Abstract

Optical bistability (OB) and optical multistability (OM) behavior in molecular magnets is theoretically studied. It is demonstrated that the OB of the system can be controlled via adjusting the magnetic field intensity. In addition, it is shown that the frequency detuning of probe and coupling fields, as well as the cooperation parameter, has remarkable effects on the OB behavior of the system. Also, we find that OB can be converted to OM through the magnitude of control-field detuning. Our results can be used as a guideline for optimizing and controlling the switching process in the crystal of molecular magnets.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
    [CrossRef]
  2. S. H. Asadpour, H. R. Hamedi, and M. Sahrai, “Phase control of Kerr nonlinearity due to quantum interference in a four-level N-type atomic system,” J. Lumin. 132, 2188–2193 (2012).
    [CrossRef]
  3. Y. Wu and L. Deng, “Ultraslow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064–2066 (2004).
    [CrossRef]
  4. J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
    [CrossRef]
  5. J. Li, “Coherent control of optical bistability in a microwave-driven V-type atomic system,” Phys. D 228, 148–152 (2007).
    [CrossRef]
  6. J. Li, “Coherent control of optical bistability in tunnel-coupled double quantum wells,” Opt. Commun. 274, 366–371 (2007).
    [CrossRef]
  7. J. Li, X. Hao, J. Liu, and X. Yang, “Optical bistability in a triple semiconductor quantum well structure with tunnelling-induced interference,” Phys. Lett. A 372, 716–720 (2008).
    [CrossRef]
  8. Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
    [CrossRef]
  9. Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold-atom media,” Phys. Rev. A 71, 053820 (2005).
    [CrossRef]
  10. W. Harshawardhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
    [CrossRef]
  11. Z. Wang, “Control of the optical multistability in a three-level ladder-type quantum well system,” Opt. Commun. 282, 4745–4748 (2009).
    [CrossRef]
  12. M. A. Antón and O. G. Calderón, “Optical bistability using quantum interference in V -type atoms,” J. Opt. B 4, 91–98 (2002).
    [CrossRef]
  13. H. R. Hamedi, S. H. Asadpour, M. Sahrai, B. Arzhang, and D. Taherkhani, “Optical bistability and multi-stability in a four-level atomic scheme,” Opt. Quantum Electron. 45, 295–306 (2013).
    [CrossRef]
  14. H. R. Hamedi, A. Sari, M. Sahrai, and S. H. Asadpour, “Effect of quantum interference from incoherent pumping field and spontaneous emission on controlling the optical bistability and multi-stability,” Commun. Theor. Phys. 59, 199–204 (2013).
    [CrossRef]
  15. J.-H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007).
    [CrossRef]
  16. Z. Wang, “Optical bistability and multistability via quantum interference in an Er3+-doped optical fiber,” J. Lumin. 131, 2404–2408 (2011).
    [CrossRef]
  17. H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, “Coherent control of optical bistability and multistability via double dark resonances (DDRs),” Opt. Commun. 312, 117–122 (2014).
    [CrossRef]
  18. Z.-H. Xiao and K. Kim, “Optical bistability using quantum coherence in a microwave-driven four-level atomic system,” Opt. Commun. 283, 2178–2181 (2010).
    [CrossRef]
  19. G. Christou, G. Gatteschi, D. N. Hendrickson, and R. Sessoli, “Single-molecule magnets,” MRS Bull. 25, 66–71 (2000).
    [CrossRef]
  20. R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature 365, 141–143 (1993).
    [CrossRef]
  21. E. M. Chudnovsky, “Crystal field −ASz2 does not produce one-phonon transitions with Delta Sz = ±2 (Comment on ‘Spin relaxation in Mn12-acetate’ by M. N. Leuenberger and D. Loss),” Europhys. Lett. 52, 245–246 (2000).
    [CrossRef]
  22. E. M. Chudnovsky and D. A. Garanin, “Phonon superradiance and phonon laser effect in nanomagnets,” Phys. Rev. Lett. 93, 257205 (2004).
    [CrossRef]
  23. I. D. Tokman and G. A. Vugalter, “Nonstationary behavior of a high-spin molecule in a bifrequency alternating current magnetic field,” Phys. Rev. A 66, 013407 (2002).
    [CrossRef]
  24. I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, and V. I. Pozdnyakova, “Nonstationary interaction of a high-spin molecule or a rare earth metal ion with an acoustic wave and an alternating current magnetic field,” Phys. Rev. B 68, 174426 (2003).
    [CrossRef]
  25. I. D. Tokman, G. A. Vugalter, and A. I. Grebeneva, “Parametric interaction of two acoustic waves in a crystal of molecular magnets in the presence of a strong ac magnetic field,” Phys. Rev. B 71, 094431 (2005).
    [CrossRef]
  26. A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromagnetically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74, 054416 (2006).
    [CrossRef]
  27. X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
    [CrossRef]
  28. Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76, 054425 (2007).
    [CrossRef]
  29. G. Christou, D. Gatteschi, D. N. Hendrickson, and R. Sessoli, “Single-molecule magnets,” MRS Bull. 25, 66–71 (2000).
    [CrossRef]
  30. S. Carretta, P. Santini, G. Amoretti, T. Guidi, J. R. D. Copley, Y. Qiu, R. Caciuffo, G. Timco, and R. E. P. Winpenny, “Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: evidence from neutron spectroscopy,” Phys. Rev. Lett. 98, 167401 (2007).
    [CrossRef]
  31. A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information processing?” Phys. Rev. Lett. 98, 057201 (2007).
    [CrossRef]
  32. M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature 410, 789–793 (2001).
    [CrossRef]
  33. F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S. Piligkos, G. Timco, and R. E. P. Winpenny, “Molecular engineering of antiferromagnetic rings for quantum computation,” Phys. Rev. Lett. 94, 207208 (2005).
    [CrossRef]
  34. J. Lehmann, A. Gaita-Arino, E. Coronado, and D. Loss, “Spin qubits with electrically gated polyoxometalate molecules,” Nat. Nanotechnol. 2, 312–317 (2007).
    [CrossRef]
  35. J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830–3833 (1996).
    [CrossRef]
  36. L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145–147 (1996).
    [CrossRef]
  37. W. Wernsdorfer and R. Sessoli, “Quantum phase interference and parity effects in magnetic molecular clusters,” Science 284, 133–135 (1999).
    [CrossRef]
  38. S. Feili and H. R. Hamedi, “Large Kerr nonlinearity in a crystal of molecular magnets system,” Opt. Commun. 315, 116–121 (2014).
    [CrossRef]
  39. Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
    [CrossRef]
  40. A.-L. Barra, P. Debrunner, D. Gatteschi, C. E. Schulz, and R. Sessoli, “Superparamagnetic-like behavior in an octanuclear iron cluster,” Europhys. Lett. 35, 133–138 (1996).
    [CrossRef]
  41. A.-L. Barra, D. Gatteschi, and R. Sessoli, “High-frequency EPR spectra of a molecular nanomagnet: understanding quantum tunneling of the magnetization,” Phys. Rev. B 56, 8192–8198 (1997).
    [CrossRef]
  42. R. Bonifacio and L. A. Lugiato, “Instabilities for a coherently driven absorber in a ring cavity,” Lett. Nuovo Cimento 21, 505–509 (1978).
    [CrossRef]
  43. R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978).
    [CrossRef]

2014 (2)

H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, “Coherent control of optical bistability and multistability via double dark resonances (DDRs),” Opt. Commun. 312, 117–122 (2014).
[CrossRef]

S. Feili and H. R. Hamedi, “Large Kerr nonlinearity in a crystal of molecular magnets system,” Opt. Commun. 315, 116–121 (2014).
[CrossRef]

2013 (2)

H. R. Hamedi, S. H. Asadpour, M. Sahrai, B. Arzhang, and D. Taherkhani, “Optical bistability and multi-stability in a four-level atomic scheme,” Opt. Quantum Electron. 45, 295–306 (2013).
[CrossRef]

H. R. Hamedi, A. Sari, M. Sahrai, and S. H. Asadpour, “Effect of quantum interference from incoherent pumping field and spontaneous emission on controlling the optical bistability and multi-stability,” Commun. Theor. Phys. 59, 199–204 (2013).
[CrossRef]

2012 (1)

S. H. Asadpour, H. R. Hamedi, and M. Sahrai, “Phase control of Kerr nonlinearity due to quantum interference in a four-level N-type atomic system,” J. Lumin. 132, 2188–2193 (2012).
[CrossRef]

2011 (1)

Z. Wang, “Optical bistability and multistability via quantum interference in an Er3+-doped optical fiber,” J. Lumin. 131, 2404–2408 (2011).
[CrossRef]

2010 (1)

Z.-H. Xiao and K. Kim, “Optical bistability using quantum coherence in a microwave-driven four-level atomic system,” Opt. Commun. 283, 2178–2181 (2010).
[CrossRef]

2009 (1)

Z. Wang, “Control of the optical multistability in a three-level ladder-type quantum well system,” Opt. Commun. 282, 4745–4748 (2009).
[CrossRef]

2008 (1)

J. Li, X. Hao, J. Liu, and X. Yang, “Optical bistability in a triple semiconductor quantum well structure with tunnelling-induced interference,” Phys. Lett. A 372, 716–720 (2008).
[CrossRef]

2007 (9)

J. Li, “Coherent control of optical bistability in a microwave-driven V-type atomic system,” Phys. D 228, 148–152 (2007).
[CrossRef]

J. Li, “Coherent control of optical bistability in tunnel-coupled double quantum wells,” Opt. Commun. 274, 366–371 (2007).
[CrossRef]

J.-H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007).
[CrossRef]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

S. Carretta, P. Santini, G. Amoretti, T. Guidi, J. R. D. Copley, Y. Qiu, R. Caciuffo, G. Timco, and R. E. P. Winpenny, “Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: evidence from neutron spectroscopy,” Phys. Rev. Lett. 98, 167401 (2007).
[CrossRef]

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information processing?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef]

J. Lehmann, A. Gaita-Arino, E. Coronado, and D. Loss, “Spin qubits with electrically gated polyoxometalate molecules,” Nat. Nanotechnol. 2, 312–317 (2007).
[CrossRef]

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76, 054425 (2007).
[CrossRef]

2006 (2)

A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromagnetically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74, 054416 (2006).
[CrossRef]

J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

2005 (4)

Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold-atom media,” Phys. Rev. A 71, 053820 (2005).
[CrossRef]

I. D. Tokman, G. A. Vugalter, and A. I. Grebeneva, “Parametric interaction of two acoustic waves in a crystal of molecular magnets in the presence of a strong ac magnetic field,” Phys. Rev. B 71, 094431 (2005).
[CrossRef]

F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S. Piligkos, G. Timco, and R. E. P. Winpenny, “Molecular engineering of antiferromagnetic rings for quantum computation,” Phys. Rev. Lett. 94, 207208 (2005).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

2004 (3)

Y. Wu and L. Deng, “Ultraslow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064–2066 (2004).
[CrossRef]

E. M. Chudnovsky and D. A. Garanin, “Phonon superradiance and phonon laser effect in nanomagnets,” Phys. Rev. Lett. 93, 257205 (2004).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

2003 (1)

I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, and V. I. Pozdnyakova, “Nonstationary interaction of a high-spin molecule or a rare earth metal ion with an acoustic wave and an alternating current magnetic field,” Phys. Rev. B 68, 174426 (2003).
[CrossRef]

2002 (2)

I. D. Tokman and G. A. Vugalter, “Nonstationary behavior of a high-spin molecule in a bifrequency alternating current magnetic field,” Phys. Rev. A 66, 013407 (2002).
[CrossRef]

M. A. Antón and O. G. Calderón, “Optical bistability using quantum interference in V -type atoms,” J. Opt. B 4, 91–98 (2002).
[CrossRef]

2001 (1)

M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature 410, 789–793 (2001).
[CrossRef]

2000 (3)

E. M. Chudnovsky, “Crystal field −ASz2 does not produce one-phonon transitions with Delta Sz = ±2 (Comment on ‘Spin relaxation in Mn12-acetate’ by M. N. Leuenberger and D. Loss),” Europhys. Lett. 52, 245–246 (2000).
[CrossRef]

G. Christou, D. Gatteschi, D. N. Hendrickson, and R. Sessoli, “Single-molecule magnets,” MRS Bull. 25, 66–71 (2000).
[CrossRef]

G. Christou, G. Gatteschi, D. N. Hendrickson, and R. Sessoli, “Single-molecule magnets,” MRS Bull. 25, 66–71 (2000).
[CrossRef]

1999 (1)

W. Wernsdorfer and R. Sessoli, “Quantum phase interference and parity effects in magnetic molecular clusters,” Science 284, 133–135 (1999).
[CrossRef]

1997 (1)

A.-L. Barra, D. Gatteschi, and R. Sessoli, “High-frequency EPR spectra of a molecular nanomagnet: understanding quantum tunneling of the magnetization,” Phys. Rev. B 56, 8192–8198 (1997).
[CrossRef]

1996 (4)

A.-L. Barra, P. Debrunner, D. Gatteschi, C. E. Schulz, and R. Sessoli, “Superparamagnetic-like behavior in an octanuclear iron cluster,” Europhys. Lett. 35, 133–138 (1996).
[CrossRef]

J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830–3833 (1996).
[CrossRef]

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145–147 (1996).
[CrossRef]

W. Harshawardhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
[CrossRef]

1993 (1)

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature 365, 141–143 (1993).
[CrossRef]

1978 (2)

R. Bonifacio and L. A. Lugiato, “Instabilities for a coherently driven absorber in a ring cavity,” Lett. Nuovo Cimento 21, 505–509 (1978).
[CrossRef]

R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978).
[CrossRef]

Affronte, M.

F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S. Piligkos, G. Timco, and R. E. P. Winpenny, “Molecular engineering of antiferromagnetic rings for quantum computation,” Phys. Rev. Lett. 94, 207208 (2005).
[CrossRef]

Agarwal, G. S.

W. Harshawardhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
[CrossRef]

Amoretti, G.

S. Carretta, P. Santini, G. Amoretti, T. Guidi, J. R. D. Copley, Y. Qiu, R. Caciuffo, G. Timco, and R. E. P. Winpenny, “Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: evidence from neutron spectroscopy,” Phys. Rev. Lett. 98, 167401 (2007).
[CrossRef]

F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S. Piligkos, G. Timco, and R. E. P. Winpenny, “Molecular engineering of antiferromagnetic rings for quantum computation,” Phys. Rev. Lett. 94, 207208 (2005).
[CrossRef]

Antón, M. A.

M. A. Antón and O. G. Calderón, “Optical bistability using quantum interference in V -type atoms,” J. Opt. B 4, 91–98 (2002).
[CrossRef]

Ardavan, A.

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information processing?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef]

Arzhang, B.

H. R. Hamedi, S. H. Asadpour, M. Sahrai, B. Arzhang, and D. Taherkhani, “Optical bistability and multi-stability in a four-level atomic scheme,” Opt. Quantum Electron. 45, 295–306 (2013).
[CrossRef]

Asadpour, S. H.

H. R. Hamedi, S. H. Asadpour, M. Sahrai, B. Arzhang, and D. Taherkhani, “Optical bistability and multi-stability in a four-level atomic scheme,” Opt. Quantum Electron. 45, 295–306 (2013).
[CrossRef]

H. R. Hamedi, A. Sari, M. Sahrai, and S. H. Asadpour, “Effect of quantum interference from incoherent pumping field and spontaneous emission on controlling the optical bistability and multi-stability,” Commun. Theor. Phys. 59, 199–204 (2013).
[CrossRef]

S. H. Asadpour, H. R. Hamedi, and M. Sahrai, “Phase control of Kerr nonlinearity due to quantum interference in a four-level N-type atomic system,” J. Lumin. 132, 2188–2193 (2012).
[CrossRef]

Ballou, R.

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145–147 (1996).
[CrossRef]

Barbara, B.

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145–147 (1996).
[CrossRef]

Barra, A.-L.

A.-L. Barra, D. Gatteschi, and R. Sessoli, “High-frequency EPR spectra of a molecular nanomagnet: understanding quantum tunneling of the magnetization,” Phys. Rev. B 56, 8192–8198 (1997).
[CrossRef]

A.-L. Barra, P. Debrunner, D. Gatteschi, C. E. Schulz, and R. Sessoli, “Superparamagnetic-like behavior in an octanuclear iron cluster,” Europhys. Lett. 35, 133–138 (1996).
[CrossRef]

Blundell, S. J.

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information processing?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef]

Bonifacio, R.

R. Bonifacio and L. A. Lugiato, “Instabilities for a coherently driven absorber in a ring cavity,” Lett. Nuovo Cimento 21, 505–509 (1978).
[CrossRef]

R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978).
[CrossRef]

Caciuffo, R.

S. Carretta, P. Santini, G. Amoretti, T. Guidi, J. R. D. Copley, Y. Qiu, R. Caciuffo, G. Timco, and R. E. P. Winpenny, “Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: evidence from neutron spectroscopy,” Phys. Rev. Lett. 98, 167401 (2007).
[CrossRef]

Calderón, O. G.

M. A. Antón and O. G. Calderón, “Optical bistability using quantum interference in V -type atoms,” J. Opt. B 4, 91–98 (2002).
[CrossRef]

Caneschi, A.

