Results indicate that SSD depth and surface roughness are mostly sensitive to diamond size but are generally independent of lapping pressure and velocity. Softer rubber can reduce SSD depth and improve surface roughness. The ratio of SSD depth to surface roughness (peak to valley: Rt) is confirmed to be 7.4±1.3, which can predict the SSD depth of fused silica lapped by FADPs with a rapid roughness measurement.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Campbell, R. A. Hawley-Fedder, and C. J. Stolz, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
    [CrossRef]
  2. M. Buijs and K. K. Houten, “Three-body abrasion of brittle materials as studied by lapping,” Wear 166, 237–245 (1993).
    [CrossRef]
  3. M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
    [CrossRef]
  4. F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. 18, 2607–2616 (2001).
    [CrossRef]
  5. J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17, 20448–20456 (2009).
    [CrossRef]
  6. Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, and D. Golini, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994).
    [CrossRef]
  7. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
    [CrossRef]
  8. T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354, 2023–2037 (2008).
    [CrossRef]
  9. J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44, 2241–2249 (2005).
    [CrossRef]
  10. Z. Wang, Y. L. Wu, Y. F. Dai, and S. Y. Li, “Subsurface damage distribution in the lapping process,” Appl. Opt. 47, 1417–1426 (2008).
    [CrossRef]
  11. S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, and P. Dumas, “Details of polishing spot in magnetorheological finishing (MRF),” Proc. SPIE 3782, 92–100 (1999).
    [CrossRef]
  12. J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2001).
    [CrossRef]
  13. H. B. Cheng and Z. J. Feng, “Surface roughness and material-removal rate with magnetorheological finishing without subsurface damage of the surface,” J. Opt. Technol. 72, 865–871 (2005).
    [CrossRef]
  14. K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real time direct measurement of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).
    [CrossRef]
  15. M. Trost, T. Herffurth, D. Schmitz, S. Schröder, A. Duparré, and A. Tünnermann, “Evaluation of subsurface damage by light scattering techniques,” Appl. Opt. 52, 6579–6588 (2013).
    [CrossRef]
  16. J. Wang and R. L. Maier, “Quasi-Brewster angle technique for evaluating the quality of optical surfaces,” Proc. SPIE 5375, 1286–1294 (2004).
    [CrossRef]
  17. J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceram. Trans. 102, 113–128 (1999).
  18. J. Neauport, J. Destribats, C. Maunier, C. Ambard, P. Cormont, B. Pintault, and O. Rondeau, “Loose abrasive slurries for optical glass lapping,” Appl. Opt. 49, 5736–5745 (2010).
    [CrossRef]
  19. Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. Wang, Y. B. Guo, and Q. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257, 2066–2073 (2011).
    [CrossRef]
  20. X. Tonnellier, P. Morantz, and P. Shore, “Subsurface damage in precision ground ULE and Zerodur surfaces,” Opt. Express 15, 12197–12205 (2007).
    [CrossRef]
  21. F. W. Preston, “Structure of abraded glass surfaces,” Trans. Opt. Soc. London 23, 141–164 (1922).
  22. F. K. Aleinikov, “The effect of certain physical and mechanical properties on the grinding of brittle materials,” Sov. Phys. Tech. Phys. 27, 2529–2538 (1957).
  23. P. P. Hed and D. F. Edwards, “Optical glass fabrication technology. 2: relationship between surface roughness and subsurface damage,” Appl. Opt. 26, 4677–4680 (1987).
    [CrossRef]
  24. J. C. Lambropoulos, Y. Li, P. Funkenbusch, and J. Ruckman, “Non-contact estimate of grinding subsurface damage,” Proc. SPIE 3782, 41–50 (1999).
    [CrossRef]
  25. J. C. Lambropoulos, “From abrasive size to subsurface damage in grinding,” in Optical Fabrication and Testing, OSA Technical Digest (2000), pp. 17–18.
  26. S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots,” Appl. Opt. 46, 5500–5515 (2007).
    [CrossRef]
  27. P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
    [CrossRef]
  28. J. B. Johnson, D. W. Kim, R. E. Parks, and J. H. Burge, “New approach for pre-polish grinding with low subsurface damage,” Proc. SPIE 8126, 81261E (2011).
    [CrossRef]
  29. Z. C. Dong, H. B. Cheng, and H. Y. Tam, “Investigation on removal features of multidistribution fixed abrasive diamond pellets used in the polishing of SiC mirrors,” Appl. Opt. 51, 9373–9382 (2012).
  30. Z. C. Dong, H. B. Cheng, and H. Y. Tam, “Further investigations on fixed abrasive diamond pellets used for diminishing mid-spatial frequency errors of optical mirrors,” Appl. Opt. 53, 327–334 (2014).
    [CrossRef]
  31. Z. C. Dong and H. B. Cheng, “Study on removal mechanism and removal characters for SiC and fused silica by fixed abrasive diamond pellets,” Int. J. Mach. Tools Manuf. 85, 1–13 (2014).
  32. Z. C. Dong, H. B. Cheng, and H. Y. Tam, “Modified subaperture tool influence functions of a flat pitch polisher with reverse-calculated material removal rate,” Appl. Opt. 53, 2455–2464 (2014).
    [CrossRef]
  33. H. B. Cheng, Y. Yam, and Y. T. Wang, “Experimentation on MR fluid using a 2-axis wheel tool,” J. Mater. Process. Technol. 209, 5254–5261 (2009).
    [CrossRef]
  34. H. B. Cheng, Z. C. Dong, X. Ye, and H. Y. Tam, “Subsurface damages of fused silica developed during deterministic small tool polishing,” Opt. Express 22, 18588–18603 (2014).
    [CrossRef]

2014 (4)

2013 (1)

2012 (1)

Z. C. Dong, H. B. Cheng, and H. Y. Tam, “Investigation on removal features of multidistribution fixed abrasive diamond pellets used in the polishing of SiC mirrors,” Appl. Opt. 51, 9373–9382 (2012).

2011 (2)

J. B. Johnson, D. W. Kim, R. E. Parks, and J. H. Burge, “New approach for pre-polish grinding with low subsurface damage,” Proc. SPIE 8126, 81261E (2011).
[CrossRef]

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. Wang, Y. B. Guo, and Q. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257, 2066–2073 (2011).
[CrossRef]

2010 (1)

2009 (2)

2008 (2)

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354, 2023–2037 (2008).
[CrossRef]

Z. Wang, Y. L. Wu, Y. F. Dai, and S. Y. Li, “Subsurface damage distribution in the lapping process,” Appl. Opt. 47, 1417–1426 (2008).
[CrossRef]

2007 (2)

2006 (1)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

2005 (4)

H. B. Cheng and Z. J. Feng, “Surface roughness and material-removal rate with magnetorheological finishing without subsurface damage of the surface,” J. Opt. Technol. 72, 865–871 (2005).
[CrossRef]

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real time direct measurement of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).
[CrossRef]

J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44, 2241–2249 (2005).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

2004 (3)

J. H. Campbell, R. A. Hawley-Fedder, and C. J. Stolz, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[CrossRef]

J. Wang and R. L. Maier, “Quasi-Brewster angle technique for evaluating the quality of optical surfaces,” Proc. SPIE 5375, 1286–1294 (2004).
[CrossRef]

2001 (2)

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2001).
[CrossRef]

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. 18, 2607–2616 (2001).
[CrossRef]

1999 (3)

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, and P. Dumas, “Details of polishing spot in magnetorheological finishing (MRF),” Proc. SPIE 3782, 92–100 (1999).
[CrossRef]

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceram. Trans. 102, 113–128 (1999).

J. C. Lambropoulos, Y. Li, P. Funkenbusch, and J. Ruckman, “Non-contact estimate of grinding subsurface damage,” Proc. SPIE 3782, 41–50 (1999).
[CrossRef]

1994 (1)

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, and D. Golini, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994).
[CrossRef]

1993 (1)

M. Buijs and K. K. Houten, “Three-body abrasion of brittle materials as studied by lapping,” Wear 166, 237–245 (1993).
[CrossRef]

1987 (1)

1957 (1)

F. K. Aleinikov, “The effect of certain physical and mechanical properties on the grinding of brittle materials,” Sov. Phys. Tech. Phys. 27, 2529–2538 (1957).

1922 (1)

F. W. Preston, “Structure of abraded glass surfaces,” Trans. Opt. Soc. London 23, 141–164 (1922).

Aleinikov, F. K.

F. K. Aleinikov, “The effect of certain physical and mechanical properties on the grinding of brittle materials,” Sov. Phys. Tech. Phys. 27, 2529–2538 (1957).

Ambard, C.

