Abstract

The far-infrared spectroscopy of the troposphere (FIRST) instrument is a Fourier-transform spectrometer developed to measure the Earth’s thermal emission spectrum with a particular emphasis on the far-infrared. FIRST has observed the atmosphere from both the ground looking up and from a high-altitude balloon looking down. A recent absolute laboratory calibration of FIRST under ground-like operating conditions showed accuracy to better than 0.3 K at near-ambient temperatures (270–325 K) but reduced accuracy at lower temperatures. This paper presents calibration results for balloon-flight conditions using a cold blackbody to simulate the space view used for on-board calibration. An unusual detector nonlinearity was discovered and corrected, and stray light was measured and removed. Over most of the range of Earth scene temperatures (205–300 K), the accuracy of FIRST is 0.35–0.15 K (one sigma).

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription