Abstract

Utilizing measurements on a lanthano–aluminosilicate core optical fiber, the specific effects of lanthana (La2O3) on the Brillouin characteristics of silica-based oxide glass optical fibers are described. Lanthana is an interesting species to investigate since it possesses a wide transparency window covering the common fiber laser and telecom system wavelengths. As might be expected, it is found that the properties of lanthana are very similar to those of ytterbia (Yb2O3), namely, low acoustic velocity, wide Brillouin spectral width, and a negative photoelastic constant, with the latter two properties affording significant reductions to the Brillouin gain coefficient. However, lanthana possesses thermo-acoustic and strain-acoustic coefficients (acoustic velocity versus temperature or strain, TAC and SAC, respectively) with signs that are opposed to those of ytterbia. The lanthano–aluminosilicate (SAL) fiber utilized in this study is Brillouin-athermal (no dependence of the Brillouin frequency on temperature), but not atensic (is dependent upon the strain), which is believed to be, to the best of our knowledge, the first demonstration of such a glass fiber utilizing a compositional engineering approach.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Bao and L. Chen, “Recent progress in Brillouin scattering-based fiber sensors,” Sensors 11, 4152–4187 (2011).
    [CrossRef]
  2. C. A. Galindex-Jamioy and J. M. López-Higuera, “Brillouin distributed fiber sensors: an overview and applications,” J. Sens. 12, 204121 (2012).
  3. R. G. Smith, “Optical power handling capacity of low-loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972).
    [CrossRef]
  4. D. Richardson, J. Nilsson, and A. Clarkson, “High power fiber lasers: current status and future perspectives [invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [CrossRef]
  5. K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
    [CrossRef]
  6. M. Ohashi and M. Tateda, “Design of strain-free-fiber with non-uniform dopant concentration for stimulated Brillouin scattering suppression,” J. Lightwave Technol. 11, 1941–1945 (1993).
    [CrossRef]
  7. J. Hansryd, F. Dross, M. Westlund, P. Andrekson, and S. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001).
    [CrossRef]
  8. N. Yoshizawa, T. Horiguchi, and T. Kurashima, “Proposal for stimulated Brillouin-scattering suppression by fiber cabling,” Electron. Lett. 27, 1100–1101 (1991).
    [CrossRef]
  9. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference(CLEO/QELS), technical digest (2005), pp. 1984–1986.
  10. M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, D. A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Proceedings of Optical Fiber Conference-National Fiber Optical Engineer Conference (OFC-NFOEC) (2006), p. 3.
  11. A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13, 5338–5346 (2005).
    [CrossRef]
  12. P. D. Dragic, “Brillouin suppression by fiber design,” in IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2010), pp. 151–152.
  13. W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett. 32, 600–602 (2007).
    [CrossRef]
  14. P. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
    [CrossRef]
  15. S. Morris and J. Ballato, “Molten core fabrication of novel optical fibers,” Am. Ceram. Soc. Bull. 92, 24–29 (2013).
  16. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6, 627–633 (2012).
    [CrossRef]
  17. P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, “Brillouin spectroscopy of a novel baria-doped silica glass optical fiber,” Opt. Express 21, 10924–10941 (2013).
    [CrossRef]
  18. J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
    [CrossRef]
  19. J. Ballato and P. Dragic, “Materials development for next-generation optical fiber,” Materials 7, 4411–4430 (2014).
  20. P. Dragic and J. Ballato, “120 years of optical glass science: from the law of mixtures to mixing the unmixable,” Opt. Photon. News 25(5), 44–51 (2014).
    [CrossRef]
  21. P. Dragic, J. Ballato, S. Morris, and T. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35, 1627–1632 (2013).
    [CrossRef]
  22. D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012).
  23. A. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier-transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010).
    [CrossRef]
  24. M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 glasses for high-power, Yb3+-doped, 980  nm fiber lasers,” J. Am. Ceram. Soc. 85, 1100–1106 (2002).
    [CrossRef]
  25. S.-C. Cheng and M. J. Dejneka, “TEM investigation of the core/cladding interface of La2O3-Al2O3-SiO2 glasses for high-power fiber lasers,” Mater. Res. Soc. Symp. Proc. 751, 49–54 (2003).
  26. P.-C. Law, Y.-S. Liu, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mat. Express 1, 686–699 (2011).
    [CrossRef]
  27. P.-C. Law, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mat. Express 2, 391–404 (2012).
  28. R. W. Boyd, K. Rzažewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
    [CrossRef]
  29. G. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  30. P. Dragic, J. Ballato, S. Morris, and T. Hawkins, “Pockels coefficients of alumina in aluminosilicate optical fibers,” J. Opt. Soc. Am. B 30, 244–250 (2013).
    [CrossRef]
  31. P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012).
    [CrossRef]
  32. J. F. Shackelford and W. Alexander, eds. “Selecting Thermal Properties,” in CRC Materials Science and Engineering Handbook, 3rd ed. (CRC Press, 2010), p. 1540.
  33. H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20, 15710–15722 (2012).
    [CrossRef]
  34. C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20, 12912–12925 (2012).
    [CrossRef]
  35. D. B. Keck, “Observation of externally controlled mode coupling in optical waveguides,” Proc. IEEE 62, 649–650 (1974).
    [CrossRef]
  36. A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
    [CrossRef]
  37. C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
    [CrossRef]
  38. P. D. Dragic and B. G. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis,” IEEE Photon. Technol. Lett. 22, 1698–1700 (2010).
    [CrossRef]
  39. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
    [CrossRef]
  40. L. Peselnick, R. Meister, and W. H. Wilson, “Pressure derivatives of elastic moduli of fused quartz to 10  kb,” J. Phys. Chem. Solids 28, 635–639 (1967).
    [CrossRef]
  41. D. Gerlich and G. C. Kennedy, “Second pressure derivatives of the elastic moduli of fused quartz,” J. Phys. Chem. Solids 39, 1189–1191 (1978).
    [CrossRef]
  42. D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, “Thermally activated relaxation processes in vitreous silica: an investigation by Brillouin scattering at high pressures,” Phys. Rev. B 45, 2750–2760 (1992).
    [CrossRef]
  43. S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25, 1313–1324 (2005).
    [CrossRef]
  44. R. G. Munro, “Evaluated material properties for a sintered α-alumina,” J. Am. Ceram. Soc. 80, 1919–1928 (1997).
    [CrossRef]
  45. K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013).
    [CrossRef]
  46. P. D. Dragic, S. W. Martin, and J. Ballato, are preparing a manuscript to be called “On the anomalous dependence of the acoustic velocity of alumina on temperature in aluminosilicate fibers.”
  47. V. I. Aleksandrov, V. F. Kitaeva, V. V. Osiko, N. N. Sobolev, V. M. Tatarintsev, and I. L. Chistyi, “Spectra of molecular scattering of light in Y2O3 and Sc2O3 crystals,” Sov. Phys. 4, 8–13 (1976).

2014 (2)

J. Ballato and P. Dragic, “Materials development for next-generation optical fiber,” Materials 7, 4411–4430 (2014).

P. Dragic and J. Ballato, “120 years of optical glass science: from the law of mixtures to mixing the unmixable,” Opt. Photon. News 25(5), 44–51 (2014).
[CrossRef]

2013 (6)

P. Dragic, J. Ballato, S. Morris, and T. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35, 1627–1632 (2013).
[CrossRef]

J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
[CrossRef]

S. Morris and J. Ballato, “Molten core fabrication of novel optical fibers,” Am. Ceram. Soc. Bull. 92, 24–29 (2013).

K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013).
[CrossRef]

P. Dragic, J. Ballato, S. Morris, and T. Hawkins, “Pockels coefficients of alumina in aluminosilicate optical fibers,” J. Opt. Soc. Am. B 30, 244–250 (2013).
[CrossRef]

P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, “Brillouin spectroscopy of a novel baria-doped silica glass optical fiber,” Opt. Express 21, 10924–10941 (2013).
[CrossRef]

2012 (7)

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20, 12912–12925 (2012).
[CrossRef]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20, 15710–15722 (2012).
[CrossRef]

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012).
[CrossRef]

P.-C. Law, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mat. Express 2, 391–404 (2012).

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6, 627–633 (2012).
[CrossRef]

C. A. Galindex-Jamioy and J. M. López-Higuera, “Brillouin distributed fiber sensors: an overview and applications,” J. Sens. 12, 204121 (2012).

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012).

2011 (2)

X. Bao and L. Chen, “Recent progress in Brillouin scattering-based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

P.-C. Law, Y.-S. Liu, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mat. Express 1, 686–699 (2011).
[CrossRef]

2010 (3)

2009 (1)

P. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
[CrossRef]

2007 (1)

2005 (2)

A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13, 5338–5346 (2005).
[CrossRef]

S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25, 1313–1324 (2005).
[CrossRef]

2003 (1)

S.-C. Cheng and M. J. Dejneka, “TEM investigation of the core/cladding interface of La2O3-Al2O3-SiO2 glasses for high-power fiber lasers,” Mater. Res. Soc. Symp. Proc. 751, 49–54 (2003).

2002 (1)

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 glasses for high-power, Yb3+-doped, 980  nm fiber lasers,” J. Am. Ceram. Soc. 85, 1100–1106 (2002).
[CrossRef]

2001 (1)

1997 (2)

R. G. Munro, “Evaluated material properties for a sintered α-alumina,” J. Am. Ceram. Soc. 80, 1919–1928 (1997).
[CrossRef]

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

1995 (1)

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
[CrossRef]

1993 (2)

M. Ohashi and M. Tateda, “Design of strain-free-fiber with non-uniform dopant concentration for stimulated Brillouin scattering suppression,” J. Lightwave Technol. 11, 1941–1945 (1993).
[CrossRef]

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
[CrossRef]

1992 (1)

D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, “Thermally activated relaxation processes in vitreous silica: an investigation by Brillouin scattering at high pressures,” Phys. Rev. B 45, 2750–2760 (1992).
[CrossRef]

1991 (1)

N. Yoshizawa, T. Horiguchi, and T. Kurashima, “Proposal for stimulated Brillouin-scattering suppression by fiber cabling,” Electron. Lett. 27, 1100–1101 (1991).
[CrossRef]

1990 (1)

R. W. Boyd, K. Rzažewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef]

1988 (1)

A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

1978 (1)

D. Gerlich and G. C. Kennedy, “Second pressure derivatives of the elastic moduli of fused quartz,” J. Phys. Chem. Solids 39, 1189–1191 (1978).
[CrossRef]

1976 (1)

V. I. Aleksandrov, V. F. Kitaeva, V. V. Osiko, N. N. Sobolev, V. M. Tatarintsev, and I. L. Chistyi, “Spectra of molecular scattering of light in Y2O3 and Sc2O3 crystals,” Sov. Phys. 4, 8–13 (1976).

1974 (1)

D. B. Keck, “Observation of externally controlled mode coupling in optical waveguides,” Proc. IEEE 62, 649–650 (1974).
[CrossRef]

1972 (1)

1967 (1)

L. Peselnick, R. Meister, and W. H. Wilson, “Pressure derivatives of elastic moduli of fused quartz to 10  kb,” J. Phys. Chem. Solids 28, 635–639 (1967).
[CrossRef]

Abe, K.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
[CrossRef]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Aleksandrov, V. I.

V. I. Aleksandrov, V. F. Kitaeva, V. V. Osiko, N. N. Sobolev, V. M. Tatarintsev, and I. L. Chistyi, “Spectra of molecular scattering of light in Y2O3 and Sc2O3 crystals,” Sov. Phys. 4, 8–13 (1976).

Allan, D. C.

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 glasses for high-power, Yb3+-doped, 980  nm fiber lasers,” J. Am. Ceram. Soc. 85, 1100–1106 (2002).
[CrossRef]

Andrekson, P.

Auguste, J. L.

K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013).
[CrossRef]

Auguste, J.-L.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012).

Ballato, A.

Ballato, J.

P. Dragic and J. Ballato, “120 years of optical glass science: from the law of mixtures to mixing the unmixable,” Opt. Photon. News 25(5), 44–51 (2014).
[CrossRef]

J. Ballato and P. Dragic, “Materials development for next-generation optical fiber,” Materials 7, 4411–4430 (2014).

S. Morris and J. Ballato, “Molten core fabrication of novel optical fibers,” Am. Ceram. Soc. Bull. 92, 24–29 (2013).

P. Dragic, J. Ballato, S. Morris, and T. Hawkins, “Pockels coefficients of alumina in aluminosilicate optical fibers,” J. Opt. Soc. Am. B 30, 244–250 (2013).
[CrossRef]

J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
[CrossRef]

P. Dragic, J. Ballato, S. Morris, and T. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35, 1627–1632 (2013).
[CrossRef]

P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, “Brillouin spectroscopy of a novel baria-doped silica glass optical fiber,” Opt. Express 21, 10924–10941 (2013).
[CrossRef]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6, 627–633 (2012).
[CrossRef]

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012).
[CrossRef]

P. D. Dragic, S. W. Martin, and J. Ballato, are preparing a manuscript to be called “On the anomalous dependence of the acoustic velocity of alumina on temperature in aluminosilicate fibers.”

Bao, X.

X. Bao and L. Chen, “Recent progress in Brillouin scattering-based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Bass, J. D.

S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25, 1313–1324 (2005).
[CrossRef]

Bertholds, A.

A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

Bickham, S.

Bonnell, L.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
[CrossRef]

Boyd, R. W.

R. W. Boyd, K. Rzažewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef]

Chen, L.

X. Bao and L. Chen, “Recent progress in Brillouin scattering-based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Chen, X.

M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, D. A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Proceedings of Optical Fiber Conference-National Fiber Optical Engineer Conference (OFC-NFOEC) (2006), p. 3.

Cheng, S.-C.

S.-C. Cheng and M. J. Dejneka, “TEM investigation of the core/cladding interface of La2O3-Al2O3-SiO2 glasses for high-power fiber lasers,” Mater. Res. Soc. Symp. Proc. 751, 49–54 (2003).

Chistyi, I. L.

V. I. Aleksandrov, V. F. Kitaeva, V. V. Osiko, N. N. Sobolev, V. M. Tatarintsev, and I. L. Chistyi, “Spectra of molecular scattering of light in Y2O3 and Sc2O3 crystals,” Sov. Phys. 4, 8–13 (1976).

Chowdhury, D.

Clarkson, A.

Crigler, S. G.

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 glasses for high-power, Yb3+-doped, 980  nm fiber lasers,” J. Am. Ceram. Soc. 85, 1100–1106 (2002).
[CrossRef]

Croteau, A.

P.-C. Law, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mat. Express 2, 391–404 (2012).

P.-C. Law, Y.-S. Liu, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mat. Express 1, 686–699 (2011).
[CrossRef]

Dändliker, R.

A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

Dejneka, M. J.

S.-C. Cheng and M. J. Dejneka, “TEM investigation of the core/cladding interface of La2O3-Al2O3-SiO2 glasses for high-power fiber lasers,” Mater. Res. Soc. Symp. Proc. 751, 49–54 (2003).

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 glasses for high-power, Yb3+-doped, 980  nm fiber lasers,” J. Am. Ceram. Soc. 85, 1100–1106 (2002).
[CrossRef]

Dellith, J.

K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013).
[CrossRef]

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012).

Dragic, P.

J. Ballato and P. Dragic, “Materials development for next-generation optical fiber,” Materials 7, 4411–4430 (2014).

P. Dragic and J. Ballato, “120 years of optical glass science: from the law of mixtures to mixing the unmixable,” Opt. Photon. News 25(5), 44–51 (2014).
[CrossRef]

J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
[CrossRef]

P. Dragic, J. Ballato, S. Morris, and T. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35, 1627–1632 (2013).
[CrossRef]

P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, “Brillouin spectroscopy of a novel baria-doped silica glass optical fiber,” Opt. Express 21, 10924–10941 (2013).
[CrossRef]

P. Dragic, J. Ballato, S. Morris, and T. Hawkins, “Pockels coefficients of alumina in aluminosilicate optical fibers,” J. Opt. Soc. Am. B 30, 244–250 (2013).
[CrossRef]

P.-C. Law, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mat. Express 2, 391–404 (2012).

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012).
[CrossRef]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6, 627–633 (2012).
[CrossRef]

P.-C. Law, Y.-S. Liu, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mat. Express 1, 686–699 (2011).
[CrossRef]

P. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
[CrossRef]

Dragic, P. D.

P. D. Dragic and B. G. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis,” IEEE Photon. Technol. Lett. 22, 1698–1700 (2010).
[CrossRef]

P. D. Dragic, S. W. Martin, and J. Ballato, are preparing a manuscript to be called “On the anomalous dependence of the acoustic velocity of alumina on temperature in aluminosilicate fibers.”

P. D. Dragic, “Brillouin suppression by fiber design,” in IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2010), pp. 151–152.

P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference(CLEO/QELS), technical digest (2005), pp. 1984–1986.

Dross, F.

Ehrenfels, R.

D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, “Thermally activated relaxation processes in vitreous silica: an investigation by Brillouin scattering at high pressures,” Phys. Rev. B 45, 2750–2760 (1992).
[CrossRef]

Eidam, T.

Foy, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6, 627–633 (2012).
[CrossRef]

Furtick, J.

Galindex-Jamioy, C. A.

C. A. Galindex-Jamioy and J. M. López-Higuera, “Brillouin distributed fiber sensors: an overview and applications,” J. Sens. 12, 204121 (2012).

Galvanauskas, A.

P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference(CLEO/QELS), technical digest (2005), pp. 1984–1986.

Gerlich, D.

D. Gerlich and G. C. Kennedy, “Second pressure derivatives of the elastic moduli of fused quartz,” J. Phys. Chem. Solids 39, 1189–1191 (1978).
[CrossRef]

Ghosh, S.

Gray, S.

M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, D. A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Proceedings of Optical Fiber Conference-National Fiber Optical Engineer Conference (OFC-NFOEC) (2006), p. 3.

Grimm, S.

K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013).
[CrossRef]

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012).

Guerrier, J.

Hanson, B. Z.

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 glasses for high-power, Yb3+-doped, 980  nm fiber lasers,” J. Am. Ceram. Soc. 85, 1100–1106 (2002).
[CrossRef]

Hansryd, J.

Hawkins, T.

He, Z.

Horiguchi, T.

N. Yoshizawa, T. Horiguchi, and T. Kurashima, “Proposal for stimulated Brillouin-scattering suppression by fiber cabling,” Electron. Lett. 27, 1100–1101 (1991).
[CrossRef]

Hotate, K.

Humbert, G.

K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013).
[CrossRef]

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012).

Hunklinger, S.

D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, “Thermally activated relaxation processes in vitreous silica: an investigation by Brillouin scattering at high pressures,” Phys. Rev. B 45, 2750–2760 (1992).
[CrossRef]

Jackson, J. M.

S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25, 1313–1324 (2005).
[CrossRef]

Jansen, F.

Jauregui, C.

Jen, C.-K.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
[CrossRef]

Jetschke, S.

K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013).
[CrossRef]

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012).

Keck, D. B.

D. B. Keck, “Observation of externally controlled mode coupling in optical waveguides,” Proc. IEEE 62, 649–650 (1974).
[CrossRef]

Kennedy, G. C.

D. Gerlich and G. C. Kennedy, “Second pressure derivatives of the elastic moduli of fused quartz,” J. Phys. Chem. Solids 39, 1189–1191 (1978).
[CrossRef]

Kirchhof, J.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012).

Kishi, M.

Kitaeva, V. F.

V. I. Aleksandrov, V. F. Kitaeva, V. V. Osiko, N. N. Sobolev, V. M. Tatarintsev, and I. L. Chistyi, “Spectra of molecular scattering of light in Y2O3 and Sc2O3 crystals,” Sov. Phys. 4, 8–13 (1976).

Knudsen, S.

Kobelke, J.

K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013).
[CrossRef]

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012).

Kobyakov, A.

Kucera, C.

Kuksenkov, D.

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 glasses for high-power, Yb3+-doped, 980  nm fiber lasers,” J. Am. Ceram. Soc. 85, 1100–1106 (2002).
[CrossRef]

Kumar, S.

Kurashima, T.

N. Yoshizawa, T. Horiguchi, and T. Kurashima, “Proposal for stimulated Brillouin-scattering suppression by fiber cabling,” Electron. Lett. 27, 1100–1101 (1991).
[CrossRef]

Kushibiki, J.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
[CrossRef]

Lakshtanov, D. L.

S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25, 1313–1324 (2005).
[CrossRef]

Law, P.-C.

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012).
[CrossRef]

P.-C. Law, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mat. Express 2, 391–404 (2012).

P.-C. Law, Y.-S. Liu, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mat. Express 1, 686–699 (2011).
[CrossRef]

Leich, M.

K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013).
[CrossRef]

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012).

Leparmentier, S.

K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013).
[CrossRef]

Li, M.-J.

M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, D. A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Proceedings of Optical Fiber Conference-National Fiber Optical Engineer Conference (OFC-NFOEC) (2006), p. 3.

Li, S.

M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, D. A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Proceedings of Optical Fiber Conference-National Fiber Optical Engineer Conference (OFC-NFOEC) (2006), p. 3.

Limpert, J.

Litzkendorf, D.

K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013).
[CrossRef]

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012).

Liu, C.-H.

P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference(CLEO/QELS), technical digest (2005), pp. 1984–1986.

Liu, Y.-S.

P.-C. Law, Y.-S. Liu, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mat. Express 1, 686–699 (2011).
[CrossRef]

López-Higuera, J. M.

C. A. Galindex-Jamioy and J. M. López-Higuera, “Brillouin distributed fiber sensors: an overview and applications,” J. Sens. 12, 204121 (2012).

Ludwig, A.

K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013).
[CrossRef]

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012).

Martin, S. W.

P. D. Dragic, S. W. Martin, and J. Ballato, are preparing a manuscript to be called “On the anomalous dependence of the acoustic velocity of alumina on temperature in aluminosilicate fibers.”

Meister, R.

L. Peselnick, R. Meister, and W. H. Wilson, “Pressure derivatives of elastic moduli of fused quartz to 10  kb,” J. Phys. Chem. Solids 28, 635–639 (1967).
[CrossRef]

Merz, R.

D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, “Thermally activated relaxation processes in vitreous silica: an investigation by Brillouin scattering at high pressures,” Phys. Rev. B 45, 2750–2760 (1992).
[CrossRef]

Miller, W. J.

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 glasses for high-power, Yb3+-doped, 980  nm fiber lasers,” J. Am. Ceram. Soc. 85, 1100–1106 (2002).
[CrossRef]

Minelly, J. D.

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 glasses for high-power, Yb3+-doped, 980  nm fiber lasers,” J. Am. Ceram. Soc. 85, 1100–1106 (2002).
[CrossRef]

Mishra, R.

Morris, S.

S. Morris and J. Ballato, “Molten core fabrication of novel optical fibers,” Am. Ceram. Soc. Bull. 92, 24–29 (2013).

P. Dragic, J. Ballato, S. Morris, and T. Hawkins, “Pockels coefficients of alumina in aluminosilicate optical fibers,” J. Opt. Soc. Am. B 30, 244–250 (2013).
[CrossRef]

P. Dragic, J. Ballato, S. Morris, and T. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35, 1627–1632 (2013).
[CrossRef]

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012).
[CrossRef]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6, 627–633 (2012).
[CrossRef]

Munro, R. G.

R. G. Munro, “Evaluated material properties for a sintered α-alumina,” J. Am. Ceram. Soc. 80, 1919–1928 (1997).
[CrossRef]

Narum, P.

R. W. Boyd, K. Rzažewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef]

Neron, C.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
[CrossRef]

Nicholas, J. D.

S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25, 1313–1324 (2005).
[CrossRef]

Niklès, M.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Nilsson, J.

Nolan, D. A.

M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, D. A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Proceedings of Optical Fiber Conference-National Fiber Optical Engineer Conference (OFC-NFOEC) (2006), p. 3.

Ohashi, M.

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
[CrossRef]

M. Ohashi and M. Tateda, “Design of strain-free-fiber with non-uniform dopant concentration for stimulated Brillouin scattering suppression,” J. Lightwave Technol. 11, 1941–1945 (1993).
[CrossRef]

Osiko, V. V.

V. I. Aleksandrov, V. F. Kitaeva, V. V. Osiko, N. N. Sobolev, V. M. Tatarintsev, and I. L. Chistyi, “Spectra of molecular scattering of light in Y2O3 and Sc2O3 crystals,” Sov. Phys. 4, 8–13 (1976).

Otto, H. J.

Otto, H.-J.

Papen, G. C.

P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference(CLEO/QELS), technical digest (2005), pp. 1984–1986.

Paul, M. C.

Peselnick, L.

L. Peselnick, R. Meister, and W. H. Wilson, “Pressure derivatives of elastic moduli of fused quartz to 10  kb,” J. Phys. Chem. Solids 28, 635–639 (1967).
[CrossRef]

Richardson, D.

Robert, P. A.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Ruffin, A. B.

A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13, 5338–5346 (2005).
[CrossRef]

M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, D. A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Proceedings of Optical Fiber Conference-National Fiber Optical Engineer Conference (OFC-NFOEC) (2006), p. 3.

Rzažewski, K.

R. W. Boyd, K. Rzažewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef]

Sauer, M.

Schuster, K.

K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013).
[CrossRef]

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012).

Schwuchow, A.

K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013).
[CrossRef]

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012).

Shang, A.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
[CrossRef]

Shiraki, K.

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
[CrossRef]

Sinogeikin, S. V.

S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25, 1313–1324 (2005).
[CrossRef]

Smith, R. G.

Sobolev, N. N.

V. I. Aleksandrov, V. F. Kitaeva, V. V. Osiko, N. N. Sobolev, V. M. Tatarintsev, and I. L. Chistyi, “Spectra of molecular scattering of light in Y2O3 and Sc2O3 crystals,” Sov. Phys. 4, 8–13 (1976).

Stutzki, F.

Tatarintsev, V. M.

V. I. Aleksandrov, V. F. Kitaeva, V. V. Osiko, N. N. Sobolev, V. M. Tatarintsev, and I. L. Chistyi, “Spectra of molecular scattering of light in Y2O3 and Sc2O3 crystals,” Sov. Phys. 4, 8–13 (1976).

Tateda, M.

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
[CrossRef]

M. Ohashi and M. Tateda, “Design of strain-free-fiber with non-uniform dopant concentration for stimulated Brillouin scattering suppression,” J. Lightwave Technol. 11, 1941–1945 (1993).
[CrossRef]

Thévenaz, L.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Tielbürger, D.

D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, “Thermally activated relaxation processes in vitreous silica: an investigation by Brillouin scattering at high pressures,” Phys. Rev. B 45, 2750–2760 (1992).
[CrossRef]

Tünnermann, A.

Walton, D. T.

M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, D. A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Proceedings of Optical Fiber Conference-National Fiber Optical Engineer Conference (OFC-NFOEC) (2006), p. 3.

Wang, J.

M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, D. A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Proceedings of Optical Fiber Conference-National Fiber Optical Engineer Conference (OFC-NFOEC) (2006), p. 3.

Ward, B. G.

P. D. Dragic and B. G. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis,” IEEE Photon. Technol. Lett. 22, 1698–1700 (2010).
[CrossRef]

Werner, G.

K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013).
[CrossRef]

Westlund, M.

Wilson, W. H.

L. Peselnick, R. Meister, and W. H. Wilson, “Pressure derivatives of elastic moduli of fused quartz to 10  kb,” J. Phys. Chem. Solids 28, 635–639 (1967).
[CrossRef]

Yablon, A.

Yoshizawa, N.

N. Yoshizawa, T. Horiguchi, and T. Kurashima, “Proposal for stimulated Brillouin-scattering suppression by fiber cabling,” Electron. Lett. 27, 1100–1101 (1991).
[CrossRef]

Zenteno, L. A.

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 glasses for high-power, Yb3+-doped, 980  nm fiber lasers,” J. Am. Ceram. Soc. 85, 1100–1106 (2002).
[CrossRef]

M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, D. A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Proceedings of Optical Fiber Conference-National Fiber Optical Engineer Conference (OFC-NFOEC) (2006), p. 3.

Zou, W.

Am. Ceram. Soc. Bull. (1)

S. Morris and J. Ballato, “Molten core fabrication of novel optical fibers,” Am. Ceram. Soc. Bull. 92, 24–29 (2013).

Appl. Opt. (1)

Electron. Lett. (2)

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
[CrossRef]

N. Yoshizawa, T. Horiguchi, and T. Kurashima, “Proposal for stimulated Brillouin-scattering suppression by fiber cabling,” Electron. Lett. 27, 1100–1101 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. D. Dragic and B. G. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis,” IEEE Photon. Technol. Lett. 22, 1698–1700 (2010).
[CrossRef]

Int. J. Appl. Glass Sci. (1)

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Int. J. Appl. Glass Sci. 3, 321–331 (2012).

J. Am. Ceram. Soc. (4)

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 glasses for high-power, Yb3+-doped, 980  nm fiber lasers,” J. Am. Ceram. Soc. 85, 1100–1106 (2002).
[CrossRef]

J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
[CrossRef]

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76, 712–716 (1993).
[CrossRef]

R. G. Munro, “Evaluated material properties for a sintered α-alumina,” J. Am. Ceram. Soc. 80, 1919–1928 (1997).
[CrossRef]

J. Eur. Ceram. Soc. (1)

S. V. Sinogeikin, D. L. Lakshtanov, J. D. Nicholas, J. M. Jackson, and J. D. Bass, “High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating,” J. Eur. Ceram. Soc. 25, 1313–1324 (2005).
[CrossRef]

J. Lightwave Technol. (5)

A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

J. Hansryd, F. Dross, M. Westlund, P. Andrekson, and S. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001).
[CrossRef]

M. Ohashi and M. Tateda, “Design of strain-free-fiber with non-uniform dopant concentration for stimulated Brillouin scattering suppression,” J. Lightwave Technol. 11, 1941–1945 (1993).
[CrossRef]

A. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier-transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Solids (2)

L. Peselnick, R. Meister, and W. H. Wilson, “Pressure derivatives of elastic moduli of fused quartz to 10  kb,” J. Phys. Chem. Solids 28, 635–639 (1967).
[CrossRef]

D. Gerlich and G. C. Kennedy, “Second pressure derivatives of the elastic moduli of fused quartz,” J. Phys. Chem. Solids 39, 1189–1191 (1978).
[CrossRef]

J. Sens. (1)

C. A. Galindex-Jamioy and J. M. López-Higuera, “Brillouin distributed fiber sensors: an overview and applications,” J. Sens. 12, 204121 (2012).

Mater. Res. Soc. Symp. Proc. (1)

S.-C. Cheng and M. J. Dejneka, “TEM investigation of the core/cladding interface of La2O3-Al2O3-SiO2 glasses for high-power fiber lasers,” Mater. Res. Soc. Symp. Proc. 751, 49–54 (2003).

Materials (1)

J. Ballato and P. Dragic, “Materials development for next-generation optical fiber,” Materials 7, 4411–4430 (2014).

Nat. Photonics (1)

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6, 627–633 (2012).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mat. Express (2)

P.-C. Law, Y.-S. Liu, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mat. Express 1, 686–699 (2011).
[CrossRef]

P.-C. Law, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mat. Express 2, 391–404 (2012).

Opt. Mater. (1)

P. Dragic, J. Ballato, S. Morris, and T. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35, 1627–1632 (2013).
[CrossRef]

Opt. Mater. Express (1)

Opt. Photon. News (1)

P. Dragic and J. Ballato, “120 years of optical glass science: from the law of mixtures to mixing the unmixable,” Opt. Photon. News 25(5), 44–51 (2014).
[CrossRef]

Phys. Rev. A (1)

R. W. Boyd, K. Rzažewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef]

Phys. Rev. B (1)

D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, “Thermally activated relaxation processes in vitreous silica: an investigation by Brillouin scattering at high pressures,” Phys. Rev. B 45, 2750–2760 (1992).
[CrossRef]

Proc. IEEE (1)

D. B. Keck, “Observation of externally controlled mode coupling in optical waveguides,” Proc. IEEE 62, 649–650 (1974).
[CrossRef]

Proc. SPIE (2)

K. Schuster, D. Litzkendorf, S. Grimm, J. Kobelke, A. Schwuchow, A. Ludwig, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, S. Leparmentier, G. Humbert, and G. Werner, “Study of lanthanum aluminum silicate glasses for passive and active optical fibers,” Proc. SPIE 8621, 86210Q (2013).
[CrossRef]

P. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
[CrossRef]

Sensors (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering-based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Sov. Phys. (1)

V. I. Aleksandrov, V. F. Kitaeva, V. V. Osiko, N. N. Sobolev, V. M. Tatarintsev, and I. L. Chistyi, “Spectra of molecular scattering of light in Y2O3 and Sc2O3 crystals,” Sov. Phys. 4, 8–13 (1976).

Other (6)

J. F. Shackelford and W. Alexander, eds. “Selecting Thermal Properties,” in CRC Materials Science and Engineering Handbook, 3rd ed. (CRC Press, 2010), p. 1540.

P. D. Dragic, S. W. Martin, and J. Ballato, are preparing a manuscript to be called “On the anomalous dependence of the acoustic velocity of alumina on temperature in aluminosilicate fibers.”

P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference(CLEO/QELS), technical digest (2005), pp. 1984–1986.

M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, D. A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Proceedings of Optical Fiber Conference-National Fiber Optical Engineer Conference (OFC-NFOEC) (2006), p. 3.

P. D. Dragic, “Brillouin suppression by fiber design,” in IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2010), pp. 151–152.

G. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Loss spectrum of the hybrid fiber with SAL glass core and silica cladding.

Fig. 2.
Fig. 2.

RIPs measured at 1000 and 1550 nm (the latter has a slightly higher peak Δn). The data taken at 1000 nm is shown with the dashed line.

Fig. 3.
Fig. 3.

Refractive index profile in the neck-down region of the hybrid fiber preform.

Fig. 4.
Fig. 4.

Refractive index profile of the hybrid fiber (RNF).

Fig. 5.
Fig. 5.

Comparison of fiber attenuation with identical starting compositions, but different drawing conditions (Note that an Yb-doped sample was used for the loss investigations to demonstrate the dwell time influence on loss properties).

Fig. 6.
Fig. 6.

BSE images showing the compositional contrast of an untreated sample and a tempered sample, initial core composition 65SiO220Al2O315La2O3. Above: untreated sample. Below: 1100°C, 200 h.

Fig. 7.
Fig. 7.

Change in the free spectral range versus strain of a ring laser utilizing 2m of SAL fiber. The strain-optic coefficient is determined from this data.

Fig. 8.
Fig. 8.

SEM image of the SAL fiber core. A slight ellipticity is observed.

Fig. 9.
Fig. 9.

Measured BGS for the SAL fiber at 1534 nm. The small peak near 11.1 GHz is identified as the L02 acoustic mode in the apparatus fiber. The remaining structure to the red side of the peak is due to higher-order optical modes in the SAL fiber [16]. The dashed line is a Lorentzian fit to the data.

Fig. 10.
Fig. 10.

Brillouin frequency shift (GHz) as a function of the applied strain (in %). The linear fit (dashed line) shows the data (points) are very linear.

Fig. 11.
Fig. 11.

Thermal expansion coefficient of lanthanum aluminosilicate glass as a function of lanthana concentration at constant [Al2O3]=20mol.%.

Fig. 12.
Fig. 12.

Brillouin spectrum for 2 m of SAL fiber spliced to 2 m of P2O5 fiber spliced to the Brillouin apparatus. The small peaks associated with the P2O5 fiber are higher-order acoustic modes. Similarly, the small peak near 11.15 GHz is the L02 acoustic mode in the apparatus fiber co-contributing with a higher-order mode from the P2O5 fiber. The structure just to the red side (near 11.35 GHz) of the SAL fiber feature is scattering from the cladding of the P2O5 fiber.

Fig. 13.
Fig. 13.

Brillouin gain coefficient calculated for the lanthanum aluminosilicate system (bulk) utilizing the parameters in Table 3 and assuming that [Al2O3]=1.21×[La2O3].

Tables (4)

Tables Icon

Table 1. Summary of Physical Properties of the SAL Fiber

Tables Icon

Table 2. EPMA Analysis of Different Core Areas of an Untreated and Tempered Sample (Canes)

Tables Icon

Table 3. Summary of Physical Properties of the Various Glass Constituents

Tables Icon

Table 4. Parameters Used for Estimating the Brillouin Gain of the SAL Fiber

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

RB=YeG/2[I0(G/2)I1(G/2)],
Y=(n¯+1)gBhνSΓL4A,
G=gBPAL,
n¯=(exp(hνBkT)1)1,
G=i=1Ng(G)ixi,
gB=2πn7p122cλ2ρVAΔνB.
ΔνFSR=c(nl+NL)2(nl0+lQ)ε,
ΔνB=0ΔνB(νB,r)u(r)u*(r)rdr,
Leff=1exp(2αoL)2αo,

Metrics