Abstract

A kind of switchable and spacing-tunable dual-wavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror is presented and experimentally demonstrated. By adjusting the polarization controllers (PCs), stable dual-wavelength operation is obtained at the 2 μm band. The optical signal-to-noise ratio (OSNR) is better than 56 dB. The wavelength tuning is performed by applying static strain into the fiber Bragg grating. A tuning range from 0 to 5.14 nm is achieved for the dual-wavelength spacing. By adjusting the PCs properly, the fiber laser can also operate in single-wavelength state with the OSNR for each wavelength more than 50 dB.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011).
    [CrossRef]
  2. F. J. McAleavey, B. D. MacCraith, J. O’Gorman, and J. Hegarty, “Tunable and efficient diode-pumped Tm3+-doped fluoride fiber laser for hydrocarbon gas sensing,” Fiber Integr. Opt. 16, 355–368 (1997).
    [CrossRef]
  3. M. F. Somunyudan, N. Topaloğlu, M. U. Ergenoğlu, and M. Gülsoy, “Endovenous laser ablation (EVLA) with Tm-fiber laser,” in 15th National Biomedical Engineering Meeting (IEEE, 2010), pp. 1–3.
  4. F. Wang, D. Shen, D. Fan, and Q. Lu, “Widely tunable dual-wavelength operation of a high-power Tm:fiber laser using volume Bragg gratings,” Opt. Lett. 35, 2388–2390 (2010).
    [CrossRef]
  5. M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express 18, 12291–12297 (2010).
    [CrossRef]
  6. G. Yin, X. Wang, and X. Bao, “Effect of beam waists on performance of the tunable fiber laser based on in-line two-taper Mach-Zehnder interferometer filter,” Appl. Opt. 50, 5714–5720 (2011).
    [CrossRef]
  7. T. Feng, F. Yan, W. Peng, S. Liu, S. Tan, X. Liang, and X. Wen, “A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure,” Laser Phys. Lett. 11, 045101 (2014).
    [CrossRef]
  8. W. Ji and J. Chang, “The radio-on-fiber-wavelength-division-multiplexed-passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing,” Opt. Laser Technol. 49, 301–306 (2013).
    [CrossRef]
  9. D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
    [CrossRef]
  10. Z.-R. Lin, C.-K. Liu, and G. Keiser, “Tunable dual-wavelength erbium-doped fiber ring laser covering both C-band and L-band for high-speed communications,” Optik 123, 46–48 (2012).
    [CrossRef]
  11. Y. Lu, X. H. Huang, B. Q. Wu, L. Jing, M. Musideke, C. J. Hao, L. C. Duan, and J. Q. Yao, “Investigation of dual-wavelength erbium-doped fiber laser intra-cavity absorption sensor,” Adv. Mater. Res. 651, 825–828 (2013).
  12. L. Duan, N. Nam Quoc, T. Swee Chuan, and D. Xinyong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photon. Technol. Lett. 19, 1148–1150 (2007).
    [CrossRef]
  13. K. K. Qureshi, “Switchable dual-wavelength fiber ring laser featuring twin-core photonic crystal fiber-based filter,” Chin. Opt. Lett. 12, 020605 (2014).
    [CrossRef]
  14. B. Yin, S. Feng, Y. Bai, Z. Liu, L. Liang, S. Liu, and S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26, 1227–1230 (2014).
    [CrossRef]
  15. H. Ahmad, A. A. Latif, M. Z. Zulkifli, N. A. Awang, and S. W. Harun, “High power dual-wavelength tunable fiber laser in linear and ring cavity configurations,” Chin. Opt. Lett. 10, 010603 (2012).
    [CrossRef]
  16. P. Zhou, X. L. Wang, Y. X. Ma, K. Han, and Z. J. Liu, “Stable all-fiber dual-wavelength thulium-doped fiber laser and its coherent beam combination,” Laser Phys. 21, 184–187 (2011).
    [CrossRef]
  17. B. K. Choi, I.-G. Park, J. H. Byun, N. Kim, S.-P. Han, K. H. Park, J. K. Seo, H. K. Lee, and M. Y. Jeon, “A widely tunable, dual-wavelength fiber laser incorporating two polymer waveguide Bragg gratings,” Laser Phys. Lett. 10, 125105 (2013).
    [CrossRef]
  18. M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27, 5038–5044 (2009).
    [CrossRef]
  19. Y.-G. Han, “Multiwavelength erbium-doped fiber laser based on a nonlinear amplified loop mirror with a highly-nonlinear photonic crystal fiber,” J. Korean Phys. Soc. 63, 189–192 (2013).
    [CrossRef]
  20. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15, 752–754 (1990).
    [CrossRef]
  21. X. Liu, L. Zhan, S. Luo, Z. Gu, J. Liu, Y. Wang, and Q. Shen, “Multiwavelength erbium-doped fiber laser based on a nonlinear amplifying loop mirror assisted by un-pumped EDF,” Opt. Express 20, 7088–7094 (2012).
    [CrossRef]
  22. P. Wanjing, Y. Fengping, L. Qi, L. Shuo, F. Ting, and T. Siyu, “A 1.97  μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10, 115102 (2013).
    [CrossRef]
  23. A. J. Stentz and R. W. Boyd, “Polarization effects and nonlinear switching in fiber figure-eight lasers,” Opt. Lett. 19, 1462–1464 (1994).
    [CrossRef]

2014

T. Feng, F. Yan, W. Peng, S. Liu, S. Tan, X. Liang, and X. Wen, “A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure,” Laser Phys. Lett. 11, 045101 (2014).
[CrossRef]

K. K. Qureshi, “Switchable dual-wavelength fiber ring laser featuring twin-core photonic crystal fiber-based filter,” Chin. Opt. Lett. 12, 020605 (2014).
[CrossRef]

B. Yin, S. Feng, Y. Bai, Z. Liu, L. Liang, S. Liu, and S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26, 1227–1230 (2014).
[CrossRef]

2013

Y. Lu, X. H. Huang, B. Q. Wu, L. Jing, M. Musideke, C. J. Hao, L. C. Duan, and J. Q. Yao, “Investigation of dual-wavelength erbium-doped fiber laser intra-cavity absorption sensor,” Adv. Mater. Res. 651, 825–828 (2013).

B. K. Choi, I.-G. Park, J. H. Byun, N. Kim, S.-P. Han, K. H. Park, J. K. Seo, H. K. Lee, and M. Y. Jeon, “A widely tunable, dual-wavelength fiber laser incorporating two polymer waveguide Bragg gratings,” Laser Phys. Lett. 10, 125105 (2013).
[CrossRef]

W. Ji and J. Chang, “The radio-on-fiber-wavelength-division-multiplexed-passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing,” Opt. Laser Technol. 49, 301–306 (2013).
[CrossRef]

Y.-G. Han, “Multiwavelength erbium-doped fiber laser based on a nonlinear amplified loop mirror with a highly-nonlinear photonic crystal fiber,” J. Korean Phys. Soc. 63, 189–192 (2013).
[CrossRef]

P. Wanjing, Y. Fengping, L. Qi, L. Shuo, F. Ting, and T. Siyu, “A 1.97  μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10, 115102 (2013).
[CrossRef]

2012

2011

2010

2009

2008

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

2007

L. Duan, N. Nam Quoc, T. Swee Chuan, and D. Xinyong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photon. Technol. Lett. 19, 1148–1150 (2007).
[CrossRef]

1997

F. J. McAleavey, B. D. MacCraith, J. O’Gorman, and J. Hegarty, “Tunable and efficient diode-pumped Tm3+-doped fluoride fiber laser for hydrocarbon gas sensing,” Fiber Integr. Opt. 16, 355–368 (1997).
[CrossRef]

1994

1990

Ahmad, H.

Al-Mansoori, M. H.

Awang, N. A.

Bai, Y.

B. Yin, S. Feng, Y. Bai, Z. Liu, L. Liang, S. Liu, and S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26, 1227–1230 (2014).
[CrossRef]

Bao, X.

Boyd, R. W.

Byun, J. H.

B. K. Choi, I.-G. Park, J. H. Byun, N. Kim, S.-P. Han, K. H. Park, J. K. Seo, H. K. Lee, and M. Y. Jeon, “A widely tunable, dual-wavelength fiber laser incorporating two polymer waveguide Bragg gratings,” Laser Phys. Lett. 10, 125105 (2013).
[CrossRef]

Chang, J.

W. Ji and J. Chang, “The radio-on-fiber-wavelength-division-multiplexed-passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing,” Opt. Laser Technol. 49, 301–306 (2013).
[CrossRef]

Chen, D.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

Choi, B. K.

B. K. Choi, I.-G. Park, J. H. Byun, N. Kim, S.-P. Han, K. H. Park, J. K. Seo, H. K. Lee, and M. Y. Jeon, “A widely tunable, dual-wavelength fiber laser incorporating two polymer waveguide Bragg gratings,” Laser Phys. Lett. 10, 125105 (2013).
[CrossRef]

Chun, H. S.

Duan, L.

L. Duan, N. Nam Quoc, T. Swee Chuan, and D. Xinyong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photon. Technol. Lett. 19, 1148–1150 (2007).
[CrossRef]

Duan, L. C.

Y. Lu, X. H. Huang, B. Q. Wu, L. Jing, M. Musideke, C. J. Hao, L. C. Duan, and J. Q. Yao, “Investigation of dual-wavelength erbium-doped fiber laser intra-cavity absorption sensor,” Adv. Mater. Res. 651, 825–828 (2013).

Ergenoglu, M. U.

M. F. Somunyudan, N. Topaloğlu, M. U. Ergenoğlu, and M. Gülsoy, “Endovenous laser ablation (EVLA) with Tm-fiber laser,” in 15th National Biomedical Engineering Meeting (IEEE, 2010), pp. 1–3.

Fan, D.

Fejer, M. M.

Feng, S.

B. Yin, S. Feng, Y. Bai, Z. Liu, L. Liang, S. Liu, and S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26, 1227–1230 (2014).
[CrossRef]

Feng, T.

T. Feng, F. Yan, W. Peng, S. Liu, S. Tan, X. Liang, and X. Wen, “A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure,” Laser Phys. Lett. 11, 045101 (2014).
[CrossRef]

Fengping, Y.

P. Wanjing, Y. Fengping, L. Qi, L. Shuo, F. Ting, and T. Siyu, “A 1.97  μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10, 115102 (2013).
[CrossRef]

Fermann, M. E.

Fu, H.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

Gu, Z.

Gülsoy, M.

M. F. Somunyudan, N. Topaloğlu, M. U. Ergenoğlu, and M. Gülsoy, “Endovenous laser ablation (EVLA) with Tm-fiber laser,” in 15th National Biomedical Engineering Meeting (IEEE, 2010), pp. 1–3.

Haberl, F.

Han, K.

P. Zhou, X. L. Wang, Y. X. Ma, K. Han, and Z. J. Liu, “Stable all-fiber dual-wavelength thulium-doped fiber laser and its coherent beam combination,” Laser Phys. 21, 184–187 (2011).
[CrossRef]

Han, S.-P.

B. K. Choi, I.-G. Park, J. H. Byun, N. Kim, S.-P. Han, K. H. Park, J. K. Seo, H. K. Lee, and M. Y. Jeon, “A widely tunable, dual-wavelength fiber laser incorporating two polymer waveguide Bragg gratings,” Laser Phys. Lett. 10, 125105 (2013).
[CrossRef]

M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express 18, 12291–12297 (2010).
[CrossRef]

Han, Y.-G.

Y.-G. Han, “Multiwavelength erbium-doped fiber laser based on a nonlinear amplified loop mirror with a highly-nonlinear photonic crystal fiber,” J. Korean Phys. Soc. 63, 189–192 (2013).
[CrossRef]

Hao, C. J.

Y. Lu, X. H. Huang, B. Q. Wu, L. Jing, M. Musideke, C. J. Hao, L. C. Duan, and J. Q. Yao, “Investigation of dual-wavelength erbium-doped fiber laser intra-cavity absorption sensor,” Adv. Mater. Res. 651, 825–828 (2013).

Hartl, I.

Harun, S. W.

He, S.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

Hegarty, J.

F. J. McAleavey, B. D. MacCraith, J. O’Gorman, and J. Hegarty, “Tunable and efficient diode-pumped Tm3+-doped fluoride fiber laser for hydrocarbon gas sensing,” Fiber Integr. Opt. 16, 355–368 (1997).
[CrossRef]

Hochreiter, H.

Hofer, M.

Huang, X. H.

Y. Lu, X. H. Huang, B. Q. Wu, L. Jing, M. Musideke, C. J. Hao, L. C. Duan, and J. Q. Yao, “Investigation of dual-wavelength erbium-doped fiber laser intra-cavity absorption sensor,” Adv. Mater. Res. 651, 825–828 (2013).

Jeon, M. Y.

B. K. Choi, I.-G. Park, J. H. Byun, N. Kim, S.-P. Han, K. H. Park, J. K. Seo, H. K. Lee, and M. Y. Jeon, “A widely tunable, dual-wavelength fiber laser incorporating two polymer waveguide Bragg gratings,” Laser Phys. Lett. 10, 125105 (2013).
[CrossRef]

M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express 18, 12291–12297 (2010).
[CrossRef]

Jeong, J. S.

Ji, W.

W. Ji and J. Chang, “The radio-on-fiber-wavelength-division-multiplexed-passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing,” Opt. Laser Technol. 49, 301–306 (2013).
[CrossRef]

Jian, S.

B. Yin, S. Feng, Y. Bai, Z. Liu, L. Liang, S. Liu, and S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26, 1227–1230 (2014).
[CrossRef]

Jiang, J.

Jing, L.

Y. Lu, X. H. Huang, B. Q. Wu, L. Jing, M. Musideke, C. J. Hao, L. C. Duan, and J. Q. Yao, “Investigation of dual-wavelength erbium-doped fiber laser intra-cavity absorption sensor,” Adv. Mater. Res. 651, 825–828 (2013).

Keiser, G.

Z.-R. Lin, C.-K. Liu, and G. Keiser, “Tunable dual-wavelength erbium-doped fiber ring laser covering both C-band and L-band for high-speed communications,” Optik 123, 46–48 (2012).
[CrossRef]

Kim, N.

B. K. Choi, I.-G. Park, J. H. Byun, N. Kim, S.-P. Han, K. H. Park, J. K. Seo, H. K. Lee, and M. Y. Jeon, “A widely tunable, dual-wavelength fiber laser incorporating two polymer waveguide Bragg gratings,” Laser Phys. Lett. 10, 125105 (2013).
[CrossRef]

M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express 18, 12291–12297 (2010).
[CrossRef]

Langrock, C.

Latif, A. A.

Lee, C. W.

Lee, H. K.

B. K. Choi, I.-G. Park, J. H. Byun, N. Kim, S.-P. Han, K. H. Park, J. K. Seo, H. K. Lee, and M. Y. Jeon, “A widely tunable, dual-wavelength fiber laser incorporating two polymer waveguide Bragg gratings,” Laser Phys. Lett. 10, 125105 (2013).
[CrossRef]

Leem, Y. A.

Liang, L.

B. Yin, S. Feng, Y. Bai, Z. Liu, L. Liang, S. Liu, and S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26, 1227–1230 (2014).
[CrossRef]

Liang, X.

T. Feng, F. Yan, W. Peng, S. Liu, S. Tan, X. Liang, and X. Wen, “A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure,” Laser Phys. Lett. 11, 045101 (2014).
[CrossRef]

Lin, Z.-R.

Z.-R. Lin, C.-K. Liu, and G. Keiser, “Tunable dual-wavelength erbium-doped fiber ring laser covering both C-band and L-band for high-speed communications,” Optik 123, 46–48 (2012).
[CrossRef]

Liu, C.-K.

Z.-R. Lin, C.-K. Liu, and G. Keiser, “Tunable dual-wavelength erbium-doped fiber ring laser covering both C-band and L-band for high-speed communications,” Optik 123, 46–48 (2012).
[CrossRef]

Liu, J.

Liu, S.

B. Yin, S. Feng, Y. Bai, Z. Liu, L. Liang, S. Liu, and S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26, 1227–1230 (2014).
[CrossRef]

T. Feng, F. Yan, W. Peng, S. Liu, S. Tan, X. Liang, and X. Wen, “A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure,” Laser Phys. Lett. 11, 045101 (2014).
[CrossRef]

Liu, W.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

Liu, X.

Liu, Z.

B. Yin, S. Feng, Y. Bai, Z. Liu, L. Liang, S. Liu, and S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26, 1227–1230 (2014).
[CrossRef]

Liu, Z. J.

P. Zhou, X. L. Wang, Y. X. Ma, K. Han, and Z. J. Liu, “Stable all-fiber dual-wavelength thulium-doped fiber laser and its coherent beam combination,” Laser Phys. 21, 184–187 (2011).
[CrossRef]

Lu, Q.

Lu, Y.

Y. Lu, X. H. Huang, B. Q. Wu, L. Jing, M. Musideke, C. J. Hao, L. C. Duan, and J. Q. Yao, “Investigation of dual-wavelength erbium-doped fiber laser intra-cavity absorption sensor,” Adv. Mater. Res. 651, 825–828 (2013).

Luo, S.

Ma, Y. X.

P. Zhou, X. L. Wang, Y. X. Ma, K. Han, and Z. J. Liu, “Stable all-fiber dual-wavelength thulium-doped fiber laser and its coherent beam combination,” Laser Phys. 21, 184–187 (2011).
[CrossRef]

MacCraith, B. D.

F. J. McAleavey, B. D. MacCraith, J. O’Gorman, and J. Hegarty, “Tunable and efficient diode-pumped Tm3+-doped fluoride fiber laser for hydrocarbon gas sensing,” Fiber Integr. Opt. 16, 355–368 (1997).
[CrossRef]

Mahdi, M. A.

McAleavey, F. J.

F. J. McAleavey, B. D. MacCraith, J. O’Gorman, and J. Hegarty, “Tunable and efficient diode-pumped Tm3+-doped fluoride fiber laser for hydrocarbon gas sensing,” Fiber Integr. Opt. 16, 355–368 (1997).
[CrossRef]

Musideke, M.

Y. Lu, X. H. Huang, B. Q. Wu, L. Jing, M. Musideke, C. J. Hao, L. C. Duan, and J. Q. Yao, “Investigation of dual-wavelength erbium-doped fiber laser intra-cavity absorption sensor,” Adv. Mater. Res. 651, 825–828 (2013).

Nam Quoc, N.

L. Duan, N. Nam Quoc, T. Swee Chuan, and D. Xinyong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photon. Technol. Lett. 19, 1148–1150 (2007).
[CrossRef]

O’Gorman, J.

F. J. McAleavey, B. D. MacCraith, J. O’Gorman, and J. Hegarty, “Tunable and efficient diode-pumped Tm3+-doped fluoride fiber laser for hydrocarbon gas sensing,” Fiber Integr. Opt. 16, 355–368 (1997).
[CrossRef]

Park, I.-G.

B. K. Choi, I.-G. Park, J. H. Byun, N. Kim, S.-P. Han, K. H. Park, J. K. Seo, H. K. Lee, and M. Y. Jeon, “A widely tunable, dual-wavelength fiber laser incorporating two polymer waveguide Bragg gratings,” Laser Phys. Lett. 10, 125105 (2013).
[CrossRef]

Park, K. H.

B. K. Choi, I.-G. Park, J. H. Byun, N. Kim, S.-P. Han, K. H. Park, J. K. Seo, H. K. Lee, and M. Y. Jeon, “A widely tunable, dual-wavelength fiber laser incorporating two polymer waveguide Bragg gratings,” Laser Phys. Lett. 10, 125105 (2013).
[CrossRef]

M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express 18, 12291–12297 (2010).
[CrossRef]

Pelc, J. S.

Peng, W.

T. Feng, F. Yan, W. Peng, S. Liu, S. Tan, X. Liang, and X. Wen, “A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure,” Laser Phys. Lett. 11, 045101 (2014).
[CrossRef]

Phillips, C. R.

Qi, L.

P. Wanjing, Y. Fengping, L. Qi, L. Shuo, F. Ting, and T. Siyu, “A 1.97  μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10, 115102 (2013).
[CrossRef]

Qureshi, K. K.

Seo, J. K.

B. K. Choi, I.-G. Park, J. H. Byun, N. Kim, S.-P. Han, K. H. Park, J. K. Seo, H. K. Lee, and M. Y. Jeon, “A widely tunable, dual-wavelength fiber laser incorporating two polymer waveguide Bragg gratings,” Laser Phys. Lett. 10, 125105 (2013).
[CrossRef]

Shen, D.

Shen, Q.

Shin, J.

Shuo, L.

P. Wanjing, Y. Fengping, L. Qi, L. Shuo, F. Ting, and T. Siyu, “A 1.97  μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10, 115102 (2013).
[CrossRef]

Siyu, T.

P. Wanjing, Y. Fengping, L. Qi, L. Shuo, F. Ting, and T. Siyu, “A 1.97  μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10, 115102 (2013).
[CrossRef]

Somunyudan, M. F.

M. F. Somunyudan, N. Topaloğlu, M. U. Ergenoğlu, and M. Gülsoy, “Endovenous laser ablation (EVLA) with Tm-fiber laser,” in 15th National Biomedical Engineering Meeting (IEEE, 2010), pp. 1–3.

Stentz, A. J.

Swee Chuan, T.

L. Duan, N. Nam Quoc, T. Swee Chuan, and D. Xinyong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photon. Technol. Lett. 19, 1148–1150 (2007).
[CrossRef]

Tan, S.

T. Feng, F. Yan, W. Peng, S. Liu, S. Tan, X. Liang, and X. Wen, “A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure,” Laser Phys. Lett. 11, 045101 (2014).
[CrossRef]

Ting, F.

P. Wanjing, Y. Fengping, L. Qi, L. Shuo, F. Ting, and T. Siyu, “A 1.97  μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10, 115102 (2013).
[CrossRef]

Topaloglu, N.

M. F. Somunyudan, N. Topaloğlu, M. U. Ergenoğlu, and M. Gülsoy, “Endovenous laser ablation (EVLA) with Tm-fiber laser,” in 15th National Biomedical Engineering Meeting (IEEE, 2010), pp. 1–3.

Wang, F.

Wang, X.

Wang, X. L.

P. Zhou, X. L. Wang, Y. X. Ma, K. Han, and Z. J. Liu, “Stable all-fiber dual-wavelength thulium-doped fiber laser and its coherent beam combination,” Laser Phys. 21, 184–187 (2011).
[CrossRef]

Wang, Y.

Wanjing, P.

P. Wanjing, Y. Fengping, L. Qi, L. Shuo, F. Ting, and T. Siyu, “A 1.97  μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10, 115102 (2013).
[CrossRef]

Wei, Y.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

Wen, X.

T. Feng, F. Yan, W. Peng, S. Liu, S. Tan, X. Liang, and X. Wen, “A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure,” Laser Phys. Lett. 11, 045101 (2014).
[CrossRef]

Wu, B. Q.

Y. Lu, X. H. Huang, B. Q. Wu, L. Jing, M. Musideke, C. J. Hao, L. C. Duan, and J. Q. Yao, “Investigation of dual-wavelength erbium-doped fiber laser intra-cavity absorption sensor,” Adv. Mater. Res. 651, 825–828 (2013).

Xinyong, D.

L. Duan, N. Nam Quoc, T. Swee Chuan, and D. Xinyong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photon. Technol. Lett. 19, 1148–1150 (2007).
[CrossRef]

Yan, F.

T. Feng, F. Yan, W. Peng, S. Liu, S. Tan, X. Liang, and X. Wen, “A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure,” Laser Phys. Lett. 11, 045101 (2014).
[CrossRef]

Yao, J. Q.

Y. Lu, X. H. Huang, B. Q. Wu, L. Jing, M. Musideke, C. J. Hao, L. C. Duan, and J. Q. Yao, “Investigation of dual-wavelength erbium-doped fiber laser intra-cavity absorption sensor,” Adv. Mater. Res. 651, 825–828 (2013).

Yee, D.-S.

Yin, B.

B. Yin, S. Feng, Y. Bai, Z. Liu, L. Liang, S. Liu, and S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26, 1227–1230 (2014).
[CrossRef]

Yin, G.

Zhan, L.

Zhou, P.

P. Zhou, X. L. Wang, Y. X. Ma, K. Han, and Z. J. Liu, “Stable all-fiber dual-wavelength thulium-doped fiber laser and its coherent beam combination,” Laser Phys. 21, 184–187 (2011).
[CrossRef]

Zulkifli, M. Z.

Adv. Mater. Res.

Y. Lu, X. H. Huang, B. Q. Wu, L. Jing, M. Musideke, C. J. Hao, L. C. Duan, and J. Q. Yao, “Investigation of dual-wavelength erbium-doped fiber laser intra-cavity absorption sensor,” Adv. Mater. Res. 651, 825–828 (2013).

Appl. Opt.

Chin. Opt. Lett.

Electron. Lett.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

Fiber Integr. Opt.

F. J. McAleavey, B. D. MacCraith, J. O’Gorman, and J. Hegarty, “Tunable and efficient diode-pumped Tm3+-doped fluoride fiber laser for hydrocarbon gas sensing,” Fiber Integr. Opt. 16, 355–368 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

B. Yin, S. Feng, Y. Bai, Z. Liu, L. Liang, S. Liu, and S. Jian, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photon. Technol. Lett. 26, 1227–1230 (2014).
[CrossRef]

L. Duan, N. Nam Quoc, T. Swee Chuan, and D. Xinyong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photon. Technol. Lett. 19, 1148–1150 (2007).
[CrossRef]

J. Korean Phys. Soc.

Y.-G. Han, “Multiwavelength erbium-doped fiber laser based on a nonlinear amplified loop mirror with a highly-nonlinear photonic crystal fiber,” J. Korean Phys. Soc. 63, 189–192 (2013).
[CrossRef]

J. Lightwave Technol.

Laser Phys.

P. Zhou, X. L. Wang, Y. X. Ma, K. Han, and Z. J. Liu, “Stable all-fiber dual-wavelength thulium-doped fiber laser and its coherent beam combination,” Laser Phys. 21, 184–187 (2011).
[CrossRef]

Laser Phys. Lett.

B. K. Choi, I.-G. Park, J. H. Byun, N. Kim, S.-P. Han, K. H. Park, J. K. Seo, H. K. Lee, and M. Y. Jeon, “A widely tunable, dual-wavelength fiber laser incorporating two polymer waveguide Bragg gratings,” Laser Phys. Lett. 10, 125105 (2013).
[CrossRef]

T. Feng, F. Yan, W. Peng, S. Liu, S. Tan, X. Liang, and X. Wen, “A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure,” Laser Phys. Lett. 11, 045101 (2014).
[CrossRef]

P. Wanjing, Y. Fengping, L. Qi, L. Shuo, F. Ting, and T. Siyu, “A 1.97  μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10, 115102 (2013).
[CrossRef]

Opt. Express

Opt. Laser Technol.

W. Ji and J. Chang, “The radio-on-fiber-wavelength-division-multiplexed-passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing,” Opt. Laser Technol. 49, 301–306 (2013).
[CrossRef]

Opt. Lett.

Optik

Z.-R. Lin, C.-K. Liu, and G. Keiser, “Tunable dual-wavelength erbium-doped fiber ring laser covering both C-band and L-band for high-speed communications,” Optik 123, 46–48 (2012).
[CrossRef]

Other

M. F. Somunyudan, N. Topaloğlu, M. U. Ergenoğlu, and M. Gülsoy, “Endovenous laser ablation (EVLA) with Tm-fiber laser,” in 15th National Biomedical Engineering Meeting (IEEE, 2010), pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of the proposed dual-wavelength TDFL based on a NALM.

Fig. 2.
Fig. 2.

Transmission spectrum of FBG1.

Fig. 3.
Fig. 3.

Spectrum of dual-wavelength operation.

Fig. 4.
Fig. 4.

Fluctuations of the output power and the center wavelength.

Fig. 5.
Fig. 5.

Spectrum of single-wavelength operation.

Fig. 6.
Fig. 6.

Output spectra of spacing-tunable dual wavelength according to strained FBG.

Metrics