Abstract

In this paper, we study the reduction in the fluence ablation threshold induced by tin impurities incorporated in float soda-lime glass during the fabrication process. The laser system used in the experiments was a Nd:YVO4 laser operating at 1064 nm with a pulse duration of 20 ns. The fluence ablation thresholds found were 112  J/cm2 for the tin side and 920  J/cm2 for the tin-free side, which means a reduction of nearly 1 order of magnitude. The fluence ablation threshold reduction permits the manufacturing of narrower grooves with small level of roughness, obtaining quality elements in low-cost soda-lime substrates.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I.-B. Sohn, M.-S. Lee, J.-S. Woo, S.-M. Lee, and J.-Y. Chung, “Fabrication of photonic devices directly written within glass using a femtosecond laser,” Opt. Express 13, 4224–4229 (2005).
    [CrossRef]
  2. M. T. Flores-Arias, A. Castelo, C. Gomez-Reino, and G. F. de la Fuente, “Phase diffractive optical gratings on glass substrates by laser ablation,” Opt. Commun. 282, 1175–1178 (2009).
    [CrossRef]
  3. T. Rajabi, V. Huck, R. Ahrens, M. Apfel, S. Kim, S. Schneider, and A. Guber, “Development of a novel two-channel microfluidic system for biomedical applications in cancer research,” Biomed. Tech. 57, 921–922 (2012).
    [CrossRef]
  4. M. S. Giridhar, K. Seong, A. Izgen, P. Khulbe, N. Peyghambarian, and M. Mansuripur, “Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices,” Appl. Opt. 43, 4584–4589 (2004).
    [CrossRef]
  5. H. Nishiyama, M. Mizoshiri, Y. Hirata, and J. Nishii, “Fabrication of SiO2 hybrid microlens structures using femtosecond laser nonlinear lithography,” IOP Conf. Ser.: Mater. Sci. Eng. 18, 072011 (2011).
    [CrossRef]
  6. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007–2009 (2004).
    [CrossRef]
  7. K. Bang Lee and L. Lin, “Surface micromachined glass and polysilicon microchannels using MUMPs for BioMEMS applications,” Sens. Actuators A 111, 44–50 (2004).
    [CrossRef]
  8. P. Schwaller, S. Zehnder, U. von Arx, and B. Neuenschwander, “A novel model for the mechanism of laser-induced back side wet etching in aqueous Cu solutions using ns pulses at 1064  nm,” Phys. Procedia 12B, 188–194 (2011).
  9. D. Martin Knotter, “Etching mechanism of vitreous silicon dioxide in HF-based solutions,” J. Am. Chem. Soc. 122, 4345–4351 (2000).
    [CrossRef]
  10. P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys. A 69, S763–S766 (1999).
    [CrossRef]
  11. D. Nieto, M. T. Flores-Arias, G. O’Connor, and C. Gomez-Reino, “A laser direct-write technique for fabricating microlens arrays on soda lime glass with a Nd:YVO4 laser,” Appl. Opt. 49, 4979–4983 (2010).
    [CrossRef]
  12. Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys. A 79, 1001–1003 (2004).
    [CrossRef]
  13. B. Hopp, Cs. Vass, and T. Smausz, “Laser induced backside dry etching of transparent materials,” Appl. Surf. Sci. 253, 7922–7925 (2007).
    [CrossRef]
  14. J. Ihlemann, “Micro patterning of fused silica by laser ablation mediated by solid coating absorption,” Appl. Phys. A 93, 65–68 (2008).
    [CrossRef]
  15. G. Kopitkovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, “Laser induced backside wet etching: mechanisms and fabrication of micro-optical elements,” J. Phys. Conf. Ser. 59, 526–532 (2007).
    [CrossRef]
  16. T. Lippert, A. Yabe, and A. Wokaun, “Laser ablation of doped polymer systems,” Adv. Mater. 9, 105–119 (2007).
    [CrossRef]
  17. B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92, 187401 (2004).
    [CrossRef]
  18. L. Colombin, A. Jelli, J. Riga, J. J. Pireaux, and J. Verbist, “Penetration depth of tin in float glass,” J. Non-Cryst. Solids 24, 253–258 (1977).
    [CrossRef]
  19. D. Kitriotis and L. D. Merkle, “Multiple pulse laser-induced damage phenomena in silicates,” Appl. Opt. 28, 949–958 (1989).
    [CrossRef]
  20. J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654 (2010).
    [CrossRef]

