F. Sawaf and R. M. Groves, “Statistically guided improvements in speckle phase discontinuity predictions by machine learning systems,” Opt. Eng. 52, 101907 (2013).

[CrossRef]

L. Zhu, Y. Wang, N. Xu, S. Wu, M. Dong, and L. Yang, “Real-time monitoring of phase maps of digital shearography,” Opt. Eng. 52, 101902 (2013).

[CrossRef]

K. Falaggis, D. P. Towers, and C. E. Towers, “Method of excess fractions with application to absolute distance metrology: analytical solution,” Appl. Opt. 52, 5758–5765 (2013).

[CrossRef]

K. Falaggis, D. P. Towers, and C. E. Towers, “Generalized theory of phase unwrapping: approaches and optimal wavelength selection strategies for multiwavelength interferometric techniques,” Proc. SPIE 8493, 84930O (2012).

[CrossRef]

C. Y. Chang and C. C. Ma, “Measurement of resonant mode of piezoelectric thin plate using speckle interferometry and frequency-sweeping function,” Rev. Sci. Instrum. 83, 95004–95009 (2012).

[CrossRef]

N. Lazar, “Big data hits the big time,” Chance 25, 47–49 (2012).

M. Zhao, L. Huang, Q. Zhang, X. Su, A. Asundi, and Q. Kemao, “Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies,” Appl. Opt. 50, 6214–6224 (2011).

[CrossRef]

M. Qudeisat, M. Gdeisat, D. Burton, and F. Lilley, “A simple method for phase wraps elimination or reduction in spatial fringe patterns,” Opt. Commun. 284, 5105–5109 (2011).

[CrossRef]

D. Francis, R. P. Tatam, and R. M. Groves, “Shearography technology and applications: a review,” Meas. Sci. Technol. 21, 102001 (2010).

[CrossRef]

A. Anand, V. K. Chhaniwal, P. Almoro, G. Pedrini, and W. Osten, “Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval,” Opt. Lett. 34, 1522–1524 (2009).

[CrossRef]

M. Gdeisat, M. Arevalillo-Herráez, D. Burton, and F. Lilley, “Three-dimensional phase unwrapping using the Hungarian algorithm,” Opt. Lett. 34, 2994–2996 (2009).

[CrossRef]

H. Abdul-Rahman, M. Arevalillo-Herraez, M. Gdeisat, D. Burton, M. Lalor, F. Lilley, C. Moore, D. Sheltraw, and M. Qudeisat, “Robust three-dimensional best-path phase-unwrapping algorithm that avoids singularity loops,” Appl. Opt. 48, 4582–4596 (2009).

[CrossRef]

P. Jacquot, “Speckle interferometry: a review of the principal methods in use for experimental mechanics applications,” Strain 44, 57–69 (2008).

H. S. Abdul-Rahman, M. A. Gdeisat, D. R. Burton, M. J. Lalor, F. Lilley, and C. J. Moore, “Fast and robust three-dimensional best path phase unwrapping algorithm,” Appl. Opt. 46, 6623–6635 (2007).

[CrossRef]

C. Tang, W. Lu, S. Chen, Z. Zhang, B. Li, W. Wang, and L. Han, “Denoising by coupled partial differential equations and extracting phase by backpropagation neural networks for electronic speckle pattern interferometry,” Appl. Opt. 46, 7475–7484 (2007).

[CrossRef]

F. Sawaf and R. P. Tatam, “Finding minimum spanning trees more efficiently for tile-based phase unwrapping,” Meas. Sci. Technol. 17, 1428–1435 (2006).

[CrossRef]

M. Minami and A. Hirose, “Phase singular points reduction by a layered complex-valued neural network in combination with constructive Fourier synthesis,” Lect. Notes Comput. Sci. 2714, 943–950 (2003).

[CrossRef]

D. J. Tipper, D. R. Burton, and M. J. Lalor, “A neural network approach to the phase unwrapping problem in fringe analysis,” Nondestr. Test. Eval. 12, 391–400 (1996).

[CrossRef]

Y. Y. Hung, “Shearography for non-destructive evaluation of composite structures,” Opt. Lasers Eng. 24, 161–182 (1996).

[CrossRef]

T. R. Judge, T. R. Quan, and P. J. Bryanston-Cross, “Holographic deformation measurements by Fourier transform technique with automatic phase unwrapping,” Opt. Eng. 31, 533–543 (1992).

[CrossRef]

D. P. Towers, T. R. Judge, and P. J. Bryanston-Cross, “Automatic interferogram analysis techniques applied to quasi-heterodyne holography and ESPI,” Opt. Lasers Eng. 14, 239–281 (1991).

[CrossRef]

K. Hornik, M. Stinchecombe, and H. White, “Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks,” Neural Netw. 2, 359–366 (1989).

[CrossRef]

Y. Y. Hung, “Shearography: a new optical method for strain measurement and non-destructive testing,” Opt. Eng. 21, 213391 (1982).

[CrossRef]

H. Abdul-Rahman, M. Arevalillo-Herraez, M. Gdeisat, D. Burton, M. Lalor, F. Lilley, C. Moore, D. Sheltraw, and M. Qudeisat, “Robust three-dimensional best-path phase-unwrapping algorithm that avoids singularity loops,” Appl. Opt. 48, 4582–4596 (2009).

[CrossRef]

J. A. Anderson, “Logistic discrimination,” in Handbook of Statistics 2 (North Holland, 1982), pp. 169–191.

H. Abdul-Rahman, M. Arevalillo-Herraez, M. Gdeisat, D. Burton, M. Lalor, F. Lilley, C. Moore, D. Sheltraw, and M. Qudeisat, “Robust three-dimensional best-path phase-unwrapping algorithm that avoids singularity loops,” Appl. Opt. 48, 4582–4596 (2009).

[CrossRef]

D. Barber, Bayesian Reasoning and Machine Learning (Cambridge University, 2012).

C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).

C. M. Bishop, Neural Networks for Pattern Recognition (Oxford University, 1995), pp. 126–127.

C. M. Bishop, Neural Networks for Pattern Recognition (Oxford University, 1995), p. 119.

T. R. Judge, T. R. Quan, and P. J. Bryanston-Cross, “Holographic deformation measurements by Fourier transform technique with automatic phase unwrapping,” Opt. Eng. 31, 533–543 (1992).

[CrossRef]

D. P. Towers, T. R. Judge, and P. J. Bryanston-Cross, “Automatic interferogram analysis techniques applied to quasi-heterodyne holography and ESPI,” Opt. Lasers Eng. 14, 239–281 (1991).

[CrossRef]

M. Qudeisat, M. Gdeisat, D. Burton, and F. Lilley, “A simple method for phase wraps elimination or reduction in spatial fringe patterns,” Opt. Commun. 284, 5105–5109 (2011).

[CrossRef]

M. Gdeisat, M. Arevalillo-Herráez, D. Burton, and F. Lilley, “Three-dimensional phase unwrapping using the Hungarian algorithm,” Opt. Lett. 34, 2994–2996 (2009).

[CrossRef]

H. Abdul-Rahman, M. Arevalillo-Herraez, M. Gdeisat, D. Burton, M. Lalor, F. Lilley, C. Moore, D. Sheltraw, and M. Qudeisat, “Robust three-dimensional best-path phase-unwrapping algorithm that avoids singularity loops,” Appl. Opt. 48, 4582–4596 (2009).

[CrossRef]

H. S. Abdul-Rahman, M. A. Gdeisat, D. R. Burton, M. J. Lalor, F. Lilley, and C. J. Moore, “Fast and robust three-dimensional best path phase unwrapping algorithm,” Appl. Opt. 46, 6623–6635 (2007).

[CrossRef]

D. J. Tipper, D. R. Burton, and M. J. Lalor, “A neural network approach to the phase unwrapping problem in fringe analysis,” Nondestr. Test. Eval. 12, 391–400 (1996).

[CrossRef]

C. Y. Chang and C. C. Ma, “Measurement of resonant mode of piezoelectric thin plate using speckle interferometry and frequency-sweeping function,” Rev. Sci. Instrum. 83, 95004–95009 (2012).

[CrossRef]

L. Zhu, Y. Wang, N. Xu, S. Wu, M. Dong, and L. Yang, “Real-time monitoring of phase maps of digital shearography,” Opt. Eng. 52, 101902 (2013).

[CrossRef]

G. Dougherty, Pattern Recognition and Classification: An Introduction (Springer, 2012).

K. Falaggis, D. P. Towers, and C. E. Towers, “Algebraic solution for phase unwrapping problems in multiwavelength interferometry,” Appl. Opt. 53, 3737–3747 (2014).

[CrossRef]

K. Falaggis, D. P. Towers, and C. E. Towers, “Method of excess fractions with application to absolute distance metrology: analytical solution,” Appl. Opt. 52, 5758–5765 (2013).

[CrossRef]

K. Falaggis, D. P. Towers, and C. E. Towers, “Generalized theory of phase unwrapping: approaches and optimal wavelength selection strategies for multiwavelength interferometric techniques,” Proc. SPIE 8493, 84930O (2012).

[CrossRef]

A. Field, J. Miles, and Z. Field, Discovering Statistics Using R (SAGE, 2012).

A. Field, J. Miles, and Z. Field, Discovering Statistics Using R (SAGE, 2012).

P. Flach, Machine Learning: The Art and Science of Algorithms That Make Sense of Data (Cambridge University, 2012).

D. Francis, R. P. Tatam, and R. M. Groves, “Shearography technology and applications: a review,” Meas. Sci. Technol. 21, 102001 (2010).

[CrossRef]

L. Fu, K. Frenner, and W. Osten, “Rigorous speckle simulation using surface integral equations and boundary element methods,” in Fringe 2013, W. Osten, ed. (Springer, 2014), pp. 361–364.

R. E. Schapire and Y. Freund, Boosting: Foundations and Algorithms (MIT, 2014).

L. Fu, K. Frenner, and W. Osten, “Rigorous speckle simulation using surface integral equations and boundary element methods,” in Fringe 2013, W. Osten, ed. (Springer, 2014), pp. 361–364.

M. Qudeisat, M. Gdeisat, D. Burton, and F. Lilley, “A simple method for phase wraps elimination or reduction in spatial fringe patterns,” Opt. Commun. 284, 5105–5109 (2011).

[CrossRef]

M. Gdeisat, M. Arevalillo-Herráez, D. Burton, and F. Lilley, “Three-dimensional phase unwrapping using the Hungarian algorithm,” Opt. Lett. 34, 2994–2996 (2009).

[CrossRef]

H. Abdul-Rahman, M. Arevalillo-Herraez, M. Gdeisat, D. Burton, M. Lalor, F. Lilley, C. Moore, D. Sheltraw, and M. Qudeisat, “Robust three-dimensional best-path phase-unwrapping algorithm that avoids singularity loops,” Appl. Opt. 48, 4582–4596 (2009).

[CrossRef]

M. B. Gordon, “Discrimination,” in Neural Networks: Methodology and Applications, G. Dreyfus, ed. (Springer, 2005), pp. 329–377.

D. T. Goto, “3D shearogrophy for strain measurement,” Thesis (Universidade Federal de Santa Catarina, 2010).

F. Sawaf and R. M. Groves, “Statistically guided improvements in speckle phase discontinuity predictions by machine learning systems,” Opt. Eng. 52, 101907 (2013).

[CrossRef]

D. Francis, R. P. Tatam, and R. M. Groves, “Shearography technology and applications: a review,” Meas. Sci. Technol. 21, 102001 (2010).

[CrossRef]

M. Minami and A. Hirose, “Phase singular points reduction by a layered complex-valued neural network in combination with constructive Fourier synthesis,” Lect. Notes Comput. Sci. 2714, 943–950 (2003).

[CrossRef]

K. Hornik, M. Stinchecombe, and H. White, “Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks,” Neural Netw. 2, 359–366 (1989).

[CrossRef]

Y. Y. Hung, “Shearography for non-destructive evaluation of composite structures,” Opt. Lasers Eng. 24, 161–182 (1996).

[CrossRef]

Y. Y. Hung, “Shearography: a new optical method for strain measurement and non-destructive testing,” Opt. Eng. 21, 213391 (1982).

[CrossRef]

P. Jacquot, “Speckle interferometry: a review of the principal methods in use for experimental mechanics applications,” Strain 44, 57–69 (2008).

T. R. Judge, T. R. Quan, and P. J. Bryanston-Cross, “Holographic deformation measurements by Fourier transform technique with automatic phase unwrapping,” Opt. Eng. 31, 533–543 (1992).

[CrossRef]

D. P. Towers, T. R. Judge, and P. J. Bryanston-Cross, “Automatic interferogram analysis techniques applied to quasi-heterodyne holography and ESPI,” Opt. Lasers Eng. 14, 239–281 (1991).

[CrossRef]

S. Karout, “Two-dimensional phase unwrapping, chapter 3: artificial intelligence,” Ph.D. thesis (Liverpool John Moores University, 2007).

H. Abdul-Rahman, M. Arevalillo-Herraez, M. Gdeisat, D. Burton, M. Lalor, F. Lilley, C. Moore, D. Sheltraw, and M. Qudeisat, “Robust three-dimensional best-path phase-unwrapping algorithm that avoids singularity loops,” Appl. Opt. 48, 4582–4596 (2009).

[CrossRef]

H. S. Abdul-Rahman, M. A. Gdeisat, D. R. Burton, M. J. Lalor, F. Lilley, and C. J. Moore, “Fast and robust three-dimensional best path phase unwrapping algorithm,” Appl. Opt. 46, 6623–6635 (2007).

[CrossRef]

D. J. Tipper, D. R. Burton, and M. J. Lalor, “A neural network approach to the phase unwrapping problem in fringe analysis,” Nondestr. Test. Eval. 12, 391–400 (1996).

[CrossRef]

N. Lazar, “Big data hits the big time,” Chance 25, 47–49 (2012).

M. Qudeisat, M. Gdeisat, D. Burton, and F. Lilley, “A simple method for phase wraps elimination or reduction in spatial fringe patterns,” Opt. Commun. 284, 5105–5109 (2011).

[CrossRef]

H. Abdul-Rahman, M. Arevalillo-Herraez, M. Gdeisat, D. Burton, M. Lalor, F. Lilley, C. Moore, D. Sheltraw, and M. Qudeisat, “Robust three-dimensional best-path phase-unwrapping algorithm that avoids singularity loops,” Appl. Opt. 48, 4582–4596 (2009).

[CrossRef]

M. Gdeisat, M. Arevalillo-Herráez, D. Burton, and F. Lilley, “Three-dimensional phase unwrapping using the Hungarian algorithm,” Opt. Lett. 34, 2994–2996 (2009).

[CrossRef]

H. S. Abdul-Rahman, M. A. Gdeisat, D. R. Burton, M. J. Lalor, F. Lilley, and C. J. Moore, “Fast and robust three-dimensional best path phase unwrapping algorithm,” Appl. Opt. 46, 6623–6635 (2007).

[CrossRef]

C. Y. Chang and C. C. Ma, “Measurement of resonant mode of piezoelectric thin plate using speckle interferometry and frequency-sweeping function,” Rev. Sci. Instrum. 83, 95004–95009 (2012).

[CrossRef]

A. Field, J. Miles, and Z. Field, Discovering Statistics Using R (SAGE, 2012).

M. Minami and A. Hirose, “Phase singular points reduction by a layered complex-valued neural network in combination with constructive Fourier synthesis,” Lect. Notes Comput. Sci. 2714, 943–950 (2003).

[CrossRef]

H. Abdul-Rahman, M. Arevalillo-Herraez, M. Gdeisat, D. Burton, M. Lalor, F. Lilley, C. Moore, D. Sheltraw, and M. Qudeisat, “Robust three-dimensional best-path phase-unwrapping algorithm that avoids singularity loops,” Appl. Opt. 48, 4582–4596 (2009).

[CrossRef]

C. O’Neal and R. Schutt, Doing Data Science (O’Reilly Books, 2013).

A. Anand, V. K. Chhaniwal, P. Almoro, G. Pedrini, and W. Osten, “Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval,” Opt. Lett. 34, 1522–1524 (2009).

[CrossRef]

L. Fu, K. Frenner, and W. Osten, “Rigorous speckle simulation using surface integral equations and boundary element methods,” in Fringe 2013, W. Osten, ed. (Springer, 2014), pp. 361–364.

S. J. D. Prince, Computer Vision: Models, Learning, and Inference (Cambridge University, 2012).

T. R. Judge, T. R. Quan, and P. J. Bryanston-Cross, “Holographic deformation measurements by Fourier transform technique with automatic phase unwrapping,” Opt. Eng. 31, 533–543 (1992).

[CrossRef]

M. Qudeisat, M. Gdeisat, D. Burton, and F. Lilley, “A simple method for phase wraps elimination or reduction in spatial fringe patterns,” Opt. Commun. 284, 5105–5109 (2011).

[CrossRef]

H. Abdul-Rahman, M. Arevalillo-Herraez, M. Gdeisat, D. Burton, M. Lalor, F. Lilley, C. Moore, D. Sheltraw, and M. Qudeisat, “Robust three-dimensional best-path phase-unwrapping algorithm that avoids singularity loops,” Appl. Opt. 48, 4582–4596 (2009).

[CrossRef]

F. Sawaf and R. M. Groves, “Statistically guided improvements in speckle phase discontinuity predictions by machine learning systems,” Opt. Eng. 52, 101907 (2013).

[CrossRef]

F. Sawaf and R. P. Tatam, “Finding minimum spanning trees more efficiently for tile-based phase unwrapping,” Meas. Sci. Technol. 17, 1428–1435 (2006).

[CrossRef]

R. E. Schapire and Y. Freund, Boosting: Foundations and Algorithms (MIT, 2014).

C. O’Neal and R. Schutt, Doing Data Science (O’Reilly Books, 2013).

A. Sciammarella and F. M. Sciammarella, Experimental Mechanics of Solids (Wiley, 2012), p. 276.

A. Sciammarella and F. M. Sciammarella, Experimental Mechanics of Solids (Wiley, 2012), p. 276.

H. Abdul-Rahman, M. Arevalillo-Herraez, M. Gdeisat, D. Burton, M. Lalor, F. Lilley, C. Moore, D. Sheltraw, and M. Qudeisat, “Robust three-dimensional best-path phase-unwrapping algorithm that avoids singularity loops,” Appl. Opt. 48, 4582–4596 (2009).

[CrossRef]

K. Hornik, M. Stinchecombe, and H. White, “Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks,” Neural Netw. 2, 359–366 (1989).

[CrossRef]

D. Francis, R. P. Tatam, and R. M. Groves, “Shearography technology and applications: a review,” Meas. Sci. Technol. 21, 102001 (2010).

[CrossRef]

F. Sawaf and R. P. Tatam, “Finding minimum spanning trees more efficiently for tile-based phase unwrapping,” Meas. Sci. Technol. 17, 1428–1435 (2006).

[CrossRef]

D. J. Tipper, D. R. Burton, and M. J. Lalor, “A neural network approach to the phase unwrapping problem in fringe analysis,” Nondestr. Test. Eval. 12, 391–400 (1996).

[CrossRef]

K. Falaggis, D. P. Towers, and C. E. Towers, “Algebraic solution for phase unwrapping problems in multiwavelength interferometry,” Appl. Opt. 53, 3737–3747 (2014).

[CrossRef]

K. Falaggis, D. P. Towers, and C. E. Towers, “Method of excess fractions with application to absolute distance metrology: analytical solution,” Appl. Opt. 52, 5758–5765 (2013).

[CrossRef]

K. Falaggis, D. P. Towers, and C. E. Towers, “Generalized theory of phase unwrapping: approaches and optimal wavelength selection strategies for multiwavelength interferometric techniques,” Proc. SPIE 8493, 84930O (2012).

[CrossRef]

K. Falaggis, D. P. Towers, and C. E. Towers, “Algebraic solution for phase unwrapping problems in multiwavelength interferometry,” Appl. Opt. 53, 3737–3747 (2014).

[CrossRef]

K. Falaggis, D. P. Towers, and C. E. Towers, “Method of excess fractions with application to absolute distance metrology: analytical solution,” Appl. Opt. 52, 5758–5765 (2013).

[CrossRef]

K. Falaggis, D. P. Towers, and C. E. Towers, “Generalized theory of phase unwrapping: approaches and optimal wavelength selection strategies for multiwavelength interferometric techniques,” Proc. SPIE 8493, 84930O (2012).

[CrossRef]

D. P. Towers, T. R. Judge, and P. J. Bryanston-Cross, “Automatic interferogram analysis techniques applied to quasi-heterodyne holography and ESPI,” Opt. Lasers Eng. 14, 239–281 (1991).

[CrossRef]

L. Zhu, Y. Wang, N. Xu, S. Wu, M. Dong, and L. Yang, “Real-time monitoring of phase maps of digital shearography,” Opt. Eng. 52, 101902 (2013).

[CrossRef]

K. Hornik, M. Stinchecombe, and H. White, “Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks,” Neural Netw. 2, 359–366 (1989).

[CrossRef]

L. Zhu, Y. Wang, N. Xu, S. Wu, M. Dong, and L. Yang, “Real-time monitoring of phase maps of digital shearography,” Opt. Eng. 52, 101902 (2013).

[CrossRef]

L. Zhu, Y. Wang, N. Xu, S. Wu, M. Dong, and L. Yang, “Real-time monitoring of phase maps of digital shearography,” Opt. Eng. 52, 101902 (2013).

[CrossRef]

L. Zhu, Y. Wang, N. Xu, S. Wu, M. Dong, and L. Yang, “Real-time monitoring of phase maps of digital shearography,” Opt. Eng. 52, 101902 (2013).

[CrossRef]

L. Zhu, Y. Wang, N. Xu, S. Wu, M. Dong, and L. Yang, “Real-time monitoring of phase maps of digital shearography,” Opt. Eng. 52, 101902 (2013).

[CrossRef]

H. Abdul-Rahman, M. Arevalillo-Herraez, M. Gdeisat, D. Burton, M. Lalor, F. Lilley, C. Moore, D. Sheltraw, and M. Qudeisat, “Robust three-dimensional best-path phase-unwrapping algorithm that avoids singularity loops,” Appl. Opt. 48, 4582–4596 (2009).

[CrossRef]

H. S. Abdul-Rahman, M. A. Gdeisat, D. R. Burton, M. J. Lalor, F. Lilley, and C. J. Moore, “Fast and robust three-dimensional best path phase unwrapping algorithm,” Appl. Opt. 46, 6623–6635 (2007).

[CrossRef]

K. Falaggis, D. P. Towers, and C. E. Towers, “Method of excess fractions with application to absolute distance metrology: analytical solution,” Appl. Opt. 52, 5758–5765 (2013).

[CrossRef]

K. Falaggis, D. P. Towers, and C. E. Towers, “Algebraic solution for phase unwrapping problems in multiwavelength interferometry,” Appl. Opt. 53, 3737–3747 (2014).

[CrossRef]

M. Zhao, L. Huang, Q. Zhang, X. Su, A. Asundi, and Q. Kemao, “Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies,” Appl. Opt. 50, 6214–6224 (2011).

[CrossRef]

C. Tang, W. Lu, S. Chen, Z. Zhang, B. Li, W. Wang, and L. Han, “Denoising by coupled partial differential equations and extracting phase by backpropagation neural networks for electronic speckle pattern interferometry,” Appl. Opt. 46, 7475–7484 (2007).

[CrossRef]

N. Lazar, “Big data hits the big time,” Chance 25, 47–49 (2012).

M. Minami and A. Hirose, “Phase singular points reduction by a layered complex-valued neural network in combination with constructive Fourier synthesis,” Lect. Notes Comput. Sci. 2714, 943–950 (2003).

[CrossRef]

F. Sawaf and R. P. Tatam, “Finding minimum spanning trees more efficiently for tile-based phase unwrapping,” Meas. Sci. Technol. 17, 1428–1435 (2006).

[CrossRef]

D. Francis, R. P. Tatam, and R. M. Groves, “Shearography technology and applications: a review,” Meas. Sci. Technol. 21, 102001 (2010).

[CrossRef]

K. Hornik, M. Stinchecombe, and H. White, “Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks,” Neural Netw. 2, 359–366 (1989).

[CrossRef]

D. J. Tipper, D. R. Burton, and M. J. Lalor, “A neural network approach to the phase unwrapping problem in fringe analysis,” Nondestr. Test. Eval. 12, 391–400 (1996).

[CrossRef]

M. Qudeisat, M. Gdeisat, D. Burton, and F. Lilley, “A simple method for phase wraps elimination or reduction in spatial fringe patterns,” Opt. Commun. 284, 5105–5109 (2011).

[CrossRef]

L. Zhu, Y. Wang, N. Xu, S. Wu, M. Dong, and L. Yang, “Real-time monitoring of phase maps of digital shearography,” Opt. Eng. 52, 101902 (2013).

[CrossRef]

Y. Y. Hung, “Shearography: a new optical method for strain measurement and non-destructive testing,” Opt. Eng. 21, 213391 (1982).

