Abstract

Red/blue shifts of laser-induced fluorescence (LIF) are investigated using several guest dielectric nanoscatterers, such as TiO2, ZnO, Al2O3, and SiO2, in the host Rd6G, RdB, Coumarin 4, and Coumarin 7 ethanolic solutions. A couple of inflection points are identified varying nanoparticle (NP) density into dye solutions based on LIF spectroscopy. The inflection of the spectral shift exhibits that the suspension of NPs in dye solutions significantly involves a couple of competitive chemical and optical mechanisms during photon traveling in scattering media regarding ballistic and diffusive transport. It is shown that the low, medium, and high NP additives in fluorescent suspension induce blue, red, and blue spectral shifts, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
    [CrossRef]
  2. R. C. Polson and Z. V. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” J. Opt. 12, 024010 (2010).
    [CrossRef]
  3. P. Parvin, S. Z. Shoursheini, F. Khalilinejad, A. Bavali, M. Moshgel Gosha, and B. Mansouri, “Simultaneous fluorescence and breakdown spectroscopy of fresh and aging transformer oil immersed in paper using ArF excimer laser,” Opt. Lasers Eng. 50, 1672–1676 (2012).
    [CrossRef]
  4. M. S. Kim, A. M. Lefcourt, and Y. Chen, “Multispectral laser-induced fluorescence imaging system for large biological samples,” Appl. Opt. 42, 3927–3934 (2003).
    [CrossRef]
  5. L. Palombi, D. Alderighi, G. Cecchi, V. Raimondi, G. Toci, and D. Lognoli, “A fluorescence LIDAR sensor for hyper-spectral time-resolved remote sensing and mapping,” Opt. Express 21, 14736–14746 (2013).
    [CrossRef]
  6. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
    [CrossRef]
  7. J. D. Meier, H. Xie, Y. Sun, Y. Sun, N. Hatami, B. Poirier, L. Marcu, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol. Head Neck Surg. 142, 838–844 (2010).
    [CrossRef]
  8. M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photon. Rev. 7, 646–662 (2013).
  9. M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75, 137–147 (2010).
    [CrossRef]
  10. A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44, 142–148 (2010).
  11. S. A. Ahmed, Z. Zang, K. M. Yoo, M. A. Ali, and R. R. Alfano, “Effect of multiple light scattering and self-absorption on the fluorescence and excitation spectra of dyes in random media,” Appl. Opt. 33, 2746–2750 (1994).
    [CrossRef]
  12. K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, “Excitation power dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media,” Phys. Rev. B 59, 50–53 (1999).
    [CrossRef]
  13. H. Z. Wang, F. L. Zhao, Y. J. He, X. G. Zheng, X. G. Huang, and M. M. Wu, “Low-threshold lasing of a rhodamine dye solution embedded with nanoparticle fractal aggregates,” Opt. Lett. 23, 777–779 (1998).
    [CrossRef]
  14. W. L. Sha, C. H. Liu, F. Liu, and R. R. Alfano, “Competition between two lasing modes of sulforhodamine 640 in highly scattering media,” Opt. Lett. 21, 1277–1279 (1996).
    [CrossRef]
  15. G. Beckering, S. J. Zilker, and D. Haarer, “Spectral measurements of the emission from highly scattering gain media,” Opt. Lett. 22, 1427–1429 (1997).
    [CrossRef]
  16. A. M. Brito-Silva, A. Galembeck, A. L. Gomes, A. J. Jesus-Silva, and C. B. Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010).
    [CrossRef]
  17. F. Shuzhen, Z. Xingyu, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D 42, 015105 (2009).
    [CrossRef]
  18. J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285, 5276–5282 (2012).
    [CrossRef]
  19. K. Huang and A. Rhys, “Theory of light absorption and non radiative transitions in F-centres,” Proc. R. Soc. A 204, 406–423 (1950).
    [CrossRef]
  20. J. R. Lakowicz, in Principles of Fluorescence Spectroscopy (Springer, 2006), p. 208.
  21. C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  22. Y. Zhao and L. Ma, “Applicable range of the Rayleigh-Debye-Gans theory for calculating the scattering matrix of soot aggregates,” Appl. Opt. 48, 591–597 (2009).
    [CrossRef]
  23. J. K. Percus and G. Yevic, “Analysis of classical statistical mechanics by means of collective coordinates,” J. Phys. Rev. 110, 1–13 (1958).
  24. K. Busch, C. M. Soukoulis, and E. N. Economou, “Transport and scattering mean free paths of classical waves,” Phys. Rev. B 50, 93–98 (1994).
    [CrossRef]
  25. F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light,” Nature 398, 206–207 (1999).
    [CrossRef]
  26. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  27. P. Parvin, S. Eftekharnoori, and H. R. Dehghanpour, “Monte Carlo simulation of photon densities inside the dermis in LLLT (low level laser therapy),” Opt. Spectrosc. 107, 486–490 (2009).
    [CrossRef]
  28. F. L. Arbeloa, P. R. Ojeda, and I. L. Arbeloa, “Fluorescence self-quenching of the molecular forms of rhodamine B in aqueous and ethanolic solution,” J. Lumin. 44, 105–112 (1989).
    [CrossRef]
  29. M. A. Ali, J. Moghaddasi, and S. A. Ahmed, “Optical properties of cooled rhodamine B in ethanol,” J. Opt. Soc. Am. B 8, 1807–1810 (1991).
    [CrossRef]
  30. R. Vogel, P. Meredith, M. D. Harvey, and H. Rubinsztein-Dunlop, “Absorption and fluorescence spectroscopy of rhodamine 6G in titanium dioxide nanocomposites,” Spectrochim. Acta A 60, 245–249 (2004).
  31. A. Penzkofer and W. Leupacher, “Fluorescence behavior of highly concentrated rhodamine 6G solutions,” J. Lumin. 37, 61–72 (1987).
    [CrossRef]
  32. G. S. Beddard, S. Carlin, and R. S. Davidson, “Concerning the fluorescence of some 7-hydroxycoumarins and related compounds,” J. Chem. Soc., Perkin Trans. 2, 262–267 (1977).
  33. R. Zhang, M. Hummelgard, G. Lv, and H. Olin, “Real time monitoring of the drug release of rhodamine B on graphene oxide,” Carbon 49, 1126–1132 (2011).
    [CrossRef]
  34. U. Brackmann, Lambdachrome Laser Dyes, 3rd ed. (Lambda Physik AG, 2000).
  35. M. Keraji, F. Hadavand Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response to discriminate malignant and normal tissues,” Proc. SPIE 8798, 87980A (2013).
    [CrossRef]

2013 (3)

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photon. Rev. 7, 646–662 (2013).

M. Keraji, F. Hadavand Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response to discriminate malignant and normal tissues,” Proc. SPIE 8798, 87980A (2013).
[CrossRef]

L. Palombi, D. Alderighi, G. Cecchi, V. Raimondi, G. Toci, and D. Lognoli, “A fluorescence LIDAR sensor for hyper-spectral time-resolved remote sensing and mapping,” Opt. Express 21, 14736–14746 (2013).
[CrossRef]

2012 (2)

P. Parvin, S. Z. Shoursheini, F. Khalilinejad, A. Bavali, M. Moshgel Gosha, and B. Mansouri, “Simultaneous fluorescence and breakdown spectroscopy of fresh and aging transformer oil immersed in paper using ArF excimer laser,” Opt. Lasers Eng. 50, 1672–1676 (2012).
[CrossRef]

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285, 5276–5282 (2012).
[CrossRef]

2011 (1)

R. Zhang, M. Hummelgard, G. Lv, and H. Olin, “Real time monitoring of the drug release of rhodamine B on graphene oxide,” Carbon 49, 1126–1132 (2011).
[CrossRef]

2010 (5)

J. D. Meier, H. Xie, Y. Sun, Y. Sun, N. Hatami, B. Poirier, L. Marcu, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol. Head Neck Surg. 142, 838–844 (2010).
[CrossRef]

R. C. Polson and Z. V. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” J. Opt. 12, 024010 (2010).
[CrossRef]

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75, 137–147 (2010).
[CrossRef]

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44, 142–148 (2010).

A. M. Brito-Silva, A. Galembeck, A. L. Gomes, A. J. Jesus-Silva, and C. B. Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010).
[CrossRef]

2009 (3)

F. Shuzhen, Z. Xingyu, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D 42, 015105 (2009).
[CrossRef]

P. Parvin, S. Eftekharnoori, and H. R. Dehghanpour, “Monte Carlo simulation of photon densities inside the dermis in LLLT (low level laser therapy),” Opt. Spectrosc. 107, 486–490 (2009).
[CrossRef]

Y. Zhao and L. Ma, “Applicable range of the Rayleigh-Debye-Gans theory for calculating the scattering matrix of soot aggregates,” Appl. Opt. 48, 591–597 (2009).
[CrossRef]

2008 (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[CrossRef]

2004 (2)

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
[CrossRef]

R. Vogel, P. Meredith, M. D. Harvey, and H. Rubinsztein-Dunlop, “Absorption and fluorescence spectroscopy of rhodamine 6G in titanium dioxide nanocomposites,” Spectrochim. Acta A 60, 245–249 (2004).

2003 (1)

1999 (2)

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, “Excitation power dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media,” Phys. Rev. B 59, 50–53 (1999).
[CrossRef]

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light,” Nature 398, 206–207 (1999).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

1994 (2)

1991 (1)

1989 (1)

F. L. Arbeloa, P. R. Ojeda, and I. L. Arbeloa, “Fluorescence self-quenching of the molecular forms of rhodamine B in aqueous and ethanolic solution,” J. Lumin. 44, 105–112 (1989).
[CrossRef]

1987 (1)

A. Penzkofer and W. Leupacher, “Fluorescence behavior of highly concentrated rhodamine 6G solutions,” J. Lumin. 37, 61–72 (1987).
[CrossRef]

1977 (1)

G. S. Beddard, S. Carlin, and R. S. Davidson, “Concerning the fluorescence of some 7-hydroxycoumarins and related compounds,” J. Chem. Soc., Perkin Trans. 2, 262–267 (1977).

1958 (1)

J. K. Percus and G. Yevic, “Analysis of classical statistical mechanics by means of collective coordinates,” J. Phys. Rev. 110, 1–13 (1958).

1950 (1)

K. Huang and A. Rhys, “Theory of light absorption and non radiative transitions in F-centres,” Proc. R. Soc. A 204, 406–423 (1950).
[CrossRef]

Ahmed, S. A.

Alderighi, D.

Alfano, R. R.

Ali, M. A.

Araújo, C. B.

A. M. Brito-Silva, A. Galembeck, A. L. Gomes, A. J. Jesus-Silva, and C. B. Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010).
[CrossRef]

Arbeloa, F. L.

F. L. Arbeloa, P. R. Ojeda, and I. L. Arbeloa, “Fluorescence self-quenching of the molecular forms of rhodamine B in aqueous and ethanolic solution,” J. Lumin. 44, 105–112 (1989).
[CrossRef]

Arbeloa, I. L.

F. L. Arbeloa, P. R. Ojeda, and I. L. Arbeloa, “Fluorescence self-quenching of the molecular forms of rhodamine B in aqueous and ethanolic solution,” J. Lumin. 44, 105–112 (1989).
[CrossRef]

Bavali, A.

M. Keraji, F. Hadavand Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response to discriminate malignant and normal tissues,” Proc. SPIE 8798, 87980A (2013).
[CrossRef]

P. Parvin, S. Z. Shoursheini, F. Khalilinejad, A. Bavali, M. Moshgel Gosha, and B. Mansouri, “Simultaneous fluorescence and breakdown spectroscopy of fresh and aging transformer oil immersed in paper using ArF excimer laser,” Opt. Lasers Eng. 50, 1672–1676 (2012).
[CrossRef]

Beckering, G.

Beddard, G. S.

G. S. Beddard, S. Carlin, and R. S. Davidson, “Concerning the fluorescence of some 7-hydroxycoumarins and related compounds,” J. Chem. Soc., Perkin Trans. 2, 262–267 (1977).

Bellard, E.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44, 142–148 (2010).

Bibette, J.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75, 137–147 (2010).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

Brackmann, U.

U. Brackmann, Lambdachrome Laser Dyes, 3rd ed. (Lambda Physik AG, 2000).

Brito-Silva, A. M.

A. M. Brito-Silva, A. Galembeck, A. L. Gomes, A. J. Jesus-Silva, and C. B. Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010).
[CrossRef]

Busch, K.

K. Busch, C. M. Soukoulis, and E. N. Economou, “Transport and scattering mean free paths of classical waves,” Phys. Rev. B 50, 93–98 (1994).
[CrossRef]

Carlin, S.

G. S. Beddard, S. Carlin, and R. S. Davidson, “Concerning the fluorescence of some 7-hydroxycoumarins and related compounds,” J. Chem. Soc., Perkin Trans. 2, 262–267 (1977).

Cecchi, G.

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Dover, 1960).

Chen, Y.

Chen, Z.

F. Shuzhen, Z. Xingyu, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D 42, 015105 (2009).
[CrossRef]

Coll, J. L.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75, 137–147 (2010).
[CrossRef]

Davidson, R. S.

G. S. Beddard, S. Carlin, and R. S. Davidson, “Concerning the fluorescence of some 7-hydroxycoumarins and related compounds,” J. Chem. Soc., Perkin Trans. 2, 262–267 (1977).

Dehghanpour, H. R.

P. Parvin, S. Eftekharnoori, and H. R. Dehghanpour, “Monte Carlo simulation of photon densities inside the dermis in LLLT (low level laser therapy),” Opt. Spectrosc. 107, 486–490 (2009).
[CrossRef]

Dufort, S.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75, 137–147 (2010).
[CrossRef]

Ecochard, V.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44, 142–148 (2010).

Economou, E. N.

K. Busch, C. M. Soukoulis, and E. N. Economou, “Transport and scattering mean free paths of classical waves,” Phys. Rev. B 50, 93–98 (1994).
[CrossRef]

Eftekharnoori, S.

P. Parvin, S. Eftekharnoori, and H. R. Dehghanpour, “Monte Carlo simulation of photon densities inside the dermis in LLLT (low level laser therapy),” Opt. Spectrosc. 107, 486–490 (2009).
[CrossRef]

Farwell, D. G.

J. D. Meier, H. Xie, Y. Sun, Y. Sun, N. Hatami, B. Poirier, L. Marcu, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol. Head Neck Surg. 142, 838–844 (2010).
[CrossRef]

Feng, G.

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285, 5276–5282 (2012).
[CrossRef]

Fu, C. Y.

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photon. Rev. 7, 646–662 (2013).

Galembeck, A.

A. M. Brito-Silva, A. Galembeck, A. L. Gomes, A. J. Jesus-Silva, and C. B. Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010).
[CrossRef]

Golzio, M.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44, 142–148 (2010).

Gomes, A. L.

A. M. Brito-Silva, A. Galembeck, A. L. Gomes, A. J. Jesus-Silva, and C. B. Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010).
[CrossRef]

Goutayer, M.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75, 137–147 (2010).
[CrossRef]

Haarer, D.

Hadavand Mirzaee, F.

M. Keraji, F. Hadavand Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response to discriminate malignant and normal tissues,” Proc. SPIE 8798, 87980A (2013).
[CrossRef]

Harvey, M. D.

R. Vogel, P. Meredith, M. D. Harvey, and H. Rubinsztein-Dunlop, “Absorption and fluorescence spectroscopy of rhodamine 6G in titanium dioxide nanocomposites,” Spectrochim. Acta A 60, 245–249 (2004).

Hatami, N.

J. D. Meier, H. Xie, Y. Sun, Y. Sun, N. Hatami, B. Poirier, L. Marcu, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol. Head Neck Surg. 142, 838–844 (2010).
[CrossRef]

He, Y. J.

Heinrich, E.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75, 137–147 (2010).
[CrossRef]

Ho, C. J. H.

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photon. Rev. 7, 646–662 (2013).

Huang, K.

K. Huang and A. Rhys, “Theory of light absorption and non radiative transitions in F-centres,” Proc. R. Soc. A 204, 406–423 (1950).
[CrossRef]

Huang, X. G.

Huffmann, D. R.

C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

Hummelgard, M.

R. Zhang, M. Hummelgard, G. Lv, and H. Olin, “Real time monitoring of the drug release of rhodamine B on graphene oxide,” Carbon 49, 1126–1132 (2011).
[CrossRef]

Jesus-Silva, A. J.

A. M. Brito-Silva, A. Galembeck, A. L. Gomes, A. J. Jesus-Silva, and C. B. Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010).
[CrossRef]

Josserand, V.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75, 137–147 (2010).
[CrossRef]

Keraji, M.

M. Keraji, F. Hadavand Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response to discriminate malignant and normal tissues,” Proc. SPIE 8798, 87980A (2013).
[CrossRef]

Khalilinejad, F.

P. Parvin, S. Z. Shoursheini, F. Khalilinejad, A. Bavali, M. Moshgel Gosha, and B. Mansouri, “Simultaneous fluorescence and breakdown spectroscopy of fresh and aging transformer oil immersed in paper using ArF excimer laser,” Opt. Lasers Eng. 50, 1672–1676 (2012).
[CrossRef]

Kim, M. S.

Lakowicz, J. R.

J. R. Lakowicz, in Principles of Fluorescence Spectroscopy (Springer, 2006), p. 208.

Lefcourt, A. M.

Lenke, R.

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light,” Nature 398, 206–207 (1999).
[CrossRef]

Leupacher, W.

A. Penzkofer and W. Leupacher, “Fluorescence behavior of highly concentrated rhodamine 6G solutions,” J. Lumin. 37, 61–72 (1987).
[CrossRef]

Liu, C. H.

Liu, F.

Lognoli, D.

Lv, G.

R. Zhang, M. Hummelgard, G. Lv, and H. Olin, “Real time monitoring of the drug release of rhodamine B on graphene oxide,” Carbon 49, 1126–1132 (2011).
[CrossRef]

Ma, L.

Mansouri, B.

P. Parvin, S. Z. Shoursheini, F. Khalilinejad, A. Bavali, M. Moshgel Gosha, and B. Mansouri, “Simultaneous fluorescence and breakdown spectroscopy of fresh and aging transformer oil immersed in paper using ArF excimer laser,” Opt. Lasers Eng. 50, 1672–1676 (2012).
[CrossRef]

Marcu, L.

J. D. Meier, H. Xie, Y. Sun, Y. Sun, N. Hatami, B. Poirier, L. Marcu, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol. Head Neck Surg. 142, 838–844 (2010).
[CrossRef]

Maret, G.

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light,” Nature 398, 206–207 (1999).
[CrossRef]

Matsumoto, M.

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, “Excitation power dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media,” Phys. Rev. B 59, 50–53 (1999).
[CrossRef]

Mehravaran, H.

M. Keraji, F. Hadavand Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response to discriminate malignant and normal tissues,” Proc. SPIE 8798, 87980A (2013).
[CrossRef]

Meier, J. D.

J. D. Meier, H. Xie, Y. Sun, Y. Sun, N. Hatami, B. Poirier, L. Marcu, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol. Head Neck Surg. 142, 838–844 (2010).
[CrossRef]

Meredith, P.

R. Vogel, P. Meredith, M. D. Harvey, and H. Rubinsztein-Dunlop, “Absorption and fluorescence spectroscopy of rhodamine 6G in titanium dioxide nanocomposites,” Spectrochim. Acta A 60, 245–249 (2004).

Moghaddasi, J.

Moshgel Gosha, M.

P. Parvin, S. Z. Shoursheini, F. Khalilinejad, A. Bavali, M. Moshgel Gosha, and B. Mansouri, “Simultaneous fluorescence and breakdown spectroscopy of fresh and aging transformer oil immersed in paper using ArF excimer laser,” Opt. Lasers Eng. 50, 1672–1676 (2012).
[CrossRef]

Ojeda, P. R.

F. L. Arbeloa, P. R. Ojeda, and I. L. Arbeloa, “Fluorescence self-quenching of the molecular forms of rhodamine B in aqueous and ethanolic solution,” J. Lumin. 44, 105–112 (1989).
[CrossRef]

Olin, H.

R. Zhang, M. Hummelgard, G. Lv, and H. Olin, “Real time monitoring of the drug release of rhodamine B on graphene oxide,” Carbon 49, 1126–1132 (2011).
[CrossRef]

Olivo, M.

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photon. Rev. 7, 646–662 (2013).

Paganin-Gioanni, A.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44, 142–148 (2010).

Palombi, L.

Paquereau, L.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44, 142–148 (2010).

Parvin, P.

M. Keraji, F. Hadavand Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response to discriminate malignant and normal tissues,” Proc. SPIE 8798, 87980A (2013).
[CrossRef]

P. Parvin, S. Z. Shoursheini, F. Khalilinejad, A. Bavali, M. Moshgel Gosha, and B. Mansouri, “Simultaneous fluorescence and breakdown spectroscopy of fresh and aging transformer oil immersed in paper using ArF excimer laser,” Opt. Lasers Eng. 50, 1672–1676 (2012).
[CrossRef]

P. Parvin, S. Eftekharnoori, and H. R. Dehghanpour, “Monte Carlo simulation of photon densities inside the dermis in LLLT (low level laser therapy),” Opt. Spectrosc. 107, 486–490 (2009).
[CrossRef]

Penzkofer, A.

A. Penzkofer and W. Leupacher, “Fluorescence behavior of highly concentrated rhodamine 6G solutions,” J. Lumin. 37, 61–72 (1987).
[CrossRef]

Percus, J. K.

J. K. Percus and G. Yevic, “Analysis of classical statistical mechanics by means of collective coordinates,” J. Phys. Rev. 110, 1–13 (1958).

Poirier, B.

J. D. Meier, H. Xie, Y. Sun, Y. Sun, N. Hatami, B. Poirier, L. Marcu, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol. Head Neck Surg. 142, 838–844 (2010).
[CrossRef]

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” J. Opt. 12, 024010 (2010).
[CrossRef]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
[CrossRef]

Qingpu, W.

F. Shuzhen, Z. Xingyu, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D 42, 015105 (2009).
[CrossRef]

Raimondi, V.

Rhys, A.

K. Huang and A. Rhys, “Theory of light absorption and non radiative transitions in F-centres,” Proc. R. Soc. A 204, 406–423 (1950).
[CrossRef]

Royère, A.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75, 137–147 (2010).
[CrossRef]

Rubinsztein-Dunlop, H.

R. Vogel, P. Meredith, M. D. Harvey, and H. Rubinsztein-Dunlop, “Absorption and fluorescence spectroscopy of rhodamine 6G in titanium dioxide nanocomposites,” Spectrochim. Acta A 60, 245–249 (2004).

Ruijun, L.

F. Shuzhen, Z. Xingyu, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D 42, 015105 (2009).
[CrossRef]

Scheffold, F.

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light,” Nature 398, 206–207 (1999).
[CrossRef]

Sha, W. L.

Shoursheini, S. Z.

P. Parvin, S. Z. Shoursheini, F. Khalilinejad, A. Bavali, M. Moshgel Gosha, and B. Mansouri, “Simultaneous fluorescence and breakdown spectroscopy of fresh and aging transformer oil immersed in paper using ArF excimer laser,” Opt. Lasers Eng. 50, 1672–1676 (2012).
[CrossRef]

Shuzhen, F.

F. Shuzhen, Z. Xingyu, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D 42, 015105 (2009).
[CrossRef]

Song, Y.

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285, 5276–5282 (2012).
[CrossRef]

Soukoulis, C. M.

K. Busch, C. M. Soukoulis, and E. N. Economou, “Transport and scattering mean free paths of classical waves,” Phys. Rev. B 50, 93–98 (1994).
[CrossRef]

Sun, Y.

J. D. Meier, H. Xie, Y. Sun, Y. Sun, N. Hatami, B. Poirier, L. Marcu, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol. Head Neck Surg. 142, 838–844 (2010).
[CrossRef]

J. D. Meier, H. Xie, Y. Sun, Y. Sun, N. Hatami, B. Poirier, L. Marcu, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol. Head Neck Surg. 142, 838–844 (2010).
[CrossRef]

Talukder, M. A. I.

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, “Excitation power dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media,” Phys. Rev. B 59, 50–53 (1999).
[CrossRef]

Teissié, J.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44, 142–148 (2010).

Texier, I.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75, 137–147 (2010).
[CrossRef]

Toci, G.

Tomita, M.

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, “Excitation power dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media,” Phys. Rev. B 59, 50–53 (1999).
[CrossRef]

Totsuka, K.

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, “Excitation power dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media,” Phys. Rev. B 59, 50–53 (1999).
[CrossRef]

Tweer, R.

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light,” Nature 398, 206–207 (1999).
[CrossRef]

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” J. Opt. 12, 024010 (2010).
[CrossRef]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
[CrossRef]

Vinet, F.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75, 137–147 (2010).
[CrossRef]

Vogel, R.

R. Vogel, P. Meredith, M. D. Harvey, and H. Rubinsztein-Dunlop, “Absorption and fluorescence spectroscopy of rhodamine 6G in titanium dioxide nanocomposites,” Spectrochim. Acta A 60, 245–249 (2004).

Wang, H. Z.

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[CrossRef]

Wu, M. M.

Xie, H.

J. D. Meier, H. Xie, Y. Sun, Y. Sun, N. Hatami, B. Poirier, L. Marcu, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol. Head Neck Surg. 142, 838–844 (2010).
[CrossRef]

Xingyu, Z.

F. Shuzhen, Z. Xingyu, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D 42, 015105 (2009).
[CrossRef]

Yang, C.

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285, 5276–5282 (2012).
[CrossRef]

Yang, L.

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285, 5276–5282 (2012).
[CrossRef]

Yao, K.

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285, 5276–5282 (2012).
[CrossRef]

Yevic, G.

J. K. Percus and G. Yevic, “Analysis of classical statistical mechanics by means of collective coordinates,” J. Phys. Rev. 110, 1–13 (1958).

Yi, J.

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285, 5276–5282 (2012).
[CrossRef]

Yoo, K. M.

Zang, Z.

Zhang, R.

R. Zhang, M. Hummelgard, G. Lv, and H. Olin, “Real time monitoring of the drug release of rhodamine B on graphene oxide,” Carbon 49, 1126–1132 (2011).
[CrossRef]

Zhao, F. L.

Zhao, Y.

Zheng, X. G.

Zhengping, W.

F. Shuzhen, Z. Xingyu, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D 42, 015105 (2009).
[CrossRef]

Zhou, S.

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285, 5276–5282 (2012).
[CrossRef]

Zilker, S. J.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
[CrossRef]

Carbon (1)

R. Zhang, M. Hummelgard, G. Lv, and H. Olin, “Real time monitoring of the drug release of rhodamine B on graphene oxide,” Carbon 49, 1126–1132 (2011).
[CrossRef]

Eur. J. Pharm. Biopharm. (1)

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75, 137–147 (2010).
[CrossRef]

J. Appl. Phys. (1)

A. M. Brito-Silva, A. Galembeck, A. L. Gomes, A. J. Jesus-Silva, and C. B. Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010).
[CrossRef]

J. Chem. Soc., Perkin Trans. (1)

G. S. Beddard, S. Carlin, and R. S. Davidson, “Concerning the fluorescence of some 7-hydroxycoumarins and related compounds,” J. Chem. Soc., Perkin Trans. 2, 262–267 (1977).

J. Lumin. (2)

A. Penzkofer and W. Leupacher, “Fluorescence behavior of highly concentrated rhodamine 6G solutions,” J. Lumin. 37, 61–72 (1987).
[CrossRef]

F. L. Arbeloa, P. R. Ojeda, and I. L. Arbeloa, “Fluorescence self-quenching of the molecular forms of rhodamine B in aqueous and ethanolic solution,” J. Lumin. 44, 105–112 (1989).
[CrossRef]

J. Opt. (1)

R. C. Polson and Z. V. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” J. Opt. 12, 024010 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

F. Shuzhen, Z. Xingyu, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D 42, 015105 (2009).
[CrossRef]

J. Phys. Rev. (1)

J. K. Percus and G. Yevic, “Analysis of classical statistical mechanics by means of collective coordinates,” J. Phys. Rev. 110, 1–13 (1958).

Laser Photon. Rev. (1)

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photon. Rev. 7, 646–662 (2013).

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[CrossRef]

Nature (1)

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light,” Nature 398, 206–207 (1999).
[CrossRef]

Opt. Commun. (1)

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285, 5276–5282 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

P. Parvin, S. Z. Shoursheini, F. Khalilinejad, A. Bavali, M. Moshgel Gosha, and B. Mansouri, “Simultaneous fluorescence and breakdown spectroscopy of fresh and aging transformer oil immersed in paper using ArF excimer laser,” Opt. Lasers Eng. 50, 1672–1676 (2012).
[CrossRef]

Opt. Lett. (3)

Opt. Spectrosc. (1)

P. Parvin, S. Eftekharnoori, and H. R. Dehghanpour, “Monte Carlo simulation of photon densities inside the dermis in LLLT (low level laser therapy),” Opt. Spectrosc. 107, 486–490 (2009).
[CrossRef]

Otolaryngol. Head Neck Surg. (1)

J. D. Meier, H. Xie, Y. Sun, Y. Sun, N. Hatami, B. Poirier, L. Marcu, and D. G. Farwell, “Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma,” Otolaryngol. Head Neck Surg. 142, 838–844 (2010).
[CrossRef]

Phys. Rev. B (2)

K. Busch, C. M. Soukoulis, and E. N. Economou, “Transport and scattering mean free paths of classical waves,” Phys. Rev. B 50, 93–98 (1994).
[CrossRef]

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, “Excitation power dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media,” Phys. Rev. B 59, 50–53 (1999).
[CrossRef]

Proc. R. Soc. A (1)

K. Huang and A. Rhys, “Theory of light absorption and non radiative transitions in F-centres,” Proc. R. Soc. A 204, 406–423 (1950).
[CrossRef]

Proc. SPIE (1)

M. Keraji, F. Hadavand Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response to discriminate malignant and normal tissues,” Proc. SPIE 8798, 87980A (2013).
[CrossRef]

Radiol. Oncol. (1)

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44, 142–148 (2010).

Spectrochim. Acta A (1)

R. Vogel, P. Meredith, M. D. Harvey, and H. Rubinsztein-Dunlop, “Absorption and fluorescence spectroscopy of rhodamine 6G in titanium dioxide nanocomposites,” Spectrochim. Acta A 60, 245–249 (2004).

Other (4)

U. Brackmann, Lambdachrome Laser Dyes, 3rd ed. (Lambda Physik AG, 2000).

S. Chandrasekhar, Radiative Transfer (Dover, 1960).

J. R. Lakowicz, in Principles of Fluorescence Spectroscopy (Springer, 2006), p. 208.

C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

(a) Overlap of normalized absorption-emission spectra for various (2, 4, and 8 μM) Rd6G solutions without any addition of NPs into the solvent. (b) UV–Vis absorption and the corresponding emission spectra (λex=532nm) of Rd6G (30 μM) with addition of 0.02, 0.2, and 0.5mgmL1 TiO2 NPs.

Fig. 2.
Fig. 2.

Schematics of the mean random walk of fluorescence emission d¯ in (a) highly scattering media and (b) dilute media with low density of scatterer.

Fig. 3.
Fig. 3.

Schematic of right angle LIF setup for spectral shift measurement due to TiO2 NPs suspension in the ethanolic solutions of Rd6G/RdB irradiated by SHG of CW Nd:YAG laser at 532 nm (green); C4 solutions irradiated by third HG of CW Nd:YAG laser at 355 nm (UV) and C7 solutions irradiated by a CW 120 mW GaN diode laser at 405 nm.

Fig. 4.
Fig. 4.

Absorption spectra of ethanolic Rd6G solutions (1, 5, and 10 μM) and fluorescence emissions due to various concentrations of pure Rd6G solution (1–1000 μM), excited by 532 nm SHG CW Nd:YAG laser (90° setup).

Fig. 5.
Fig. 5.

Fluorescence emissions due to various concentrations of pure C4 ethanolic solution excited by (a) CW UV laser at 355 nm and (b) CW diode laser at 405 nm.

Fig. 6.
Fig. 6.

Absorption/emission spectra of ethanolic dye solutions: (a) C4, overlap area with range of Δλoverlap=360380nm20nm, λfp450nm. (b) Rd6G, overlap area with range of Δλoverlap=510580nm70nm, λfp=555nm.

Fig. 7.
Fig. 7.

(a) Absorption/emission spectra of Coumarin 7 solution (Δλoverlap=400530nm130nm, λfp480nm). (b) Emission spectra due to various concentrations (ranging from 0.01 to 2.00 mM). Inset: the corresponding spectral shift versus C7 concentration.

Fig. 8.
Fig. 8.

Peak intensities versus Rd6G dye concentration (0.001–0.10 mM) without TiO2 suspension. Inset: emissive wavelength in terms of Cdye (0.001–2.0 mM).

Fig. 9.
Fig. 9.

Peak intensities versus C7 concentration (0.001–2.0 mM) without TiO2 addition in suspension. Inset: the corresponding emissive wavelength in terms of Cdye (0.001–2.0 mM).

Fig. 10.
Fig. 10.

(a) 3D LIF spectra of fluorescence intensity as a function of nano TiO2 density and (b) emissive wavelength due to nano TiO2 addition at certain dye solution (1.5 mM) of Rd6G (semi-log graph reveals three distinct spectral shift regions).

Fig. 11.
Fig. 11.

Fluorescence peak as a function of TiO2 NP densities for 2 mM Coumarin 7 dye solution; the inset depicts the corresponding wavelengths at very low TiO2 densities.

Fig. 12.
Fig. 12.

Emissive wavelength due to 1 to 30mgmL1 of nanoscatterers having 25nm mean diameter suspended in 0.2 mM ethanolic Rd6G solution.

Fig. 13.
Fig. 13.

Effective refractive index measured by means of Abbe refractometer: (a) various Cdye due to Rd6G solution, (b) 0.2 mM Rd6G solution with various TiO2 NP densities, and (c) refractive index in terms of C7 molarities (without NP).

Fig. 14.
Fig. 14.

Fluorescence peak at four distinct Rd6G concentrations (0.39, 1.56, 6.25, and 25.00 mM) as a function of TiO2 densities. Note: first inflection points corresponding to very low TiO2 densities (smaller than 1.0 mM) are not shown here [those are shown in Fig. 11(b)].

Fig. 15.
Fig. 15.

Emissive wavelengths due to fluorescence emission at various TiO2 densities (125mgmL1) in RdB Cdye, i.e., 1.56, 6.25, and 12.50 mM, respectively.

Tables (2)

Tables Icon

Table 1. Optical Parameters of Propagating Photons at 532 nm in Rd6G Solution with TiO2 NPs

Tables Icon

Table 2. Optical Parameters of Propagating Photons at 532 nm, in Various Scattering Media (Rd6G + NP)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

kT(r)=1τD(R0r)6,
ls=1σsρs,
σsRayleigh=2π5a63λ4[n21n2+2]2,
l*=ls1cosθ,
d¯=3d2(σs·ρs),
d¯·ls=3d2,

Metrics