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature 365, 141–143 (1993).
[CrossRef]

Carretta, S.

S. Carretta, P. Santini, G. Amoretti, T. Guidi, J. R. D. Copley, Y. Qiu, R. Caciuffo, G. Timco, and R. E. P. Winpenny, “Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: evidence from neutron spectroscopy,” Phys. Rev. Lett. 98, 167401 (2007).
[CrossRef]

F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S. Piligkos, G. Timco, and R. E. P. Winpenny, “Molecular engineering of antiferromagnetic rings for quantum computation,” Phys. Rev. Lett. 94, 207208 (2005).
[CrossRef]

Christou, G.

G. Christou, G. Gatteschi, D. N. Hendrickson, and R. Sessoli, “Single-molecule magnets,” MRS Bull. 25, 66–71 (2000).
[CrossRef]

G. Christou, D. Gatteschi, D. N. Hendrickson, and R. Sessoli, “Single-molecule magnets,” MRS Bull. 25, 66–71 (2000).
[CrossRef]

Chudnovsky, E. M.

E. M. Chudnovsky and D. A. Garanin, “Phonon superradiance and phonon laser effect in nanomagnets,” Phys. Rev. Lett. 93, 257205 (2004).
[CrossRef]

E. M. Chudnovsky, “Crystal field −ASz2 does not produce one-phonon transitions with Delta Sz = ±2 (Comment on ‘Spin relaxation in Mn12-acetate’ by M. N. Leuenberger and D. Loss),” Europhys. Lett. 52, 245–246 (2000).
[CrossRef]

Copley, J. R. D.

S. Carretta, P. Santini, G. Amoretti, T. Guidi, J. R. D. Copley, Y. Qiu, R. Caciuffo, G. Timco, and R. E. P. Winpenny, “Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: evidence from neutron spectroscopy,” Phys. Rev. Lett. 98, 167401 (2007).
[CrossRef]

Coronado, E.

J. Lehmann, A. Gaita-Arino, E. Coronado, and D. Loss, “Spin qubits with electrically gated polyoxometalate molecules,” Nat. Nanotechnol. 2, 312–317 (2007).
[CrossRef]

Debrunner, P.

A.-L. Barra, P. Debrunner, D. Gatteschi, C. E. Schulz, and R. Sessoli, “Superparamagnetic-like behavior in an octanuclear iron cluster,” Europhys. Lett. 35, 133–138 (1996).
[CrossRef]

Deng, L.

Feili, S.

S. Feili and H. R. Hamedi, “Large Kerr nonlinearity in a crystal of molecular magnets system,” Opt. Commun. 315, 116–121 (2014).
[CrossRef]

Friedman, J. R.

J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830–3833 (1996).
[CrossRef]

Gaita-Arino, A.

J. Lehmann, A. Gaita-Arino, E. Coronado, and D. Loss, “Spin qubits with electrically gated polyoxometalate molecules,” Nat. Nanotechnol. 2, 312–317 (2007).
[CrossRef]

Garanin, D. A.

E. M. Chudnovsky and D. A. Garanin, “Phonon superradiance and phonon laser effect in nanomagnets,” Phys. Rev. Lett. 93, 257205 (2004).
[CrossRef]

Gatteschi, D.

G. Christou, D. Gatteschi, D. N. Hendrickson, and R. Sessoli, “Single-molecule magnets,” MRS Bull. 25, 66–71 (2000).
[CrossRef]

A.-L. Barra, D. Gatteschi, and R. Sessoli, “High-frequency EPR spectra of a molecular nanomagnet: understanding quantum tunneling of the magnetization,” Phys. Rev. B 56, 8192–8198 (1997).
[CrossRef]

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145–147 (1996).
[CrossRef]

A.-L. Barra, P. Debrunner, D. Gatteschi, C. E. Schulz, and R. Sessoli, “Superparamagnetic-like behavior in an octanuclear iron cluster,” Europhys. Lett. 35, 133–138 (1996).
[CrossRef]

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature 365, 141–143 (1993).
[CrossRef]

Gatteschi, G.

G. Christou, G. Gatteschi, D. N. Hendrickson, and R. Sessoli, “Single-molecule magnets,” MRS Bull. 25, 66–71 (2000).
[CrossRef]

Ghirri, A.

F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S. Piligkos, G. Timco, and R. E. P. Winpenny, “Molecular engineering of antiferromagnetic rings for quantum computation,” Phys. Rev. Lett. 94, 207208 (2005).
[CrossRef]

Grebeneva, A. I.

A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromagnetically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74, 054416 (2006).
[CrossRef]

I. D. Tokman, G. A. Vugalter, and A. I. Grebeneva, “Parametric interaction of two acoustic waves in a crystal of molecular magnets in the presence of a strong ac magnetic field,” Phys. Rev. B 71, 094431 (2005).
[CrossRef]

I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, and V. I. Pozdnyakova, “Nonstationary interaction of a high-spin molecule or a rare earth metal ion with an acoustic wave and an alternating current magnetic field,” Phys. Rev. B 68, 174426 (2003).
[CrossRef]

Guidi, T.

S. Carretta, P. Santini, G. Amoretti, T. Guidi, J. R. D. Copley, Y. Qiu, R. Caciuffo, G. Timco, and R. E. P. Winpenny, “Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: evidence from neutron spectroscopy,” Phys. Rev. Lett. 98, 167401 (2007).
[CrossRef]

Hamedi, H. R.

H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, “Coherent control of optical bistability and multistability via double dark resonances (DDRs),” Opt. Commun. 312, 117–122 (2014).
[CrossRef]

S. Feili and H. R. Hamedi, “Large Kerr nonlinearity in a crystal of molecular magnets system,” Opt. Commun. 315, 116–121 (2014).
[CrossRef]

H. R. Hamedi, A. Sari, M. Sahrai, and S. H. Asadpour, “Effect of quantum interference from incoherent pumping field and spontaneous emission on controlling the optical bistability and multi-stability,” Commun. Theor. Phys. 59, 199–204 (2013).
[CrossRef]

H. R. Hamedi, S. H. Asadpour, M. Sahrai, B. Arzhang, and D. Taherkhani, “Optical bistability and multi-stability in a four-level atomic scheme,” Opt. Quantum Electron. 45, 295–306 (2013).
[CrossRef]

S. H. Asadpour, H. R. Hamedi, and M. Sahrai, “Phase control of Kerr nonlinearity due to quantum interference in a four-level N-type atomic system,” J. Lumin. 132, 2188–2193 (2012).
[CrossRef]

Hao, X.

J. Li, X. Hao, J. Liu, and X. Yang, “Optical bistability in a triple semiconductor quantum well structure with tunnelling-induced interference,” Phys. Lett. A 372, 716–720 (2008).
[CrossRef]

Harshawardhan, W.

W. Harshawardhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
[CrossRef]

Hendrickson, D. N.

G. Christou, D. Gatteschi, D. N. Hendrickson, and R. Sessoli, “Single-molecule magnets,” MRS Bull. 25, 66–71 (2000).
[CrossRef]

G. Christou, G. Gatteschi, D. N. Hendrickson, and R. Sessoli, “Single-molecule magnets,” MRS Bull. 25, 66–71 (2000).
[CrossRef]

Huang, Q.-J.

J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

Khaledi-Nasab, A.

H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, “Coherent control of optical bistability and multistability via double dark resonances (DDRs),” Opt. Commun. 312, 117–122 (2014).
[CrossRef]

Kim, K.

Z.-H. Xiao and K. Kim, “Optical bistability using quantum coherence in a microwave-driven four-level atomic system,” Opt. Commun. 283, 2178–2181 (2010).
[CrossRef]

Lehmann, J.

J. Lehmann, A. Gaita-Arino, E. Coronado, and D. Loss, “Spin qubits with electrically gated polyoxometalate molecules,” Nat. Nanotechnol. 2, 312–317 (2007).
[CrossRef]

Leuenberger, M. N.

M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature 410, 789–793 (2001).
[CrossRef]

Li, J.

J. Li, X. Hao, J. Liu, and X. Yang, “Optical bistability in a triple semiconductor quantum well structure with tunnelling-induced interference,” Phys. Lett. A 372, 716–720 (2008).
[CrossRef]

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

J. Li, “Coherent control of optical bistability in a microwave-driven V-type atomic system,” Phys. D 228, 148–152 (2007).
[CrossRef]

J. Li, “Coherent control of optical bistability in tunnel-coupled double quantum wells,” Opt. Commun. 274, 366–371 (2007).
[CrossRef]

Li, J.-H.

J.-H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007).
[CrossRef]

J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

Li, W.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Lionti, F.

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145–147 (1996).
[CrossRef]

Liu, J.

J. Li, X. Hao, J. Liu, and X. Yang, “Optical bistability in a triple semiconductor quantum well structure with tunnelling-induced interference,” Phys. Lett. A 372, 716–720 (2008).
[CrossRef]

Loss, D.

J. Lehmann, A. Gaita-Arino, E. Coronado, and D. Loss, “Spin qubits with electrically gated polyoxometalate molecules,” Nat. Nanotechnol. 2, 312–317 (2007).
[CrossRef]

M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature 410, 789–793 (2001).
[CrossRef]

Lü, X.-Y.

J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

Lugiato, L. A.

R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978).
[CrossRef]

R. Bonifacio and L. A. Lugiato, “Instabilities for a coherently driven absorber in a ring cavity,” Lett. Nuovo Cimento 21, 505–509 (1978).
[CrossRef]

Luo, J.-M.

J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

Morton, J. J. L.

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information processing?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef]

Novak, M. A.

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature 365, 141–143 (1993).
[CrossRef]

Piligkos, S.

F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S. Piligkos, G. Timco, and R. E. P. Winpenny, “Molecular engineering of antiferromagnetic rings for quantum computation,” Phys. Rev. Lett. 94, 207208 (2005).
[CrossRef]

Pozdnyakova, V. I.

I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, and V. I. Pozdnyakova, “Nonstationary interaction of a high-spin molecule or a rare earth metal ion with an acoustic wave and an alternating current magnetic field,” Phys. Rev. B 68, 174426 (2003).
[CrossRef]

Qiu, Y.

S. Carretta, P. Santini, G. Amoretti, T. Guidi, J. R. D. Copley, Y. Qiu, R. Caciuffo, G. Timco, and R. E. P. Winpenny, “Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: evidence from neutron spectroscopy,” Phys. Rev. Lett. 98, 167401 (2007).
[CrossRef]

Raheli, A.

H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, “Coherent control of optical bistability and multistability via double dark resonances (DDRs),” Opt. Commun. 312, 117–122 (2014).
[CrossRef]

Rival, O.

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information processing?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef]

Sahrai, M.

H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, “Coherent control of optical bistability and multistability via double dark resonances (DDRs),” Opt. Commun. 312, 117–122 (2014).
[CrossRef]

H. R. Hamedi, S. H. Asadpour, M. Sahrai, B. Arzhang, and D. Taherkhani, “Optical bistability and multi-stability in a four-level atomic scheme,” Opt. Quantum Electron. 45, 295–306 (2013).
[CrossRef]

H. R. Hamedi, A. Sari, M. Sahrai, and S. H. Asadpour, “Effect of quantum interference from incoherent pumping field and spontaneous emission on controlling the optical bistability and multi-stability,” Commun. Theor. Phys. 59, 199–204 (2013).
[CrossRef]

S. H. Asadpour, H. R. Hamedi, and M. Sahrai, “Phase control of Kerr nonlinearity due to quantum interference in a four-level N-type atomic system,” J. Lumin. 132, 2188–2193 (2012).
[CrossRef]

Santini, P.

S. Carretta, P. Santini, G. Amoretti, T. Guidi, J. R. D. Copley, Y. Qiu, R. Caciuffo, G. Timco, and R. E. P. Winpenny, “Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: evidence from neutron spectroscopy,” Phys. Rev. Lett. 98, 167401 (2007).
[CrossRef]

F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S. Piligkos, G. Timco, and R. E. P. Winpenny, “Molecular engineering of antiferromagnetic rings for quantum computation,” Phys. Rev. Lett. 94, 207208 (2005).
[CrossRef]

Sarachik, M. P.

J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830–3833 (1996).
[CrossRef]

Sari, A.

H. R. Hamedi, A. Sari, M. Sahrai, and S. H. Asadpour, “Effect of quantum interference from incoherent pumping field and spontaneous emission on controlling the optical bistability and multi-stability,” Commun. Theor. Phys. 59, 199–204 (2013).
[CrossRef]

Schulz, C. E.

A.-L. Barra, P. Debrunner, D. Gatteschi, C. E. Schulz, and R. Sessoli, “Superparamagnetic-like behavior in an octanuclear iron cluster,” Europhys. Lett. 35, 133–138 (1996).
[CrossRef]

Sessoli, R.

G. Christou, D. Gatteschi, D. N. Hendrickson, and R. Sessoli, “Single-molecule magnets,” MRS Bull. 25, 66–71 (2000).
[CrossRef]

G. Christou, G. Gatteschi, D. N. Hendrickson, and R. Sessoli, “Single-molecule magnets,” MRS Bull. 25, 66–71 (2000).
[CrossRef]

W. Wernsdorfer and R. Sessoli, “Quantum phase interference and parity effects in magnetic molecular clusters,” Science 284, 133–135 (1999).
[CrossRef]

A.-L. Barra, D. Gatteschi, and R. Sessoli, “High-frequency EPR spectra of a molecular nanomagnet: understanding quantum tunneling of the magnetization,” Phys. Rev. B 56, 8192–8198 (1997).
[CrossRef]

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145–147 (1996).
[CrossRef]

A.-L. Barra, P. Debrunner, D. Gatteschi, C. E. Schulz, and R. Sessoli, “Superparamagnetic-like behavior in an octanuclear iron cluster,” Europhys. Lett. 35, 133–138 (1996).
[CrossRef]

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature 365, 141–143 (1993).
[CrossRef]

Shvetsov, A. V.

A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromagnetically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74, 054416 (2006).
[CrossRef]

Taherkhani, D.

H. R. Hamedi, S. H. Asadpour, M. Sahrai, B. Arzhang, and D. Taherkhani, “Optical bistability and multi-stability in a four-level atomic scheme,” Opt. Quantum Electron. 45, 295–306 (2013).
[CrossRef]

Tejada, J.

J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830–3833 (1996).
[CrossRef]

Thomas, L.

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145–147 (1996).
[CrossRef]

Timco, G.

S. Carretta, P. Santini, G. Amoretti, T. Guidi, J. R. D. Copley, Y. Qiu, R. Caciuffo, G. Timco, and R. E. P. Winpenny, “Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: evidence from neutron spectroscopy,” Phys. Rev. Lett. 98, 167401 (2007).
[CrossRef]

F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S. Piligkos, G. Timco, and R. E. P. Winpenny, “Molecular engineering of antiferromagnetic rings for quantum computation,” Phys. Rev. Lett. 94, 207208 (2005).
[CrossRef]

Timco, G. A.

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information processing?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef]

Tokman, I. D.

I. D. Tokman, G. A. Vugalter, and A. I. Grebeneva, “Parametric interaction of two acoustic waves in a crystal of molecular magnets in the presence of a strong ac magnetic field,” Phys. Rev. B 71, 094431 (2005).
[CrossRef]

I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, and V. I. Pozdnyakova, “Nonstationary interaction of a high-spin molecule or a rare earth metal ion with an acoustic wave and an alternating current magnetic field,” Phys. Rev. B 68, 174426 (2003).
[CrossRef]

I. D. Tokman and G. A. Vugalter, “Nonstationary behavior of a high-spin molecule in a bifrequency alternating current magnetic field,” Phys. Rev. A 66, 013407 (2002).
[CrossRef]

Troiani, F.

F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S. Piligkos, G. Timco, and R. E. P. Winpenny, “Molecular engineering of antiferromagnetic rings for quantum computation,” Phys. Rev. Lett. 94, 207208 (2005).
[CrossRef]

Tyryshkin, A. M.

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information processing?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef]

Vugalter, G. A.

A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromagnetically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74, 054416 (2006).
[CrossRef]

I. D. Tokman, G. A. Vugalter, and A. I. Grebeneva, “Parametric interaction of two acoustic waves in a crystal of molecular magnets in the presence of a strong ac magnetic field,” Phys. Rev. B 71, 094431 (2005).
[CrossRef]

I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, and V. I. Pozdnyakova, “Nonstationary interaction of a high-spin molecule or a rare earth metal ion with an acoustic wave and an alternating current magnetic field,” Phys. Rev. B 68, 174426 (2003).
[CrossRef]

I. D. Tokman and G. A. Vugalter, “Nonstationary behavior of a high-spin molecule in a bifrequency alternating current magnetic field,” Phys. Rev. A 66, 013407 (2002).
[CrossRef]

Wang, Z.

Z. Wang, “Optical bistability and multistability via quantum interference in an Er3+-doped optical fiber,” J. Lumin. 131, 2404–2408 (2011).
[CrossRef]

Z. Wang, “Control of the optical multistability in a three-level ladder-type quantum well system,” Opt. Commun. 282, 4745–4748 (2009).
[CrossRef]

Wernsdorfer, W.

W. Wernsdorfer and R. Sessoli, “Quantum phase interference and parity effects in magnetic molecular clusters,” Science 284, 133–135 (1999).
[CrossRef]

Winpenny, R. E. P.

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information processing?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef]

S. Carretta, P. Santini, G. Amoretti, T. Guidi, J. R. D. Copley, Y. Qiu, R. Caciuffo, G. Timco, and R. E. P. Winpenny, “Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: evidence from neutron spectroscopy,” Phys. Rev. Lett. 98, 167401 (2007).
[CrossRef]

F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S. Piligkos, G. Timco, and R. E. P. Winpenny, “Molecular engineering of antiferromagnetic rings for quantum computation,” Phys. Rev. Lett. 94, 207208 (2005).
[CrossRef]

Wu, Y.

Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76, 054425 (2007).
[CrossRef]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold-atom media,” Phys. Rev. A 71, 053820 (2005).
[CrossRef]

Y. Wu and L. Deng, “Ultraslow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064–2066 (2004).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Xiao, Z.-H.

Z.-H. Xiao and K. Kim, “Optical bistability using quantum coherence in a microwave-driven four-level atomic system,” Opt. Commun. 283, 2178–2181 (2010).
[CrossRef]

Xie, X.-T.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Yang, W.-X.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Yang, X.

J. Li, X. Hao, J. Liu, and X. Yang, “Optical bistability in a triple semiconductor quantum well structure with tunnelling-induced interference,” Phys. Lett. A 372, 716–720 (2008).
[CrossRef]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76, 054425 (2007).
[CrossRef]

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Yuan, A.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Ziolo, R.

J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830–3833 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

Commun. Theor. Phys. (1)

H. R. Hamedi, A. Sari, M. Sahrai, and S. H. Asadpour, “Effect of quantum interference from incoherent pumping field and spontaneous emission on controlling the optical bistability and multi-stability,” Commun. Theor. Phys. 59, 199–204 (2013).
[CrossRef]

Europhys. Lett. (2)

E. M. Chudnovsky, “Crystal field −ASz2 does not produce one-phonon transitions with Delta Sz = ±2 (Comment on ‘Spin relaxation in Mn12-acetate’ by M. N. Leuenberger and D. Loss),” Europhys. Lett. 52, 245–246 (2000).
[CrossRef]

A.-L. Barra, P. Debrunner, D. Gatteschi, C. E. Schulz, and R. Sessoli, “Superparamagnetic-like behavior in an octanuclear iron cluster,” Europhys. Lett. 35, 133–138 (1996).
[CrossRef]

J. Lumin. (2)

Z. Wang, “Optical bistability and multistability via quantum interference in an Er3+-doped optical fiber,” J. Lumin. 131, 2404–2408 (2011).
[CrossRef]

S. H. Asadpour, H. R. Hamedi, and M. Sahrai, “Phase control of Kerr nonlinearity due to quantum interference in a four-level N-type atomic system,” J. Lumin. 132, 2188–2193 (2012).
[CrossRef]

J. Opt. B (1)

M. A. Antón and O. G. Calderón, “Optical bistability using quantum interference in V -type atoms,” J. Opt. B 4, 91–98 (2002).
[CrossRef]

Lett. Nuovo Cimento (1)

R. Bonifacio and L. A. Lugiato, “Instabilities for a coherently driven absorber in a ring cavity,” Lett. Nuovo Cimento 21, 505–509 (1978).
[CrossRef]

MRS Bull. (2)

G. Christou, G. Gatteschi, D. N. Hendrickson, and R. Sessoli, “Single-molecule magnets,” MRS Bull. 25, 66–71 (2000).
[CrossRef]

G. Christou, D. Gatteschi, D. N. Hendrickson, and R. Sessoli, “Single-molecule magnets,” MRS Bull. 25, 66–71 (2000).
[CrossRef]

Nat. Nanotechnol. (1)

J. Lehmann, A. Gaita-Arino, E. Coronado, and D. Loss, “Spin qubits with electrically gated polyoxometalate molecules,” Nat. Nanotechnol. 2, 312–317 (2007).
[CrossRef]

Nature (3)

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145–147 (1996).
[CrossRef]

M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature 410, 789–793 (2001).
[CrossRef]

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature 365, 141–143 (1993).
[CrossRef]

Opt. Commun. (5)

H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, “Coherent control of optical bistability and multistability via double dark resonances (DDRs),” Opt. Commun. 312, 117–122 (2014).
[CrossRef]

Z.-H. Xiao and K. Kim, “Optical bistability using quantum coherence in a microwave-driven four-level atomic system,” Opt. Commun. 283, 2178–2181 (2010).
[CrossRef]

J. Li, “Coherent control of optical bistability in tunnel-coupled double quantum wells,” Opt. Commun. 274, 366–371 (2007).
[CrossRef]

Z. Wang, “Control of the optical multistability in a three-level ladder-type quantum well system,” Opt. Commun. 282, 4745–4748 (2009).
[CrossRef]

S. Feili and H. R. Hamedi, “Large Kerr nonlinearity in a crystal of molecular magnets system,” Opt. Commun. 315, 116–121 (2014).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

H. R. Hamedi, S. H. Asadpour, M. Sahrai, B. Arzhang, and D. Taherkhani, “Optical bistability and multi-stability in a four-level atomic scheme,” Opt. Quantum Electron. 45, 295–306 (2013).
[CrossRef]

Phys. D (1)

J. Li, “Coherent control of optical bistability in a microwave-driven V-type atomic system,” Phys. D 228, 148–152 (2007).
[CrossRef]

Phys. Lett. A (1)

J. Li, X. Hao, J. Liu, and X. Yang, “Optical bistability in a triple semiconductor quantum well structure with tunnelling-induced interference,” Phys. Lett. A 372, 716–720 (2008).
[CrossRef]

Phys. Rev. A (7)

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold-atom media,” Phys. Rev. A 71, 053820 (2005).
[CrossRef]

W. Harshawardhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
[CrossRef]

J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

I. D. Tokman and G. A. Vugalter, “Nonstationary behavior of a high-spin molecule in a bifrequency alternating current magnetic field,” Phys. Rev. A 66, 013407 (2002).
[CrossRef]

R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

Phys. Rev. B (7)

I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, and V. I. Pozdnyakova, “Nonstationary interaction of a high-spin molecule or a rare earth metal ion with an acoustic wave and an alternating current magnetic field,” Phys. Rev. B 68, 174426 (2003).
[CrossRef]

I. D. Tokman, G. A. Vugalter, and A. I. Grebeneva, “Parametric interaction of two acoustic waves in a crystal of molecular magnets in the presence of a strong ac magnetic field,” Phys. Rev. B 71, 094431 (2005).
[CrossRef]

A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromagnetically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74, 054416 (2006).
[CrossRef]

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76, 054425 (2007).
[CrossRef]

A.-L. Barra, D. Gatteschi, and R. Sessoli, “High-frequency EPR spectra of a molecular nanomagnet: understanding quantum tunneling of the magnetization,” Phys. Rev. B 56, 8192–8198 (1997).
[CrossRef]

J.-H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007).
[CrossRef]

Phys. Rev. Lett. (5)

E. M. Chudnovsky and D. A. Garanin, “Phonon superradiance and phonon laser effect in nanomagnets,” Phys. Rev. Lett. 93, 257205 (2004).
[CrossRef]

J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830–3833 (1996).
[CrossRef]

F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S. Piligkos, G. Timco, and R. E. P. Winpenny, “Molecular engineering of antiferromagnetic rings for quantum computation,” Phys. Rev. Lett. 94, 207208 (2005).
[CrossRef]

S. Carretta, P. Santini, G. Amoretti, T. Guidi, J. R. D. Copley, Y. Qiu, R. Caciuffo, G. Timco, and R. E. P. Winpenny, “Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: evidence from neutron spectroscopy,” Phys. Rev. Lett. 98, 167401 (2007).
[CrossRef]

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information processing?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef]

Science (1)

W. Wernsdorfer and R. Sessoli, “Quantum phase interference and parity effects in magnetic molecular clusters,” Science 284, 133–135 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Two lower doublets of a magnetic molecule. Weak field frequency ωp is close to the transition frequency between states from |0 to |2 and |1 to |3. Strong field frequency ωc is close to the transition frequency between states from ||1 to |2. (b) Unidirectional ring cavity containing molecular magnets sample of length L.

Fig. 2.
Fig. 2.

Plots of the input–output field curves for different values of Ωc. The parameter values are Λ30=Λ31=3γ, Λ32=Λ21=Λ20=0.5γ, γ20=γ21=γ30=γ31=γ10=γ23=0.5γ, Δc=10γ, Δp=0, C=100γ.

Fig. 3.
Fig. 3.

(a) Plots of absorption versus probe field detuning for different values of Ωc. (b) Three-dimensional plot of the steady-state absorption spectra versus the Ωc and the Δp. Here, Ωp=0.001γ, and the other parameters are the same as Fig. 2.

Fig. 4.
Fig. 4.

Plots of the input–output field curves for different values of (a) Δp and (b) Δc. Here, Ωc=2γ, and the other parameters values are the same as Fig. 2.

Fig. 5.
Fig. 5.

Plots of the input–output field curves for different values of C. Here, Ωc=2γ, and the other parameters values are the same as Fig. 2.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

H^=H^0+V^,
H^=H^trDS^z2gμBH0S^x
V^=12gμBH^p·S^eiωpt12gμBH^c·S^eiωct+H.C,
HintI/=Δp1|22|+Δp2|33|+Δc|11|(Ωp1|20|+Ωp1|31|+H.C.),
Ωp1=gμB2|S^x|0Hp2,Ωp2=gμB3|S^x|1Hp2,Ωc=gμB2|S^y|1Hc2.
ρ˙=i[HI,ρ]+l=2,3k=0,1Λlk2(2σ^klρσ^klσ^klσ^klρρσ^klσ^kl)+k=14γkk2(2σ^kkρσ^kkσ^kkρρσ^kk).
ρ˙21=i(Δp1+ΔciΛ2iγ21)ρ21+iΩp1ρ01iΩc(ρ11+ρ22)+iΩp2ρ23,ρ˙20=i(Δp1iΛ2iγ20)ρ20+iΩcρ10+iΩp1(ρ00ρ22),ρ˙31=i(ΔcΔp2iΛ3iγ31)ρ31iΩp2(ρ33ρ11)iΩcρ32,ρ˙10=i(Δciγ10)ρ10iΩcρ20iΩp1ρ12iΩp2ρ30,ρ˙30=i(Δp2iΛ3iγ30)ρ30iΩp1ρ32+iΩp2ρ10,ρ˙32=i(Δp1Δp2+iΛ2+iγ23)ρ32iΩp1ρ30iΩcρ31iΩp2ρ12,ρ˙11=Λ21ρ22+Λ31ρ33iΩc(ρ21+ρ12)iΩp2(ρ31+ρ13),ρ˙22=Λ32ρ33+iΩc(ρ21+ρ12)+iΩp1(ρ20+ρ02),ρ˙33=Λ23ρ22+iΩp2(ρ31+ρ13),ρ00+ρ11+ρ22+ρ33=1.
E=Ep1eiωp1t+Ep2eiωp2t+Eceiωct+C.C.
Ept+cEpz=i2πgμBNωp(2|S^x|0ρ20+3|S^x|1ρ31),
Epz=i2πgμBNωpc(2|S^x|0ρ20+3|S^x|1ρ31).
EPT:Ep(L)=EpTT
Ep(0)=TEpI+REp(L),
y=2xiC(ρ20+ρ31).
y=gμBEpI(2|S^x|0+3|S^x|1),x=gμB2EpT(2|S^x|0+3|S^x|1).
C=2πg2μB2ωpNLcT(2|S^x|0+3|S^x|1)

Metrics