Arrasmith, S. R.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, and P. Dumas, “Details of polishing spot in magnetorheological finishing (MRF),” Proc. SPIE 3782, 92–100 (1999).
[CrossRef]

Buijs, M.

M. Buijs and K. K. Houten, “Three-body abrasion of brittle materials as studied by lapping,” Wear 166, 237–245 (1993).
[CrossRef]

Burge, J. H.

J. B. Johnson, D. W. Kim, R. E. Parks, and J. H. Burge, “New approach for pre-polish grinding with low subsurface damage,” Proc. SPIE 8126, 81261E (2011).
[CrossRef]

Campbell, J. H.

J. H. Campbell, R. A. Hawley-Fedder, and C. J. Stolz, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Chase, L. L.

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. 18, 2607–2616 (2001).
[CrossRef]

Chen, X. H.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. Wang, Y. B. Guo, and Q. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257, 2066–2073 (2011).
[CrossRef]

Cheng, H. B.

Cormont, P.

Dai, Y. F.

Darbois, N.

Davis, P.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354, 2023–2037 (2008).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Davis, P. J.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Destribats, J.

Dong, Z. C.

Dumas, P.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, and P. Dumas, “Details of polishing spot in magnetorheological finishing (MRF),” Proc. SPIE 3782, 92–100 (1999).
[CrossRef]

Duparré, A.

Edwards, D. F.

Feit, M. D.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354, 2023–2037 (2008).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[CrossRef]

Feng, Z. J.

Fine, K. R.

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real time direct measurement of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).
[CrossRef]

Funkenbusch, P.

J. C. Lambropoulos, Y. Li, P. Funkenbusch, and J. Ruckman, “Non-contact estimate of grinding subsurface damage,” Proc. SPIE 3782, 41–50 (1999).
[CrossRef]

Funkenbusch, P. D.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, and D. Golini, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994).
[CrossRef]

Garbe, R.

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real time direct measurement of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).
[CrossRef]

Genin, F. Y.

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. 18, 2607–2616 (2001).
[CrossRef]

Gip, T.

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real time direct measurement of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).
[CrossRef]

Golini, D.

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2001).
[CrossRef]

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, and P. Dumas, “Details of polishing spot in magnetorheological finishing (MRF),” Proc. SPIE 3782, 92–100 (1999).
[CrossRef]

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, and D. Golini, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994).
[CrossRef]

Gregg, L. L.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, and P. Dumas, “Details of polishing spot in magnetorheological finishing (MRF),” Proc. SPIE 3782, 92–100 (1999).
[CrossRef]

Guo, Y. B.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. Wang, Y. B. Guo, and Q. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257, 2066–2073 (2011).
[CrossRef]

Guo, Z. Z.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. Wang, Y. B. Guo, and Q. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257, 2066–2073 (2011).
[CrossRef]

Hawley-Fedder, R. A.

J. H. Campbell, R. A. Hawley-Fedder, and C. J. Stolz, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Hed, P. P.

Herffurth, T.

Hogan, S.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, and P. Dumas, “Details of polishing spot in magnetorheological finishing (MRF),” Proc. SPIE 3782, 92–100 (1999).
[CrossRef]

Hou, J.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. Wang, Y. B. Guo, and Q. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257, 2066–2073 (2011).
[CrossRef]

Houten, K. K.

M. Buijs and K. K. Houten, “Three-body abrasion of brittle materials as studied by lapping,” Wear 166, 237–245 (1993).
[CrossRef]

Jacobs, S. D.

S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots,” Appl. Opt. 46, 5500–5515 (2007).
[CrossRef]

J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44, 2241–2249 (2005).
[CrossRef]

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, and P. Dumas, “Details of polishing spot in magnetorheological finishing (MRF),” Proc. SPIE 3782, 92–100 (1999).
[CrossRef]

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceram. Trans. 102, 113–128 (1999).

Johnson, J. B.

J. B. Johnson, D. W. Kim, R. E. Parks, and J. H. Burge, “New approach for pre-polish grinding with low subsurface damage,” Proc. SPIE 8126, 81261E (2011).
[CrossRef]

Kim, D. W.