2012

T. Rajabi, V. Huck, R. Ahrens, M. Apfel, S. Kim, S. Schneider, and A. Guber, “Development of a novel two-channel microfluidic system for biomedical applications in cancer research,” Biomed. Tech. 57, 921–922 (2012).
[CrossRef]

2011

H. Nishiyama, M. Mizoshiri, Y. Hirata, and J. Nishii, “Fabrication of SiO2 hybrid microlens structures using femtosecond laser nonlinear lithography,” IOP Conf. Ser.: Mater. Sci. Eng. 18, 072011 (2011).
[CrossRef]

P. Schwaller, S. Zehnder, U. von Arx, and B. Neuenschwander, “A novel model for the mechanism of laser-induced back side wet etching in aqueous Cu solutions using ns pulses at 1064  nm,” Phys. Procedia 12B, 188–194 (2011).

2010

D. Nieto, M. T. Flores-Arias, G. O’Connor, and C. Gomez-Reino, “A laser direct-write technique for fabricating microlens arrays on soda lime glass with a Nd:YVO4 laser,” Appl. Opt. 49, 4979–4983 (2010).
[CrossRef]

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654 (2010).
[CrossRef]

2009

M. T. Flores-Arias, A. Castelo, C. Gomez-Reino, and G. F. de la Fuente, “Phase diffractive optical gratings on glass substrates by laser ablation,” Opt. Commun. 282, 1175–1178 (2009).
[CrossRef]

2008

J. Ihlemann, “Micro patterning of fused silica by laser ablation mediated by solid coating absorption,” Appl. Phys. A 93, 65–68 (2008).
[CrossRef]

2007

G. Kopitkovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, “Laser induced backside wet etching: mechanisms and fabrication of micro-optical elements,” J. Phys. Conf. Ser. 59, 526–532 (2007).
[CrossRef]

T. Lippert, A. Yabe, and A. Wokaun, “Laser ablation of doped polymer systems,” Adv. Mater. 9, 105–119 (2007).
[CrossRef]

B. Hopp, Cs. Vass, and T. Smausz, “Laser induced backside dry etching of transparent materials,” Appl. Surf. Sci. 253, 7922–7925 (2007).
[CrossRef]

2005

2004

M. S. Giridhar, K. Seong, A. Izgen, P. Khulbe, N. Peyghambarian, and M. Mansuripur, “Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices,” Appl. Opt. 43, 4584–4589 (2004).
[CrossRef]

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007–2009 (2004).
[CrossRef]

K. Bang Lee and L. Lin, “Surface micromachined glass and polysilicon microchannels using MUMPs for BioMEMS applications,” Sens. Actuators A 111, 44–50 (2004).
[CrossRef]

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys. A 79, 1001–1003 (2004).
[CrossRef]

B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92, 187401 (2004).
[CrossRef]

2000

D. Martin Knotter, “Etching mechanism of vitreous silicon dioxide in HF-based solutions,” J. Am. Chem. Soc. 122, 4345–4351 (2000).
[CrossRef]

1999

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys. A 69, S763–S766 (1999).
[CrossRef]

1989

1977

L. Colombin, A. Jelli, J. Riga, J. J. Pireaux, and J. Verbist, “Penetration depth of tin in float glass,” J. Non-Cryst. Solids 24, 253–258 (1977).
[CrossRef]

Ahrens, R.

T. Rajabi, V. Huck, R. Ahrens, M. Apfel, S. Kim, S. Schneider, and A. Guber, “Development of a novel two-channel microfluidic system for biomedical applications in cancer research,” Biomed. Tech. 57, 921–922 (2012).
[CrossRef]

Apfel, M.

T. Rajabi, V. Huck, R. Ahrens, M. Apfel, S. Kim, S. Schneider, and A. Guber, “Development of a novel two-channel microfluidic system for biomedical applications in cancer research,” Biomed. Tech. 57, 921–922 (2012).
[CrossRef]

Bang Lee, K.

K. Bang Lee and L. Lin, “Surface micromachined glass and polysilicon microchannels using MUMPs for BioMEMS applications,” Sens. Actuators A 111, 44–50 (2004).
[CrossRef]

Bonse, J.

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys. A 69, S763–S766 (1999).
[CrossRef]

Castelo, A.

M. T. Flores-Arias, A. Castelo, C. Gomez-Reino, and G. F. de la Fuente, “Phase diffractive optical gratings on glass substrates by laser ablation,” Opt. Commun. 282, 1175–1178 (2009).
[CrossRef]

Cheng, Y.

Chung, J.-Y.

Colombin, L.

L. Colombin, A. Jelli, J. Riga, J. J. Pireaux, and J. Verbist, “Penetration depth of tin in float glass,” J. Non-Cryst. Solids 24, 253–258 (1977).
[CrossRef]

David, C.

G. Kopitkovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, “Laser induced backside wet etching: mechanisms and fabrication of micro-optical elements,” J. Phys. Conf. Ser. 59, 526–532 (2007).
[CrossRef]

de la Fuente, G. F.

M. T. Flores-Arias, A. Castelo, C. Gomez-Reino, and G. F. de la Fuente, “Phase diffractive optical gratings on glass substrates by laser ablation,” Opt. Commun. 282, 1175–1178 (2009).
[CrossRef]

Fan, W.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654 (2010).
[CrossRef]

Feng, G.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654 (2010).
[CrossRef]

Flores-Arias, M. T.

D. Nieto, M. T. Flores-Arias, G. O’Connor, and C. Gomez-Reino, “A laser direct-write technique for fabricating microlens arrays on soda lime glass with a Nd:YVO4 laser,” Appl. Opt. 49, 4979–4983 (2010).
[CrossRef]

M. T. Flores-Arias, A. Castelo, C. Gomez-Reino, and G. F. de la Fuente, “Phase diffractive optical gratings on glass substrates by laser ablation,” Opt. Commun. 282, 1175–1178 (2009).
[CrossRef]

Fu, Y.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654 (2010).
[CrossRef]

Giridhar, M. S.

Gomez-Reino, C.

D. Nieto, M. T. Flores-Arias, G. O’Connor, and C. Gomez-Reino, “A laser direct-write technique for fabricating microlens arrays on soda lime glass with a Nd:YVO4 laser,” Appl. Opt. 49, 4979–4983 (2010).
[CrossRef]

M. T. Flores-Arias, A. Castelo, C. Gomez-Reino, and G. F. de la Fuente, “Phase diffractive optical gratings on glass substrates by laser ablation,” Opt. Commun. 282, 1175–1178 (2009).
[CrossRef]

Gomi, Y.

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys. A 79, 1001–1003 (2004).
[CrossRef]

Guber, A.

T. Rajabi, V. Huck, R. Ahrens, M. Apfel, S. Kim, S. Schneider, and A. Guber, “Development of a novel two-channel microfluidic system for biomedical applications in cancer research,” Biomed. Tech. 57, 921–922 (2012).
[CrossRef]

Han, J.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654 (2010).
[CrossRef]

Hanada, Y.

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys. A 79, 1001–1003 (2004).
[CrossRef]

Hirata, Y.

H. Nishiyama, M. Mizoshiri, Y. Hirata, and J. Nishii, “Fabrication of SiO2 hybrid microlens structures using femtosecond laser nonlinear lithography,” IOP Conf. Ser.: Mater. Sci. Eng. 18, 072011 (2011).
[CrossRef]

Hopp, B.

B. Hopp, Cs. Vass, and T. Smausz, “Laser induced backside dry etching of transparent materials,” Appl. Surf. Sci. 253, 7922–7925 (2007).
[CrossRef]

Huck, V.

T. Rajabi, V. Huck, R. Ahrens, M. Apfel, S. Kim, S. Schneider, and A. Guber, “Development of a novel two-channel microfluidic system for biomedical applications in cancer research,” Biomed. Tech. 57, 921–922 (2012).
[CrossRef]

Ihlemann, J.

J. Ihlemann, “Micro patterning of fused silica by laser ablation mediated by solid coating absorption,” Appl. Phys. A 93, 65–68 (2008).
[CrossRef]

Izgen, A.

Jelli, A.

L. Colombin, A. Jelli, J. Riga, J. J. Pireaux, and J. Verbist, “Penetration depth of tin in float glass,” J. Non-Cryst. Solids 24, 253–258 (1977).
[CrossRef]

Kautek, W.

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys. A 69, S763–S766 (1999).
[CrossRef]

Khulbe, P.

Kim, S.

T. Rajabi, V. Huck, R. Ahrens, M. Apfel, S. Kim, S. Schneider, and A. Guber, “Development of a novel two-channel microfluidic system for biomedical applications in cancer research,” Biomed. Tech. 57, 921–922 (2012).
[CrossRef]

Kitriotis, D.

Kopitkovas, G.

G. Kopitkovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, “Laser induced backside wet etching: mechanisms and fabrication of micro-optical elements,” J. Phys. Conf. Ser. 59, 526–532 (2007).
[CrossRef]

Krüger, J.

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys. A 69, S763–S766 (1999).
[CrossRef]

Lee, M.-S.

Lee, S.-M.

Li, Y.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654 (2010).
[CrossRef]

Lin, L.

K. Bang Lee and L. Lin, “Surface micromachined glass and polysilicon microchannels using MUMPs for BioMEMS applications,” Sens. Actuators A 111, 44–50 (2004).
[CrossRef]

Lippert, T.

G. Kopitkovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, “Laser induced backside wet etching: mechanisms and fabrication of micro-optical elements,” J. Phys. Conf. Ser. 59, 526–532 (2007).
[CrossRef]

T. Lippert, A. Yabe, and A. Wokaun, “Laser ablation of doped polymer systems,” Adv. Mater. 9, 105–119 (2007).
[CrossRef]

Mansuripur, M.

Martin Knotter, D.

D. Martin Knotter, “Etching mechanism of vitreous silicon dioxide in HF-based solutions,” J. Am. Chem. Soc. 122, 4345–4351 (2000).
[CrossRef]

Merkle, L. D.

Midorikawa, K.

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys. A 79, 1001–1003 (2004).
[CrossRef]

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007–2009 (2004).
[CrossRef]

Miyamoto, I.

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys. A 79, 1001–1003 (2004).
[CrossRef]

Mizoshiri, M.

H. Nishiyama, M. Mizoshiri, Y. Hirata, and J. Nishii, “Fabrication of SiO2 hybrid microlens structures using femtosecond laser nonlinear lithography,” IOP Conf. Ser.: Mater. Sci. Eng. 18, 072011 (2011).
[CrossRef]

Neuenschwander, B.

P. Schwaller, S. Zehnder, U. von Arx, and B. Neuenschwander, “A novel model for the mechanism of laser-induced back side wet etching in aqueous Cu solutions using ns pulses at 1064  nm,” Phys. Procedia 12B, 188–194 (2011).

Nieto, D.

Nishii, J.

