Abstract

This study demonstrates helical wave fronts via a spiral phase plate based on polymer dispersed liquid crystals (PDLCs). Because the PDLC is electric tunable, the plate can be used in a wide visible band. In addition, if the probe beam deviates from the center of the sample, some of the light propagates out of the sectors. We propose some of the applications for the results.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
    [CrossRef]
  2. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003).
    [CrossRef]
  3. J. E. Curtis and D. G. Grier, “Modulated optical vortices,” Opt. Lett. 28, 872–874 (2003).
    [CrossRef]
  4. M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Dynamics of microparticles trapped in a perfect vortex beam,” Opt. Lett. 38, 4919–4922 (2013).
    [CrossRef]
  5. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [CrossRef]
  6. J. Leach, M. J. Padgett, S. M. Barnett, S. F. Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
    [CrossRef]
  7. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [CrossRef]
  8. P. Bouchal and Z. Bouchal, “Selective edge enhancement in three-dimensional vortex imaging with incoherent light,” Opt. Lett. 37, 2949–2951 (2012).
    [CrossRef]
  9. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, and V. A. Soifer, “Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate,” J. Opt. Soc. Am. A 22, 849–861 (2005).
    [CrossRef]
  10. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12, 3548–3553 (2004).
    [CrossRef]
  11. M. S. Li, A. Y.-G. Fuh, Y. H. Huang, C. H. Yan, and S. T. Wu, “Electrically switchable high-fold-helix spiral phase plate based on polymer dispersed liquid crystals,” Appl. Phys. Express 6, 112201 (2013).
    [CrossRef]
  12. J. W. Goodman, “Fresnel and Fraunhofer Diffraction,” in Introduction to Fourier Optics, 3rd. ed. (Roberts & Company, 2005), p. 75.

2013 (2)

M. S. Li, A. Y.-G. Fuh, Y. H. Huang, C. H. Yan, and S. T. Wu, “Electrically switchable high-fold-helix spiral phase plate based on polymer dispersed liquid crystals,” Appl. Phys. Express 6, 112201 (2013).
[CrossRef]

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Dynamics of microparticles trapped in a perfect vortex beam,” Opt. Lett. 38, 4919–4922 (2013).
[CrossRef]

2012 (1)

2006 (1)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (2)

J. E. Curtis and D. G. Grier, “Modulated optical vortices,” Opt. Lett. 28, 872–874 (2003).
[CrossRef]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef]

2002 (1)

J. Leach, M. J. Padgett, S. M. Barnett, S. F. Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[CrossRef]

1996 (1)

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

Almazov, A. A.

Arita, Y.

Arnold, S. F.

J. Leach, M. J. Padgett, S. M. Barnett, S. F. Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[CrossRef]

Barnett, S. M.

J. Leach, M. J. Padgett, S. M. Barnett, S. F. Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[CrossRef]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

Bouchal, P.

Bouchal, Z.

Chen, M.

Courtial, J.

J. Leach, M. J. Padgett, S. M. Barnett, S. F. Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[CrossRef]

Curtis, J. E.

J. E. Curtis and D. G. Grier, “Modulated optical vortices,” Opt. Lett. 28, 872–874 (2003).
[CrossRef]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef]

Dholakia, K.

Fuh, A. Y.-G.

M. S. Li, A. Y.-G. Fuh, Y. H. Huang, C. H. Yan, and S. T. Wu, “Electrically switchable high-fold-helix spiral phase plate based on polymer dispersed liquid crystals,” Appl. Phys. Express 6, 112201 (2013).
[CrossRef]

Gahagan, K. T.

Goodman, J. W.

J. W. Goodman, “Fresnel and Fraunhofer Diffraction,” in Introduction to Fourier Optics, 3rd. ed. (Roberts & Company, 2005), p. 75.

Grier, D. G.

J. E. Curtis and D. G. Grier, “Modulated optical vortices,” Opt. Lett. 28, 872–874 (2003).
[CrossRef]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef]

Huang, Y. H.

M. S. Li, A. Y.-G. Fuh, Y. H. Huang, C. H. Yan, and S. T. Wu, “Electrically switchable high-fold-helix spiral phase plate based on polymer dispersed liquid crystals,” Appl. Phys. Express 6, 112201 (2013).
[CrossRef]

Khonina, S. N.

Kotlyar, V. V.

Leach, J.

J. Leach, M. J. Padgett, S. M. Barnett, S. F. Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[CrossRef]

Li, M. S.

M. S. Li, A. Y.-G. Fuh, Y. H. Huang, C. H. Yan, and S. T. Wu, “Electrically switchable high-fold-helix spiral phase plate based on polymer dispersed liquid crystals,” Appl. Phys. Express 6, 112201 (2013).
[CrossRef]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

Mazilu, M.

Miyaji, G.

Miyanaga, N.

Nakatsuka, M.

Padgett, M. J.

J. Leach, M. J. Padgett, S. M. Barnett, S. F. Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[CrossRef]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

Soifer, V. A.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

Sueda, K.

Swartzlander, G. A.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

Wright, E. M.

Wu, S. T.

M. S. Li, A. Y.-G. Fuh, Y. H. Huang, C. H. Yan, and S. T. Wu, “Electrically switchable high-fold-helix spiral phase plate based on polymer dispersed liquid crystals,” Appl. Phys. Express 6, 112201 (2013).
[CrossRef]

Yan, C. H.

M. S. Li, A. Y.-G. Fuh, Y. H. Huang, C. H. Yan, and S. T. Wu, “Electrically switchable high-fold-helix spiral phase plate based on polymer dispersed liquid crystals,” Appl. Phys. Express 6, 112201 (2013).
[CrossRef]

Appl. Phys. Express (1)

M. S. Li, A. Y.-G. Fuh, Y. H. Huang, C. H. Yan, and S. T. Wu, “Electrically switchable high-fold-helix spiral phase plate based on polymer dispersed liquid crystals,” Appl. Phys. Express 6, 112201 (2013).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

Phys. Rev. Lett. (3)

J. Leach, M. J. Padgett, S. M. Barnett, S. F. Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[CrossRef]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef]

Other (1)

J. W. Goodman, “Fresnel and Fraunhofer Diffraction,” in Introduction to Fourier Optics, 3rd. ed. (Roberts & Company, 2005), p. 75.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Image of the phase modulation of the fabricated 120-fold SPP. (b) Simulated intensity profile obtained by Fourier transformation of the circle region in (a). (c) Simulated intensity profile of the 120-fold SPP. (d) Simulated phase profile of the bright rings in (c).

Fig. 2.
Fig. 2.

Curve of optical path length versus LC concentration in the sector. The upper inset shows the image of the fabricated 120-fold helical SPP observed under a crossed OPM. The lower inset shows the curve of the maximum OPD versus the applied voltage.

Fig. 3.
Fig. 3.

Experimental setup to observe the diffraction of the SPP.

Fig. 4.
Fig. 4.

Curves of normalized intensity of the diffraction beam versus the applied voltage from the 120-fold SPP with various incident-light wavelength. The inset shows the beam images on the screen diffracted from the 120-fold helical SPP by laser beams with wavelengths of (a) 647.1 nm, (b) 568.2 nm, and (c) 465.8 nm.

Fig. 5.
Fig. 5.

Diffraction images on the screen that are probed at the right side of the 120-fold helical SPP with the wavelengths of the laser being (a) 465.8 nm, (b) 568.2 nm, and (c) 647.1 nm. Diffraction images on the screen that are probed at the right side of the 120-fold helical SPP with various beam sizes. The beams are multiplied to (d) five, (e) four, (f) three, and (g) two beams.

Fig. 6.
Fig. 6.

Diffraction images on the screen that are probed at the right side of the 120-fold helical SPP with various beam profiles. (a) HG01 mode laser beam (λ=465.8nm). (b), (c) Mixed laser beams that probed the left and right sides of the SPP (λ=488nm, 501 nm).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U(x,y)=eikzejk2z(x2+y2)jλzU(ξ,η)exp[j2πλz(xξ+yη)]dξdη=eikzejk2z(x2+y2)jλzF{U(ξ,η)}fx=x\λzfy=y\λz.
OPL[nLC,effX+nP(1X)]d,

Metrics