[CrossRef]

T. R. Judge, T. R. Quan, and P. J. Bryanston-Cross, “Holographic deformation measurements by Fourier transform technique with automatic phase unwrapping,” Opt. Eng. 31, 533–543 (1992).

[CrossRef]

F. Sawaf and R. M. Groves, “Statistically guided improvements in speckle phase discontinuity predictions by machine learning systems,” Opt. Eng. 52, 101907 (2013).

[CrossRef]

D. P. Towers, T. R. Judge, and P. J. Bryanston-Cross, “Automatic interferogram analysis techniques applied to quasi-heterodyne holography and ESPI,” Opt. Lasers Eng. 14, 239–281 (1991).

[CrossRef]

Y. Y. Hung, “Shearography for non-destructive evaluation of composite structures,” Opt. Lasers Eng. 24, 161–182 (1996).

[CrossRef]

A. Anand, V. K. Chhaniwal, P. Almoro, G. Pedrini, and W. Osten, “Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval,” Opt. Lett. 34, 1522–1524 (2009).

[CrossRef]

M. Gdeisat, M. Arevalillo-Herráez, D. Burton, and F. Lilley, “Three-dimensional phase unwrapping using the Hungarian algorithm,” Opt. Lett. 34, 2994–2996 (2009).

[CrossRef]

K. Falaggis, D. P. Towers, and C. E. Towers, “Generalized theory of phase unwrapping: approaches and optimal wavelength selection strategies for multiwavelength interferometric techniques,” Proc. SPIE 8493, 84930O (2012).

[CrossRef]

C. Y. Chang and C. C. Ma, “Measurement of resonant mode of piezoelectric thin plate using speckle interferometry and frequency-sweeping function,” Rev. Sci. Instrum. 83, 95004–95009 (2012).

[CrossRef]

P. Jacquot, “Speckle interferometry: a review of the principal methods in use for experimental mechanics applications,” Strain 44, 57–69 (2008).

W. Osten and N. Reingand, eds., Optical Imaging and Metrology: Advanced Technologies (Wiley-VCH, 2012).

R. Leach, ed., Optical Measurement of Surface Topography (Springer, 2011).

A. Sciammarella and F. M. Sciammarella, Experimental Mechanics of Solids (Wiley, 2012), p. 276.

C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).

B. Verma and M. Blumenstein, eds., Pattern Recognition Technologies and Applications: Recent Advances (Information Science Reference, 2008).

D. Barber, Bayesian Reasoning and Machine Learning (Cambridge University, 2012).

P. Flach, Machine Learning: The Art and Science of Algorithms That Make Sense of Data (Cambridge University, 2012).

C. O’Neal and R. Schutt, Doing Data Science (O’Reilly Books, 2013).

D. W. Robinson and G. T. Reid, eds., Interferogram Analysis: Digital Fringe Pattern Measurements Techniques (Institute of Physics Publishing, 1993).

G. Dougherty, Pattern Recognition and Classification: An Introduction (Springer, 2012).

M. B. Gordon, “Discrimination,” in Neural Networks: Methodology and Applications, G. Dreyfus, ed. (Springer, 2005), pp. 329–377.

C. M. Bishop, Neural Networks for Pattern Recognition (Oxford University, 1995), pp. 126–127.

J. A. Anderson, “Logistic discrimination,” in Handbook of Statistics 2 (North Holland, 1982), pp. 169–191.

A. Field, J. Miles, and Z. Field, Discovering Statistics Using R (SAGE, 2012).

D. T. Goto, “3D shearogrophy for strain measurement,” Thesis (Universidade Federal de Santa Catarina, 2010).

L. Fu, K. Frenner, and W. Osten, “Rigorous speckle simulation using surface integral equations and boundary element methods,” in Fringe 2013, W. Osten, ed. (Springer, 2014), pp. 361–364.

R. E. Schapire and Y. Freund, Boosting: Foundations and Algorithms (MIT, 2014).

C. M. Bishop, Neural Networks for Pattern Recognition (Oxford University, 1995), p. 119.

S. Karout, “Two-dimensional phase unwrapping, chapter 3: artificial intelligence,” Ph.D. thesis (Liverpool John Moores University, 2007).

S. J. D. Prince, Computer Vision: Models, Learning, and Inference (Cambridge University, 2012).

G. E. Hinton and J. A. Anderson, eds., Parallel Models of Associative Memory: Updated Edition—Communication Textbook (Psychology, 2014).