H. Nishiyama, M. Mizoshiri, Y. Hirata, and J. Nishii, “Fabrication of SiO2 hybrid microlens structures using femtosecond laser nonlinear lithography,” IOP Conf. Ser.: Mater. Sci. Eng. 18, 072011 (2011).
[CrossRef]

Nishiyama, H.

H. Nishiyama, M. Mizoshiri, Y. Hirata, and J. Nishii, “Fabrication of SiO2 hybrid microlens structures using femtosecond laser nonlinear lithography,” IOP Conf. Ser.: Mater. Sci. Eng. 18, 072011 (2011).
[CrossRef]

O’Connor, G.

Otsuki, O.

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys. A 79, 1001–1003 (2004).
[CrossRef]

Peyghambarian, N.

Pireaux, J. J.

L. Colombin, A. Jelli, J. Riga, J. J. Pireaux, and J. Verbist, “Penetration depth of tin in float glass,” J. Non-Cryst. Solids 24, 253–258 (1977).
[CrossRef]

Rajabi, T.

T. Rajabi, V. Huck, R. Ahrens, M. Apfel, S. Kim, S. Schneider, and A. Guber, “Development of a novel two-channel microfluidic system for biomedical applications in cancer research,” Biomed. Tech. 57, 921–922 (2012).
[CrossRef]

Rethfeld, B.

B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92, 187401 (2004).
[CrossRef]

Riga, J.

L. Colombin, A. Jelli, J. Riga, J. J. Pireaux, and J. Verbist, “Penetration depth of tin in float glass,” J. Non-Cryst. Solids 24, 253–258 (1977).
[CrossRef]

Rudolph, P.

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys. A 69, S763–S766 (1999).
[CrossRef]

Schneider, S.

T. Rajabi, V. Huck, R. Ahrens, M. Apfel, S. Kim, S. Schneider, and A. Guber, “Development of a novel two-channel microfluidic system for biomedical applications in cancer research,” Biomed. Tech. 57, 921–922 (2012).
[CrossRef]

Schwaller, P.

P. Schwaller, S. Zehnder, U. von Arx, and B. Neuenschwander, “A novel model for the mechanism of laser-induced back side wet etching in aqueous Cu solutions using ns pulses at 1064  nm,” Phys. Procedia 12B, 188–194 (2011).

Seong, K.

Smausz, T.

B. Hopp, Cs. Vass, and T. Smausz, “Laser induced backside dry etching of transparent materials,” Appl. Surf. Sci. 253, 7922–7925 (2007).
[CrossRef]

Sohn, I.-B.

Sugioka, K.

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007–2009 (2004).
[CrossRef]

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys. A 79, 1001–1003 (2004).
[CrossRef]

Vass, Cs.

B. Hopp, Cs. Vass, and T. Smausz, “Laser induced backside dry etching of transparent materials,” Appl. Surf. Sci. 253, 7922–7925 (2007).
[CrossRef]

Venturini, J.

G. Kopitkovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, “Laser induced backside wet etching: mechanisms and fabrication of micro-optical elements,” J. Phys. Conf. Ser. 59, 526–532 (2007).
[CrossRef]

Verbist, J.

L. Colombin, A. Jelli, J. Riga, J. J. Pireaux, and J. Verbist, “Penetration depth of tin in float glass,” J. Non-Cryst. Solids 24, 253–258 (1977).
[CrossRef]

von Arx, U.

P. Schwaller, S. Zehnder, U. von Arx, and B. Neuenschwander, “A novel model for the mechanism of laser-induced back side wet etching in aqueous Cu solutions using ns pulses at 1064  nm,” Phys. Procedia 12B, 188–194 (2011).

Wokaun, A.

T. Lippert, A. Yabe, and A. Wokaun, “Laser ablation of doped polymer systems,” Adv. Mater. 9, 105–119 (2007).
[CrossRef]

G. Kopitkovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, “Laser induced backside wet etching: mechanisms and fabrication of micro-optical elements,” J. Phys. Conf. Ser. 59, 526–532 (2007).
[CrossRef]

Woo, J.-S.