J. B. Johnson, D. W. Kim, R. E. Parks, and J. H. Burge, “New approach for pre-polish grinding with low subsurface damage,” Proc. SPIE 8126, 81261E (2011).
[CrossRef]

Kordonski, W. I.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, and P. Dumas, “Details of polishing spot in magnetorheological finishing (MRF),” Proc. SPIE 3782, 92–100 (1999).
[CrossRef]

Kozhinova, I. A.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, and P. Dumas, “Details of polishing spot in magnetorheological finishing (MRF),” Proc. SPIE 3782, 92–100 (1999).
[CrossRef]

Lambropoulos, J. C.

S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots,” Appl. Opt. 46, 5500–5515 (2007).
[CrossRef]

J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44, 2241–2249 (2005).
[CrossRef]

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceram. Trans. 102, 113–128 (1999).

J. C. Lambropoulos, Y. Li, P. Funkenbusch, and J. Ruckman, “Non-contact estimate of grinding subsurface damage,” Proc. SPIE 3782, 41–50 (1999).
[CrossRef]

J. C. Lambropoulos, “From abrasive size to subsurface damage in grinding,” in Optical Fabrication and Testing, OSA Technical Digest (2000), pp. 17–18.

Lei, X. Y.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. Wang, Y. B. Guo, and Q. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257, 2066–2073 (2011).
[CrossRef]

Li, H. B.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. Wang, Y. B. Guo, and Q. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257, 2066–2073 (2011).
[CrossRef]

Li, S. Y.

Li, Y.

J. C. Lambropoulos, Y. Li, P. Funkenbusch, and J. Ruckman, “Non-contact estimate of grinding subsurface damage,” Proc. SPIE 3782, 41–50 (1999).
[CrossRef]

Li, Y. G.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. Wang, Y. B. Guo, and Q. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257, 2066–2073 (2011).
[CrossRef]

Luitot, C.

Maier, R. L.

J. Wang and R. L. Maier, “Quasi-Brewster angle technique for evaluating the quality of optical surfaces,” Proc. SPIE 5375, 1286–1294 (2004).
[CrossRef]

Maunier, C.

Menapace, J.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354, 2023–2037 (2008).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Menapace, J. A.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2001).
[CrossRef]

Miller, P.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354, 2023–2037 (2008).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Miller, P. E.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2001).
[CrossRef]

Morantz, P.

Neauport, J.

Nguyen, Q.

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real time direct measurement of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).
[CrossRef]

Nichols, M.

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2001).
[CrossRef]

Parham, T. G.

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2001).
[CrossRef]

Parks, R. E.

J. B. Johnson, D. W. Kim, R. E. Parks, and J. H. Burge, “New approach for pre-polish grinding with low subsurface damage,” Proc. SPIE 8126, 81261E (2011).
[CrossRef]

Penetrante, B.

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2001).
[CrossRef]

Peterson, J.

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2001).
[CrossRef]

Pintault, B.

Pistor, T. V.

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. 18, 2607–2616 (2001).
[CrossRef]

Preston, F. W.

F. W. Preston, “Structure of abraded glass surfaces,” Trans. Opt. Soc. London 23, 141–164 (1922).

Quesnel, D. J.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, and D. Golini, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994).
[CrossRef]

Randi, J. A.

Romanofsky, H. J.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, and P. Dumas, “Details of polishing spot in magnetorheological finishing (MRF),” Proc. SPIE 3782, 92–100 (1999).
[CrossRef]

Rondeau, O.

Rubenchik, A. M.

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[CrossRef]

Ruckman, J.

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceram. Trans. 102, 113–128 (1999).

J. C. Lambropoulos, Y. Li, P. Funkenbusch, and J. Ruckman, “Non-contact estimate of grinding subsurface damage,” Proc. SPIE 3782, 41–50 (1999).
[CrossRef]

Salleo, A.

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. 18, 2607–2616 (2001).
[CrossRef]

Schmitz, D.

Schröder, S.

Shafrir, S. N.

Shore, P.

Shorey, A. B.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, and P. Dumas, “Details of polishing spot in magnetorheological finishing (MRF),” Proc. SPIE 3782, 92–100 (1999).
[CrossRef]

Slomba, A. F.

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2001).
[CrossRef]

Steele, R.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354, 2023–2037 (2008).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Steele, R. A.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Stolz, C. J.

J. H. Campbell, R. A. Hawley-Fedder, and C. J. Stolz, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Suratwala, T.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354, 2023–2037 (2008).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Suratwala, T. I.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Tam, H. Y.

Tonnellier, X.

Trost, M.

Tünnermann, A.

Walmer, D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Wang, J.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. Wang, Y. B. Guo, and Q. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257, 2066–2073 (2011).
[CrossRef]

J. Wang and R. L. Maier, “Quasi-Brewster angle technique for evaluating the quality of optical surfaces,” Proc. SPIE 5375, 1286–1294 (2004).
[CrossRef]

Wang, Y. T.

H. B. Cheng, Y. Yam, and Y. T. Wang, “Experimentation on MR fluid using a 2-axis wheel tool,” J. Mater. Process. Technol. 209, 5254–5261 (2009).
[CrossRef]

Wang, Z.

Wong, L.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354, 2023–2037 (2008).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Wong, L. L.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Wu, Y. L.

Xu, Q.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. Wang, Y. B. Guo, and Q. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257, 2066–2073 (2011).
[CrossRef]

Yam, Y.

H. B. Cheng, Y. Yam, and Y. T. Wang, “Experimentation on MR fluid using a 2-axis wheel tool,” J. Mater. Process. Technol. 209, 5254–5261 (2009).
[CrossRef]

Ye, X.

Yuan, Z. G.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. Wang, Y. B. Guo, and Q. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257, 2066–2073 (2011).
[CrossRef]

Zheng, N.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. Wang, Y. B. Guo, and Q. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257, 2066–2073 (2011).
[CrossRef]

Zhou, Y.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, and D. Golini, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994).
[CrossRef]

Appl. Opt. (9)

J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44, 2241–2249 (2005).
[CrossRef]

Z. Wang, Y. L. Wu, Y. F. Dai, and S. Y. Li, “Subsurface damage distribution in the lapping process,” Appl. Opt. 47, 1417–1426 (2008).
[CrossRef]

M. Trost, T. Herffurth, D. Schmitz, S. Schröder, A. Duparré, and A. Tünnermann, “Evaluation of subsurface damage by light scattering techniques,” Appl. Opt. 52, 6579–6588 (2013).
[CrossRef]

J. Neauport, J. Destribats, C. Maunier, C. Ambard, P. Cormont, B. Pintault, and O. Rondeau, “Loose abrasive slurries for optical glass lapping,” Appl. Opt. 49, 5736–5745 (2010).
[CrossRef]

P. P. Hed and D. F. Edwards, “Optical glass fabrication technology. 2: relationship between surface roughness and subsurface damage,” Appl. Opt. 26, 4677–4680 (1987).
[CrossRef]

S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots,” Appl. Opt. 46, 5500–5515 (2007).
[CrossRef]

Z. C. Dong, H. B. Cheng, and H. Y. Tam, “Investigation on removal features of multidistribution fixed abrasive diamond pellets used in the polishing of SiC mirrors,” Appl. Opt. 51, 9373–9382 (2012).

Z. C. Dong, H. B. Cheng, and H. Y. Tam, “Further investigations on fixed abrasive diamond pellets used for diminishing mid-spatial frequency errors of optical mirrors,” Appl. Opt. 53, 327–334 (2014).
[CrossRef]

Z. C. Dong, H. B. Cheng, and H. Y. Tam, “Modified subaperture tool influence functions of a flat pitch polisher with reverse-calculated material removal rate,” Appl. Opt. 53, 2455–2464 (2014).
[CrossRef]

Appl. Surf. Sci. (1)

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. Wang, Y. B. Guo, and Q. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257, 2066–2073 (2011).
[CrossRef]

Ceram. Trans. (1)

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceram. Trans. 102, 113–128 (1999).

Int. J. Mach. Tools Manuf. (1)

Z. C. Dong and H. B. Cheng, “Study on removal mechanism and removal characters for SiC and fused silica by fixed abrasive diamond pellets,” Int. J. Mach. Tools Manuf. 85, 1–13 (2014).

J. Am. Ceram. Soc. (1)

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, and D. Golini, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994).
[CrossRef]

J. Mater. Process. Technol. (1)

H. B. Cheng, Y. Yam, and Y. T. Wang, “Experimentation on MR fluid using a 2-axis wheel tool,” J. Mater. Process. Technol. 209, 5254–5261 (2009).
[CrossRef]

J. Non-Cryst. Solids (2)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids 354, 2023–2037 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. 18, 2607–2616 (2001).
[CrossRef]

J. Opt. Technol. (1)

Opt. Express (3)

Proc. SPIE (9)

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

J. B. Johnson, D. W. Kim, R. E. Parks, and J. H. Burge, “New approach for pre-polish grinding with low subsurface damage,” Proc. SPIE 8126, 81261E (2011).
[CrossRef]

J. C. Lambropoulos, Y. Li, P. Funkenbusch, and J. Ruckman, “Non-contact estimate of grinding subsurface damage,” Proc. SPIE 3782, 41–50 (1999).
[CrossRef]

J. H. Campbell, R. A. Hawley-Fedder, and C. J. Stolz, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, and P. Dumas, “Details of polishing spot in magnetorheological finishing (MRF),” Proc. SPIE 3782, 92–100 (1999).
[CrossRef]

J. A. Menapace, B. Penetrante, D. Golini, A. F. Slomba, P. E. Miller, T. G. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV damage resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2001).
[CrossRef]

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real time direct measurement of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2004).
[CrossRef]

J. Wang and R. L. Maier, “Quasi-Brewster angle technique for evaluating the quality of optical surfaces,” Proc. SPIE 5375, 1286–1294 (2004).
[CrossRef]

Sov. Phys. Tech. Phys. (1)

F. K. Aleinikov, “The effect of certain physical and mechanical properties on the grinding of brittle materials,” Sov. Phys. Tech. Phys. 27, 2529–2538 (1957).

Trans. Opt. Soc. London (1)

F. W. Preston, “Structure of abraded glass surfaces,” Trans. Opt. Soc. London 23, 141–164 (1922).

Wear (1)

M. Buijs and K. K. Houten, “Three-body abrasion of brittle materials as studied by lapping,” Wear 166, 237–245 (1993).
[CrossRef]

Other (1)

J. C. Lambropoulos, “From abrasive size to subsurface damage in grinding,” in Optical Fabrication and Testing, OSA Technical Digest (2000), pp. 17–18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Sketch map of FADP tools with (a) plane surface and (b) sphere surface.

Fig. 2.
Fig. 2.

Sketch map of FADP lapping process.

Fig. 3.
Fig. 3.

Surface roughness of fused silica lapped by (a) W1.5 pellets, Rt=189.92nm and (b) W3 pellets, Rt=253.8nm.

Fig. 4.
Fig. 4.

SSD measurement process (a) the surface form of MRF groove, (b) the profiles of four lines, (c) the profile of line AA’ with two inspectors, and (d) the position difference of two inspectors.

Fig. 5.
Fig. 5.

Surface micrographs of fused silica lapped by W5 pellets along the MRF taper with depth of (a) 0 μm, (b) 0.5 μm, (c) 1.0 μm, (d) 1.5 μm, (e) 2.0 μm, (f) 2.5 μm, (g) 2.8 μm, and (h) 3.0 μm.

Fig. 6.
Fig. 6.

Typical surface micrographs of fused silica lapped by diamond pellets (a) W1.5, depth 0.2 μm; (b) W3, depth 0.2 μm; (c) W1.5, depth 0.5 μm; (d) W10, depth 1.0 μm; (e) W14, depth 1.5 μm; and (f) W17, depth 2.0 μm.

Fig. 7.
Fig. 7.

SSD depth and surface roughness of fused silica lapped by various diamond pellets.

Fig. 8.
Fig. 8.

SSD depth of FADP tool versus abrasive size and the comparison with the law proposed by Lambropoulos [25], as shown in Eq. (1).

Fig. 9.
Fig. 9.

SSD depth versus roughness Rt (left y axis) and SSD/Rt versus roughness Rt (right y axis).

Fig. 10.
Fig. 10.

SSD depth and surface roughness of fused silica with the increase of lapping pressure.

Fig. 11.
Fig. 11.

SSD depth and surface roughness of fused silica as the increase of lapping velocity.

Fig. 12.
Fig. 12.

SSD depth and surface roughness of fused silica polished by FADP tools with various rubbers.

Tables (6)

Tables Icon

Table 1 Parameters of Diamond Pellets

Tables Icon

Table 2. Features of Rubber before and after Solidifying

Tables Icon

Table 3. Parameters for Diamond Size of Pellets

Tables Icon

Table 4. Parameters for Lapping Pressure

Tables Icon

Table 5. Parameters for Lapping Velocity

Tables Icon

Table 6. Parameters for Rubber-Type

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

0.3L0.68<SSD(μm)<2L0.85.
SSD=1.144·L0.5864,

Metrics