Abstract

We have studied the simultaneous dual-wavelength laser operation of the X-cut, Y-cut, and Z-cut Yb3+:Ca4LaO(BO3)3 crystals for the first time to the best of our knowledge. We analyzed the dual-wavelength laser output power and emission spectra under several output coupler transmittances. The stable dual-wavelength lasers were generated by adjusting the laser elements. A dual-wavelength laser output power 2.46 W was obtained with a slope efficiency of 67.5% by employing the Y-cut crystal at 1029 and 1036 nm. The two wavelengths had nearly the same relative intensity. The two different emission wavelengths were found to change with crystal direction and output coupler transmittance. This laser has a possible application as the laser source in the generation of different terahertz waves.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Etzel, H. W. Gandy, and R. J. Ginther, “Stimulated emission of infrared radiation from ytterbium activated silicate glass,” Appl. Opt. 1, 534–536 (1962).
    [CrossRef]
  2. Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett. 31, 119–121 (2006).
    [CrossRef]
  3. J. L. Xu, J. L. He, H. T. Huang, S. D. Liu, F. Q. Liu, J. F. Yang, B. T. Zhang, K. J. Yang, C. Y. Tu, Y. Wang, and F. G. Yang, “Generation of 244-fs pulse at 1044.7  nm by a diode-pumped mode-locked Yb:Y2Ca3(BO3)4 laser,” Laser Phys. Lett. 8, 24–27 (2011).
    [CrossRef]
  4. O. H. Heckl, C. Kränkel, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, G. Huber, and U. Keller, “Continuous-wave and modelocked Yb:YCOB thin disk laser: first demonstration and future prospects,” Opt. Express 18, 19201–19208 (2010).
    [CrossRef]
  5. H. Nakao, A. Shirakawa, K. H. Ueda, H. Yagi, and T. Yanagitani, “CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser,” Opt. Express 20, 15385–15391 (2012).
    [CrossRef]
  6. F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation,” Opt. Lett. 31, 1555–1557 (2006).
    [CrossRef]
  7. H. Xiao, P. Zhou, X. L. Wang, S. F. Guo, and X. J. Xu, “High power 1018  nm monolithic Yb3+-doped fiber laser and amplifier,” Laser Phys. Lett. 9, 748–753 (2012).
    [CrossRef]
  8. E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+ distributed-feedback waveguide laser,” Opt. Lett. 37, 181–183 (2012).
    [CrossRef]
  9. J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91, 329–332 (2008).
    [CrossRef]
  10. H. J. Zhang, X. L. Meng, P. Wang, L. Zhu, X. S. Liu, X. M. Liu, Y. Y. Yang, R. H. Wang, J. Dawes, J. Piper, S. J. Zhang, and L. K. Sun, “Growth of Yb-doped Ca4GdO(BO3)(3) crystals and their spectra and laser properties,” J. Cryst. Growth 222, 209–214 (2001).
    [CrossRef]
  11. J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
    [CrossRef]
  12. A. Brenier, C. Tu, Z. Zhu, and J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with the Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98, 401–406 (2010).
    [CrossRef]
  13. R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous-wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
    [CrossRef]
  14. A. Brenier, Y. Wu, J. Zhang, and Y. Wu, “Lasing Yb3+ in crystals with a wavelength dependence anisotropy displayed from La2CaB10O19,” Appl. Phys. B 107, 59–65 (2012).
    [CrossRef]
  15. M. J. Chi, O. B. Jensen, and P. M. Petersen, “Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference,” J. Opt. Soc. Am. B 29, 2617–2621 (2012).
    [CrossRef]
  16. H. T. Huang, D. Y. Shen, and J. L. He, “Simultaneous pulse generation of orthogonally polarized dual-wavelength at 1091 and 1095  nm by coupled stimulated Raman scattering,” Opt. Express 20, 27838–27846 (2012).
    [CrossRef]
  17. M. A. Ummy, N. Madamopoulos, M. Razani, A. Hossain, and R. Dorsinville, “Switchable dual-wavelength SOA-based fiber laser with continuous tunability over the C-band at room-temperature,” Opt. Express 20, 23367–23373 (2012).
    [CrossRef]
  18. F. Pallas, E. Herault, J. F. Roux, A. Kevorkian, J. L. Coutaz, and G. Vitrant, “Simultaneous passively Q-switched dual-wavelength solid-state laser working at 1065 and 1066  nm,” Opt. Lett. 37, 2817–2819 (2012).
    [CrossRef]
  19. A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99, 135–140 (2010).
    [CrossRef]
  20. J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd: CLTGG disordered crystal,” Appl. Phys. B 107, 53–58 (2012).
    [CrossRef]
  21. Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9, 135–140 (2012).
    [CrossRef]
  22. B. Wu, P. P. Jiang, D. Z. Yang, T. Chen, J. Kong, and Y. H. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065  nm,” Opt. Express 17, 6004–6009 (2009).
    [CrossRef]
  23. X. P. Yan, Q. Liu, H. L. Chen, X. Fu, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19, 084202 (2010).
    [CrossRef]
  24. P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl. 23, 121–126 (2008).
    [CrossRef]
  25. D. G. Abdelsalam, R. Magnusson, and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt. 50, 3360–3368 (2011).
    [CrossRef]
  26. U. Sharma, C.-S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Phot. Tech. Lett. 16, 1277–1279 (2004).
  27. M. Scheller, S. W. Koch, and J. V. Moloney, “Grating-based wavelength control of single- and two-color vertical-external-cavity-surface-emitting lasers,” Opt. Lett. 37, 25–27 (2012).
    [CrossRef]
  28. Y. Lu, X. Wang, L. Miao, D. Zuo, and Z. Cheng, “Efficient and widely step-tunable terahertz generation with a dual-wavelength CO2 laser,” Appl. Phys. B 103, 387–390 (2011).
    [CrossRef]
  29. M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S. P. Han, C. W. Lee, Y. A. Leem, D. S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express 18, 12291–12297 (2010).
    [CrossRef]
  30. Y. X. Ji, J. F. Cao, J. L. Xu, Z. Y. You, and C. Y. Tu, “Output-coupling-dependent laser operation of monoclinic Yb:Ca4LaO(BO3)3 crystal,” Appl. Opt. 52, 5079–5082 (2013).
    [CrossRef]

2013 (1)

2012 (12)

M. Scheller, S. W. Koch, and J. V. Moloney, “Grating-based wavelength control of single- and two-color vertical-external-cavity-surface-emitting lasers,” Opt. Lett. 37, 25–27 (2012).
[CrossRef]

E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+ distributed-feedback waveguide laser,” Opt. Lett. 37, 181–183 (2012).
[CrossRef]

H. Nakao, A. Shirakawa, K. H. Ueda, H. Yagi, and T. Yanagitani, “CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser,” Opt. Express 20, 15385–15391 (2012).
[CrossRef]

F. Pallas, E. Herault, J. F. Roux, A. Kevorkian, J. L. Coutaz, and G. Vitrant, “Simultaneous passively Q-switched dual-wavelength solid-state laser working at 1065 and 1066  nm,” Opt. Lett. 37, 2817–2819 (2012).
[CrossRef]

M. J. Chi, O. B. Jensen, and P. M. Petersen, “Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference,” J. Opt. Soc. Am. B 29, 2617–2621 (2012).
[CrossRef]

M. A. Ummy, N. Madamopoulos, M. Razani, A. Hossain, and R. Dorsinville, “Switchable dual-wavelength SOA-based fiber laser with continuous tunability over the C-band at room-temperature,” Opt. Express 20, 23367–23373 (2012).
[CrossRef]

H. T. Huang, D. Y. Shen, and J. L. He, “Simultaneous pulse generation of orthogonally polarized dual-wavelength at 1091 and 1095  nm by coupled stimulated Raman scattering,” Opt. Express 20, 27838–27846 (2012).
[CrossRef]

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

A. Brenier, Y. Wu, J. Zhang, and Y. Wu, “Lasing Yb3+ in crystals with a wavelength dependence anisotropy displayed from La2CaB10O19,” Appl. Phys. B 107, 59–65 (2012).
[CrossRef]

H. Xiao, P. Zhou, X. L. Wang, S. F. Guo, and X. J. Xu, “High power 1018  nm monolithic Yb3+-doped fiber laser and amplifier,” Laser Phys. Lett. 9, 748–753 (2012).
[CrossRef]

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd: CLTGG disordered crystal,” Appl. Phys. B 107, 53–58 (2012).
[CrossRef]

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9, 135–140 (2012).
[CrossRef]

2011 (3)

Y. Lu, X. Wang, L. Miao, D. Zuo, and Z. Cheng, “Efficient and widely step-tunable terahertz generation with a dual-wavelength CO2 laser,” Appl. Phys. B 103, 387–390 (2011).
[CrossRef]

J. L. Xu, J. L. He, H. T. Huang, S. D. Liu, F. Q. Liu, J. F. Yang, B. T. Zhang, K. J. Yang, C. Y. Tu, Y. Wang, and F. G. Yang, “Generation of 244-fs pulse at 1044.7  nm by a diode-pumped mode-locked Yb:Y2Ca3(BO3)4 laser,” Laser Phys. Lett. 8, 24–27 (2011).
[CrossRef]

D. G. Abdelsalam, R. Magnusson, and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt. 50, 3360–3368 (2011).
[CrossRef]

2010 (5)

M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S. P. Han, C. W. Lee, Y. A. Leem, D. S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express 18, 12291–12297 (2010).
[CrossRef]

O. H. Heckl, C. Kränkel, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, G. Huber, and U. Keller, “Continuous-wave and modelocked Yb:YCOB thin disk laser: first demonstration and future prospects,” Opt. Express 18, 19201–19208 (2010).
[CrossRef]

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99, 135–140 (2010).
[CrossRef]

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with the Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98, 401–406 (2010).
[CrossRef]

X. P. Yan, Q. Liu, H. L. Chen, X. Fu, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19, 084202 (2010).
[CrossRef]

2009 (1)

2008 (2)

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl. 23, 121–126 (2008).
[CrossRef]

J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91, 329–332 (2008).
[CrossRef]

2006 (2)

2004 (2)

U. Sharma, C.-S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Phot. Tech. Lett. 16, 1277–1279 (2004).

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous-wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

2001 (1)

H. J. Zhang, X. L. Meng, P. Wang, L. Zhu, X. S. Liu, X. M. Liu, Y. Y. Yang, R. H. Wang, J. Dawes, J. Piper, S. J. Zhang, and L. K. Sun, “Growth of Yb-doped Ca4GdO(BO3)(3) crystals and their spectra and laser properties,” J. Cryst. Growth 222, 209–214 (2001).
[CrossRef]

1962 (1)

Abdelsalam, D. G.

Agnesi, A.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99, 135–140 (2010).
[CrossRef]

Alouini, M.

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous-wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

Arcangeli, A.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99, 135–140 (2010).
[CrossRef]

Baer, C. R. E.

Balembois, F.

Bernhardi, E. H.

Boixeda, P.

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl. 23, 121–126 (2008).
[CrossRef]

Brenier, A.

A. Brenier, Y. Wu, J. Zhang, and Y. Wu, “Lasing Yb3+ in crystals with a wavelength dependence anisotropy displayed from La2CaB10O19,” Appl. Phys. B 107, 59–65 (2012).
[CrossRef]

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with the Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98, 401–406 (2010).
[CrossRef]

Cao, J. F.

Carmona, L. P.

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl. 23, 121–126 (2008).
[CrossRef]

Chen, H. L.

X. P. Yan, Q. Liu, H. L. Chen, X. Fu, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19, 084202 (2010).
[CrossRef]

Chen, T.

Cheng, Z.

Y. Lu, X. Wang, L. Miao, D. Zuo, and Z. Cheng, “Efficient and widely step-tunable terahertz generation with a dual-wavelength CO2 laser,” Appl. Phys. B 103, 387–390 (2011).
[CrossRef]

Chi, M. J.

Chun, H. S.

Coutaz, J. L.

Czarny, R.

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous-wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

Dawes, J.

H. J. Zhang, X. L. Meng, P. Wang, L. Zhu, X. S. Liu, X. M. Liu, Y. Y. Yang, R. H. Wang, J. Dawes, J. Piper, S. J. Zhang, and L. K. Sun, “Growth of Yb-doped Ca4GdO(BO3)(3) crystals and their spectra and laser properties,” J. Cryst. Growth 222, 209–214 (2001).
[CrossRef]

de Ridder, R. M.

Didierjean, J.

Dolfi, D.

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous-wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

Dorsinville, R.

Druon, F.

Etzel, H. W.

Fu, X.

X. P. Yan, Q. Liu, H. L. Chen, X. Fu, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19, 084202 (2010).
[CrossRef]

Gandy, H. W.

Georges, P.

Ginther, R. J.

Goldner, P.

Gong, J.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

Gong, M. L.

X. P. Yan, Q. Liu, H. L. Chen, X. Fu, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19, 084202 (2010).
[CrossRef]

Guo, S. F.

H. Xiao, P. Zhou, X. L. Wang, S. F. Guo, and X. J. Xu, “High power 1018  nm monolithic Yb3+-doped fiber laser and amplifier,” Laser Phys. Lett. 9, 748–753 (2012).
[CrossRef]

Guo, S. Y.

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd: CLTGG disordered crystal,” Appl. Phys. B 107, 53–58 (2012).
[CrossRef]

Han, S. P.

Han, W.

J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91, 329–332 (2008).
[CrossRef]

Hang, Y.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

He, J. L.

H. T. Huang, D. Y. Shen, and J. L. He, “Simultaneous pulse generation of orthogonally polarized dual-wavelength at 1091 and 1095  nm by coupled stimulated Raman scattering,” Opt. Express 20, 27838–27846 (2012).
[CrossRef]

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd: CLTGG disordered crystal,” Appl. Phys. B 107, 53–58 (2012).
[CrossRef]

J. L. Xu, J. L. He, H. T. Huang, S. D. Liu, F. Q. Liu, J. F. Yang, B. T. Zhang, K. J. Yang, C. Y. Tu, Y. Wang, and F. G. Yang, “Generation of 244-fs pulse at 1044.7  nm by a diode-pumped mode-locked Yb:Y2Ca3(BO3)4 laser,” Laser Phys. Lett. 8, 24–27 (2011).
[CrossRef]

He, X. M.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

Heckl, O. H.

Herault, E.

Hossain, A.

Huang, H. T.

H. T. Huang, D. Y. Shen, and J. L. He, “Simultaneous pulse generation of orthogonally polarized dual-wavelength at 1091 and 1095  nm by coupled stimulated Raman scattering,” Opt. Express 20, 27838–27846 (2012).
[CrossRef]

J. L. Xu, J. L. He, H. T. Huang, S. D. Liu, F. Q. Liu, J. F. Yang, B. T. Zhang, K. J. Yang, C. Y. Tu, Y. Wang, and F. G. Yang, “Generation of 244-fs pulse at 1044.7  nm by a diode-pumped mode-locked Yb:Y2Ca3(BO3)4 laser,” Laser Phys. Lett. 8, 24–27 (2011).
[CrossRef]

Huber, G.

Jacquemet, M.

Jaén, P.

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl. 23, 121–126 (2008).
[CrossRef]

Jensen, O. B.

Jeon, M. Y.

Jeong, J. S.

Ji, Y. X.

Jia, Z.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99, 135–140 (2010).
[CrossRef]

Jiang, P. P.

Kang, J. U.

U. Sharma, C.-S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Phot. Tech. Lett. 16, 1277–1279 (2004).

Keller, U.

Kevorkian, A.

Khan, M. R. H.

Kim, C.-S.

U. Sharma, C.-S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Phot. Tech. Lett. 16, 1277–1279 (2004).

Kim, D.

Kim, N.

Koch, S. W.

Kong, J.

Krakowski, M.

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous-wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

Kränkel, C.

Lanigan, S. W.

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl. 23, 121–126 (2008).
[CrossRef]

Larat, C.

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous-wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

Lee, C. W.

Leem, Y. A.

Li, J.

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with the Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98, 401–406 (2010).
[CrossRef]

Liu, D. H.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9, 135–140 (2012).
[CrossRef]

Liu, F. Q.

J. L. Xu, J. L. He, H. T. Huang, S. D. Liu, F. Q. Liu, J. F. Yang, B. T. Zhang, K. J. Yang, C. Y. Tu, Y. Wang, and F. G. Yang, “Generation of 244-fs pulse at 1044.7  nm by a diode-pumped mode-locked Yb:Y2Ca3(BO3)4 laser,” Laser Phys. Lett. 8, 24–27 (2011).
[CrossRef]

Liu, J.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9, 135–140 (2012).
[CrossRef]

J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91, 329–332 (2008).
[CrossRef]

Liu, Q.

X. P. Yan, Q. Liu, H. L. Chen, X. Fu, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19, 084202 (2010).
[CrossRef]

Liu, S. D.

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd: CLTGG disordered crystal,” Appl. Phys. B 107, 53–58 (2012).
[CrossRef]

J. L. Xu, J. L. He, H. T. Huang, S. D. Liu, F. Q. Liu, J. F. Yang, B. T. Zhang, K. J. Yang, C. Y. Tu, Y. Wang, and F. G. Yang, “Generation of 244-fs pulse at 1044.7  nm by a diode-pumped mode-locked Yb:Y2Ca3(BO3)4 laser,” Laser Phys. Lett. 8, 24–27 (2011).
[CrossRef]

Liu, X. M.

H. J. Zhang, X. L. Meng, P. Wang, L. Zhu, X. S. Liu, X. M. Liu, Y. Y. Yang, R. H. Wang, J. Dawes, J. Piper, S. J. Zhang, and L. K. Sun, “Growth of Yb-doped Ca4GdO(BO3)(3) crystals and their spectra and laser properties,” J. Cryst. Growth 222, 209–214 (2001).
[CrossRef]

Liu, X. S.

H. J. Zhang, X. L. Meng, P. Wang, L. Zhu, X. S. Liu, X. M. Liu, Y. Y. Yang, R. H. Wang, J. Dawes, J. Piper, S. J. Zhang, and L. K. Sun, “Growth of Yb-doped Ca4GdO(BO3)(3) crystals and their spectra and laser properties,” J. Cryst. Growth 222, 209–214 (2001).
[CrossRef]

Lu, Y.

Y. Lu, X. Wang, L. Miao, D. Zuo, and Z. Cheng, “Efficient and widely step-tunable terahertz generation with a dual-wavelength CO2 laser,” Appl. Phys. B 103, 387–390 (2011).
[CrossRef]

Lucas Leclin, G.

Madamopoulos, N.

Magnusson, R.

Meng, X. L.

H. J. Zhang, X. L. Meng, P. Wang, L. Zhu, X. S. Liu, X. M. Liu, Y. Y. Yang, R. H. Wang, J. Dawes, J. Piper, S. J. Zhang, and L. K. Sun, “Growth of Yb-doped Ca4GdO(BO3)(3) crystals and their spectra and laser properties,” J. Cryst. Growth 222, 209–214 (2001).
[CrossRef]

Miao, L.

Y. Lu, X. Wang, L. Miao, D. Zuo, and Z. Cheng, “Efficient and widely step-tunable terahertz generation with a dual-wavelength CO2 laser,” Appl. Phys. B 103, 387–390 (2011).
[CrossRef]

Moloney, J. V.

Nakao, H.

Pallas, F.

Park, K. H.

Pelenc, D.

Petermann, K.

Petersen, P. M.

Petit, J.

Petrov, V.

J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91, 329–332 (2008).
[CrossRef]

Piper, J.

H. J. Zhang, X. L. Meng, P. Wang, L. Zhu, X. S. Liu, X. M. Liu, Y. Y. Yang, R. H. Wang, J. Dawes, J. Piper, S. J. Zhang, and L. K. Sun, “Growth of Yb-doped Ca4GdO(BO3)(3) crystals and their spectra and laser properties,” J. Cryst. Growth 222, 209–214 (2001).
[CrossRef]

Pirzio, F.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99, 135–140 (2010).
[CrossRef]

Pollnau, M.

Razani, M.

Reali, G.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99, 135–140 (2010).
[CrossRef]

Roeloffzen, C. G. H.

Roux, J. F.

Saraceno, C. J.

Scheller, M.

Sharma, U.

U. Sharma, C.-S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Phot. Tech. Lett. 16, 1277–1279 (2004).

Shen, D. Y.

Shen, Y. H.

Shin, J.

Shirakawa, A.

Su, L. B.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9, 135–140 (2012).
[CrossRef]

Südmeyer, T.

Sun, L. K.

H. J. Zhang, X. L. Meng, P. Wang, L. Zhu, X. S. Liu, X. M. Liu, Y. Y. Yang, R. H. Wang, J. Dawes, J. Piper, S. J. Zhang, and L. K. Sun, “Growth of Yb-doped Ca4GdO(BO3)(3) crystals and their spectra and laser properties,” J. Cryst. Growth 222, 209–214 (2001).
[CrossRef]

Tao, X.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99, 135–140 (2010).
[CrossRef]

Thibault, F.

Tonelli, M.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99, 135–140 (2010).
[CrossRef]

Tu, C.

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with the Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98, 401–406 (2010).
[CrossRef]

Tu, C. Y.

Y. X. Ji, J. F. Cao, J. L. Xu, Z. Y. You, and C. Y. Tu, “Output-coupling-dependent laser operation of monoclinic Yb:Ca4LaO(BO3)3 crystal,” Appl. Opt. 52, 5079–5082 (2013).
[CrossRef]

J. L. Xu, J. L. He, H. T. Huang, S. D. Liu, F. Q. Liu, J. F. Yang, B. T. Zhang, K. J. Yang, C. Y. Tu, Y. Wang, and F. G. Yang, “Generation of 244-fs pulse at 1044.7  nm by a diode-pumped mode-locked Yb:Y2Ca3(BO3)4 laser,” Laser Phys. Lett. 8, 24–27 (2011).
[CrossRef]

Ueda, K. H.

Ummy, M. A.

van Wolferen, H. A. G. M.

Vano-Galvan, S.

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl. 23, 121–126 (2008).
[CrossRef]

Viana, B.

Vitrant, G.

Wang, D. S.

X. P. Yan, Q. Liu, H. L. Chen, X. Fu, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19, 084202 (2010).
[CrossRef]

Wang, J.

J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91, 329–332 (2008).
[CrossRef]

Wang, P.

H. J. Zhang, X. L. Meng, P. Wang, L. Zhu, X. S. Liu, X. M. Liu, Y. Y. Yang, R. H. Wang, J. Dawes, J. Piper, S. J. Zhang, and L. K. Sun, “Growth of Yb-doped Ca4GdO(BO3)(3) crystals and their spectra and laser properties,” J. Cryst. Growth 222, 209–214 (2001).
[CrossRef]

Wang, R. H.

H. J. Zhang, X. L. Meng, P. Wang, L. Zhu, X. S. Liu, X. M. Liu, Y. Y. Yang, R. H. Wang, J. Dawes, J. Piper, S. J. Zhang, and L. K. Sun, “Growth of Yb-doped Ca4GdO(BO3)(3) crystals and their spectra and laser properties,” J. Cryst. Growth 222, 209–214 (2001).
[CrossRef]

Wang, X.

Y. Lu, X. Wang, L. Miao, D. Zuo, and Z. Cheng, “Efficient and widely step-tunable terahertz generation with a dual-wavelength CO2 laser,” Appl. Phys. B 103, 387–390 (2011).
[CrossRef]

Wang, X. L.

H. Xiao, P. Zhou, X. L. Wang, S. F. Guo, and X. J. Xu, “High power 1018  nm monolithic Yb3+-doped fiber laser and amplifier,” Laser Phys. Lett. 9, 748–753 (2012).
[CrossRef]

Wang, Y.

J. L. Xu, J. L. He, H. T. Huang, S. D. Liu, F. Q. Liu, J. F. Yang, B. T. Zhang, K. J. Yang, C. Y. Tu, Y. Wang, and F. G. Yang, “Generation of 244-fs pulse at 1044.7  nm by a diode-pumped mode-locked Yb:Y2Ca3(BO3)4 laser,” Laser Phys. Lett. 8, 24–27 (2011).
[CrossRef]

Wang, Y. G.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9, 135–140 (2012).
[CrossRef]

Wörhoff, K.

Wu, B.

Wu, Y.

A. Brenier, Y. Wu, J. Zhang, and Y. Wu, “Lasing Yb3+ in crystals with a wavelength dependence anisotropy displayed from La2CaB10O19,” Appl. Phys. B 107, 59–65 (2012).
[CrossRef]

A. Brenier, Y. Wu, J. Zhang, and Y. Wu, “Lasing Yb3+ in crystals with a wavelength dependence anisotropy displayed from La2CaB10O19,” Appl. Phys. B 107, 59–65 (2012).
[CrossRef]

Xiao, H.

H. Xiao, P. Zhou, X. L. Wang, S. F. Guo, and X. J. Xu, “High power 1018  nm monolithic Yb3+-doped fiber laser and amplifier,” Laser Phys. Lett. 9, 748–753 (2012).
[CrossRef]

Xu, J.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9, 135–140 (2012).
[CrossRef]

Xu, J. L.

Y. X. Ji, J. F. Cao, J. L. Xu, Z. Y. You, and C. Y. Tu, “Output-coupling-dependent laser operation of monoclinic Yb:Ca4LaO(BO3)3 crystal,” Appl. Opt. 52, 5079–5082 (2013).
[CrossRef]

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd: CLTGG disordered crystal,” Appl. Phys. B 107, 53–58 (2012).
[CrossRef]

J. L. Xu, J. L. He, H. T. Huang, S. D. Liu, F. Q. Liu, J. F. Yang, B. T. Zhang, K. J. Yang, C. Y. Tu, Y. Wang, and F. G. Yang, “Generation of 244-fs pulse at 1044.7  nm by a diode-pumped mode-locked Yb:Y2Ca3(BO3)4 laser,” Laser Phys. Lett. 8, 24–27 (2011).
[CrossRef]

Xu, X. J.

H. Xiao, P. Zhou, X. L. Wang, S. F. Guo, and X. J. Xu, “High power 1018  nm monolithic Yb3+-doped fiber laser and amplifier,” Laser Phys. Lett. 9, 748–753 (2012).
[CrossRef]

Yagi, H.

Yan, X. P.

X. P. Yan, Q. Liu, H. L. Chen, X. Fu, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19, 084202 (2010).
[CrossRef]

Yanagitani, T.

Yang, D. Z.

Yang, F. G.

J. L. Xu, J. L. He, H. T. Huang, S. D. Liu, F. Q. Liu, J. F. Yang, B. T. Zhang, K. J. Yang, C. Y. Tu, Y. Wang, and F. G. Yang, “Generation of 244-fs pulse at 1044.7  nm by a diode-pumped mode-locked Yb:Y2Ca3(BO3)4 laser,” Laser Phys. Lett. 8, 24–27 (2011).
[CrossRef]

Yang, H.

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd: CLTGG disordered crystal,” Appl. Phys. B 107, 53–58 (2012).
[CrossRef]

Yang, J. F.

J. L. Xu, J. L. He, H. T. Huang, S. D. Liu, F. Q. Liu, J. F. Yang, B. T. Zhang, K. J. Yang, C. Y. Tu, Y. Wang, and F. G. Yang, “Generation of 244-fs pulse at 1044.7  nm by a diode-pumped mode-locked Yb:Y2Ca3(BO3)4 laser,” Laser Phys. Lett. 8, 24–27 (2011).
[CrossRef]

Yang, K. J.

J. L. Xu, J. L. He, H. T. Huang, S. D. Liu, F. Q. Liu, J. F. Yang, B. T. Zhang, K. J. Yang, C. Y. Tu, Y. Wang, and F. G. Yang, “Generation of 244-fs pulse at 1044.7  nm by a diode-pumped mode-locked Yb:Y2Ca3(BO3)4 laser,” Laser Phys. Lett. 8, 24–27 (2011).
[CrossRef]

Yang, Q.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9, 135–140 (2012).
[CrossRef]

Yang, Y.

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd: CLTGG disordered crystal,” Appl. Phys. B 107, 53–58 (2012).
[CrossRef]

Yang, Y. Y.

H. J. Zhang, X. L. Meng, P. Wang, L. Zhu, X. S. Liu, X. M. Liu, Y. Y. Yang, R. H. Wang, J. Dawes, J. Piper, S. J. Zhang, and L. K. Sun, “Growth of Yb-doped Ca4GdO(BO3)(3) crystals and their spectra and laser properties,” J. Cryst. Growth 222, 209–214 (2001).
[CrossRef]

Yee, D. S.

Yin, J. G.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

You, Z. Y.

Zaouter, Y.

Zhang, B. T.

J. L. Xu, J. L. He, H. T. Huang, S. D. Liu, F. Q. Liu, J. F. Yang, B. T. Zhang, K. J. Yang, C. Y. Tu, Y. Wang, and F. G. Yang, “Generation of 244-fs pulse at 1044.7  nm by a diode-pumped mode-locked Yb:Y2Ca3(BO3)4 laser,” Laser Phys. Lett. 8, 24–27 (2011).
[CrossRef]

Zhang, B. Y.

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd: CLTGG disordered crystal,” Appl. Phys. B 107, 53–58 (2012).
[CrossRef]

Zhang, H.

J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91, 329–332 (2008).
[CrossRef]

Zhang, H. J.

H. J. Zhang, X. L. Meng, P. Wang, L. Zhu, X. S. Liu, X. M. Liu, Y. Y. Yang, R. H. Wang, J. Dawes, J. Piper, S. J. Zhang, and L. K. Sun, “Growth of Yb-doped Ca4GdO(BO3)(3) crystals and their spectra and laser properties,” J. Cryst. Growth 222, 209–214 (2001).
[CrossRef]

Zhang, J.

A. Brenier, Y. Wu, J. Zhang, and Y. Wu, “Lasing Yb3+ in crystals with a wavelength dependence anisotropy displayed from La2CaB10O19,” Appl. Phys. B 107, 59–65 (2012).
[CrossRef]

Zhang, L. H.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

Zhang, P. X.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

Zhang, S. J.

H. J. Zhang, X. L. Meng, P. Wang, L. Zhu, X. S. Liu, X. M. Liu, Y. Y. Yang, R. H. Wang, J. Dawes, J. Piper, S. J. Zhang, and L. K. Sun, “Growth of Yb-doped Ca4GdO(BO3)(3) crystals and their spectra and laser properties,” J. Cryst. Growth 222, 209–214 (2001).
[CrossRef]

Zhao, C. C.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

Zheng, L. H.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9, 135–140 (2012).
[CrossRef]

Zhou, P.

H. Xiao, P. Zhou, X. L. Wang, S. F. Guo, and X. J. Xu, “High power 1018  nm monolithic Yb3+-doped fiber laser and amplifier,” Laser Phys. Lett. 9, 748–753 (2012).
[CrossRef]

Zhu, L.

H. J. Zhang, X. L. Meng, P. Wang, L. Zhu, X. S. Liu, X. M. Liu, Y. Y. Yang, R. H. Wang, J. Dawes, J. Piper, S. J. Zhang, and L. K. Sun, “Growth of Yb-doped Ca4GdO(BO3)(3) crystals and their spectra and laser properties,” J. Cryst. Growth 222, 209–214 (2001).
[CrossRef]

Zhu, Z.

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with the Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98, 401–406 (2010).
[CrossRef]

Zuo, D.

Y. Lu, X. Wang, L. Miao, D. Zuo, and Z. Cheng, “Efficient and widely step-tunable terahertz generation with a dual-wavelength CO2 laser,” Appl. Phys. B 103, 387–390 (2011).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (6)

Y. Lu, X. Wang, L. Miao, D. Zuo, and Z. Cheng, “Efficient and widely step-tunable terahertz generation with a dual-wavelength CO2 laser,” Appl. Phys. B 103, 387–390 (2011).
[CrossRef]

J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, “Comparison of laser performance of Yb:YCa4O(BO3)3 crystals cut along the principal optical axes,” Appl. Phys. B 91, 329–332 (2008).
[CrossRef]

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with the Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98, 401–406 (2010).
[CrossRef]

A. Brenier, Y. Wu, J. Zhang, and Y. Wu, “Lasing Yb3+ in crystals with a wavelength dependence anisotropy displayed from La2CaB10O19,” Appl. Phys. B 107, 59–65 (2012).
[CrossRef]

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99, 135–140 (2010).
[CrossRef]

J. L. Xu, S. Y. Guo, J. L. He, B. Y. Zhang, Y. Yang, H. Yang, and S. D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd: CLTGG disordered crystal,” Appl. Phys. B 107, 53–58 (2012).
[CrossRef]

Chin. Phys. B (1)

X. P. Yan, Q. Liu, H. L. Chen, X. Fu, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19, 084202 (2010).
[CrossRef]

Electron. Lett. (1)

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous-wave THz generation through photomixing,” Electron. Lett. 40, 942–943 (2004).
[CrossRef]

J. Cryst. Growth (1)

H. J. Zhang, X. L. Meng, P. Wang, L. Zhu, X. S. Liu, X. M. Liu, Y. Y. Yang, R. H. Wang, J. Dawes, J. Piper, S. J. Zhang, and L. K. Sun, “Growth of Yb-doped Ca4GdO(BO3)(3) crystals and their spectra and laser properties,” J. Cryst. Growth 222, 209–214 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (4)

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9, 135–140 (2012).
[CrossRef]

J. L. Xu, J. L. He, H. T. Huang, S. D. Liu, F. Q. Liu, J. F. Yang, B. T. Zhang, K. J. Yang, C. Y. Tu, Y. Wang, and F. G. Yang, “Generation of 244-fs pulse at 1044.7  nm by a diode-pumped mode-locked Yb:Y2Ca3(BO3)4 laser,” Laser Phys. Lett. 8, 24–27 (2011).
[CrossRef]

H. Xiao, P. Zhou, X. L. Wang, S. F. Guo, and X. J. Xu, “High power 1018  nm monolithic Yb3+-doped fiber laser and amplifier,” Laser Phys. Lett. 9, 748–753 (2012).
[CrossRef]

Med. Laser Appl. (1)

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl. 23, 121–126 (2008).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Phot. Tech. Lett. (1)

U. Sharma, C.-S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Phot. Tech. Lett. 16, 1277–1279 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Configuration of the laser experiment for the laser diode-pumped Yb3+:LaCOB crystals. F, focus coupling lens; M1, input mirror; M2, output mirror.

Fig. 2.
Fig. 2.

(a) Dual-wavelength laser output power versus absorbed pump power, and (b) emission spectra with different transmittances of the output coupler (2%, 3%, and 5%) for the X-cut Yb3+:LaCOB crystal.

Fig. 3.
Fig. 3.

(a) Dual-wavelength laser output power versus absorbed pump power, and (b) emission spectra with different transmittances of the output coupler (2%, 3%, and 5%) for the Y-cut Yb3+:LaCOB crystal.

Fig. 4.
Fig. 4.

(a) Dual-wavelength laser output power versus absorbed pump power, and (b) emission spectra with different transmittances of the output coupler (2%, 3%, and 5%) for the Z-cut Yb3+:LaCOB crystal.

Metrics