Xie, X.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654 (2010).
[CrossRef]

Yabe, A.

T. Lippert, A. Yabe, and A. Wokaun, “Laser ablation of doped polymer systems,” Adv. Mater. 9, 105–119 (2007).
[CrossRef]

Yamaoka, H.

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys. A 79, 1001–1003 (2004).
[CrossRef]

Yang, L.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654 (2010).
[CrossRef]

Zehnder, S.

P. Schwaller, S. Zehnder, U. von Arx, and B. Neuenschwander, “A novel model for the mechanism of laser-induced back side wet etching in aqueous Cu solutions using ns pulses at 1064  nm,” Phys. Procedia 12B, 188–194 (2011).

Zhang, Q.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654 (2010).
[CrossRef]

Zhou, S.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654 (2010).
[CrossRef]

Zhu, Q.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654 (2010).
[CrossRef]

Adv. Mater.

T. Lippert, A. Yabe, and A. Wokaun, “Laser ablation of doped polymer systems,” Adv. Mater. 9, 105–119 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. A

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys. A 79, 1001–1003 (2004).
[CrossRef]

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys. A 69, S763–S766 (1999).
[CrossRef]

J. Ihlemann, “Micro patterning of fused silica by laser ablation mediated by solid coating absorption,” Appl. Phys. A 93, 65–68 (2008).
[CrossRef]

Appl. Surf. Sci.

B. Hopp, Cs. Vass, and T. Smausz, “Laser induced backside dry etching of transparent materials,” Appl. Surf. Sci. 253, 7922–7925 (2007).
[CrossRef]

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654 (2010).
[CrossRef]

Biomed. Tech.

T. Rajabi, V. Huck, R. Ahrens, M. Apfel, S. Kim, S. Schneider, and A. Guber, “Development of a novel two-channel microfluidic system for biomedical applications in cancer research,” Biomed. Tech. 57, 921–922 (2012).
[CrossRef]

IOP Conf. Ser.: Mater. Sci. Eng.

H. Nishiyama, M. Mizoshiri, Y. Hirata, and J. Nishii, “Fabrication of SiO2 hybrid microlens structures using femtosecond laser nonlinear lithography,” IOP Conf. Ser.: Mater. Sci. Eng. 18, 072011 (2011).
[CrossRef]

J. Am. Chem. Soc.

D. Martin Knotter, “Etching mechanism of vitreous silicon dioxide in HF-based solutions,” J. Am. Chem. Soc. 122, 4345–4351 (2000).
[CrossRef]

J. Non-Cryst. Solids

L. Colombin, A. Jelli, J. Riga, J. J. Pireaux, and J. Verbist, “Penetration depth of tin in float glass,” J. Non-Cryst. Solids 24, 253–258 (1977).
[CrossRef]

J. Phys. Conf. Ser.

G. Kopitkovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, “Laser induced backside wet etching: mechanisms and fabrication of micro-optical elements,” J. Phys. Conf. Ser. 59, 526–532 (2007).
[CrossRef]

Opt. Commun.

M. T. Flores-Arias, A. Castelo, C. Gomez-Reino, and G. F. de la Fuente, “Phase diffractive optical gratings on glass substrates by laser ablation,” Opt. Commun. 282, 1175–1178 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Procedia

P. Schwaller, S. Zehnder, U. von Arx, and B. Neuenschwander, “A novel model for the mechanism of laser-induced back side wet etching in aqueous Cu solutions using ns pulses at 1064  nm,” Phys. Procedia 12B, 188–194 (2011).

Phys. Rev. Lett.

B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92, 187401 (2004).
[CrossRef]

Sens. Actuators A

K. Bang Lee and L. Lin, “Surface micromachined glass and polysilicon microchannels using MUMPs for BioMEMS applications,” Sens. Actuators A 111, 44–50 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics