Abstract

We have demonstrated a dual-channel multiplexing spectral-domain optical-coherence tomography (SD-OCT) system based on a 3×3 fiber coupler for extended imaging range of whole human eye depth, with a single light source and spectrometer. OCT images of anterior segments of a human eye were sequentially performed and constructed to demonstrate an extended depth range as large as 15 mm in air. A good quality OCT image of the whole anterior segment of an eye was present. Furthermore, whole eye segmental imaging was performed and ocular distances were calculated to show the validation of the system for whole eye morphological measurement.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lockwood, D. Turnball, D. Christopher, and F. Foster, “Beyond 30  MHz: applications of high-frequency ultrasound imaging,” IEEE Eng. Med. Biol. Mag. 15(6), 60–71 (1996).
    [CrossRef]
  2. H. Cheng, G. Nair, T. Walker, M. Kim, M. Pardue, P. Thulé, D. Olson, and T. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. USA 103, 17525–17530 (2006).
    [CrossRef]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  4. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  5. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
    [CrossRef]
  6. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  7. U. G. Ha and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
    [CrossRef]
  8. P. Xi, M. Kai, T. Bräuler, C. Zhou, and Q. Ren, “Evaluation of spectrometric parameters in spectral-domain optical coherence tomography,” Appl. Opt. 50, 366–372 (2011).
    [CrossRef]
  9. J. Jungwirth, B. Baumann, M. Pircher, E. Gotainger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14, 050501 (2009).
    [CrossRef]
  10. E. Götzinger, M. Pircher, R. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583–594 (2005).
    [CrossRef]
  11. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
    [CrossRef]
  12. L. An and R. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3423–3425 (2007).
    [CrossRef]
  13. A. Tao, Y. Shao, J. Zhong, H. Jiang, M. Shen, and J. Wang, “Versatile optical coherence tomography for imaging the human eye,” Biomed. Opt. Express 4, 1031–1044 (2013).
    [CrossRef]
  14. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3, 1506–1520 (2012).
    [CrossRef]
  15. C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express 17, 8947–8955 (2009).
    [CrossRef]
  16. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20, 6109–6115 (2012).
    [CrossRef]
  17. S. K. Sheem, “Optical fiber interferometers with 3×3 directional couplers: analysis,” J. Appl. Phys. 52, 3865–3872 (1981).
    [CrossRef]
  18. M. Zurauskas, A. Bradu, and A. Gh. Podoleanu, “Frequency, multiplexed long range swept source optical coherence tomography,” Biomed. Opt. Express 4, 778–788 (2013).
    [CrossRef]
  19. R. Poddar, D. E. Cortés, and J. S. Werner, “Three-dimensional anterior segment imaging in patients with type 1 Boston Keratoprosthesis with switchable full depth range swept source optical coherence tomography,” J. Biomed. Opt. 18, 086002 (2013).

2013 (3)

R. Poddar, D. E. Cortés, and J. S. Werner, “Three-dimensional anterior segment imaging in patients with type 1 Boston Keratoprosthesis with switchable full depth range swept source optical coherence tomography,” J. Biomed. Opt. 18, 086002 (2013).

M. Zurauskas, A. Bradu, and A. Gh. Podoleanu, “Frequency, multiplexed long range swept source optical coherence tomography,” Biomed. Opt. Express 4, 778–788 (2013).
[CrossRef]

A. Tao, Y. Shao, J. Zhong, H. Jiang, M. Shen, and J. Wang, “Versatile optical coherence tomography for imaging the human eye,” Biomed. Opt. Express 4, 1031–1044 (2013).
[CrossRef]

2012 (3)

2011 (1)

2009 (2)

C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express 17, 8947–8955 (2009).
[CrossRef]

J. Jungwirth, B. Baumann, M. Pircher, E. Gotainger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14, 050501 (2009).
[CrossRef]

2007 (2)

2006 (1)

H. Cheng, G. Nair, T. Walker, M. Kim, M. Pardue, P. Thulé, D. Olson, and T. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. USA 103, 17525–17530 (2006).
[CrossRef]

2005 (1)

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

1998 (1)

U. G. Ha and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

1996 (1)

G. Lockwood, D. Turnball, D. Christopher, and F. Foster, “Beyond 30  MHz: applications of high-frequency ultrasound imaging,” IEEE Eng. Med. Biol. Mag. 15(6), 60–71 (1996).
[CrossRef]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

1981 (1)

S. K. Sheem, “Optical fiber interferometers with 3×3 directional couplers: analysis,” J. Appl. Phys. 52, 3865–3872 (1981).
[CrossRef]

An, L.

Baumann, B.

J. Jungwirth, B. Baumann, M. Pircher, E. Gotainger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14, 050501 (2009).
[CrossRef]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[CrossRef]

Bradu, A.

Bräuler, T.

Cable, A. E.

Chai, X.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chen, Z.

Cheng, H.

H. Cheng, G. Nair, T. Walker, M. Kim, M. Pardue, P. Thulé, D. Olson, and T. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. USA 103, 17525–17530 (2006).
[CrossRef]

Christopher, D.

G. Lockwood, D. Turnball, D. Christopher, and F. Foster, “Beyond 30  MHz: applications of high-frequency ultrasound imaging,” IEEE Eng. Med. Biol. Mag. 15(6), 60–71 (1996).
[CrossRef]

Cortés, D. E.

R. Poddar, D. E. Cortés, and J. S. Werner, “Three-dimensional anterior segment imaging in patients with type 1 Boston Keratoprosthesis with switchable full depth range swept source optical coherence tomography,” J. Biomed. Opt. 18, 086002 (2013).

Dai, C.

De Freitas, C.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Duker, J. S.

Duong, T.

H. Cheng, G. Nair, T. Walker, M. Kim, M. Pardue, P. Thulé, D. Olson, and T. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. USA 103, 17525–17530 (2006).
[CrossRef]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Fan, S.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Foster, F.

G. Lockwood, D. Turnball, D. Christopher, and F. Foster, “Beyond 30  MHz: applications of high-frequency ultrasound imaging,” IEEE Eng. Med. Biol. Mag. 15(6), 60–71 (1996).
[CrossRef]

Fujimoto, J. G.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Gotainger, E.

J. Jungwirth, B. Baumann, M. Pircher, E. Gotainger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14, 050501 (2009).
[CrossRef]

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Grulkowski, I.

Ha, U. G.

U. G. Ha and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Hee, M.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hitzenberger, C. K.

J. Jungwirth, B. Baumann, M. Pircher, E. Gotainger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14, 050501 (2009).
[CrossRef]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[CrossRef]

E. Götzinger, M. Pircher, R. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583–594 (2005).
[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Ho, A.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Jayaraman, V.

Jiang, H.

Jiang, J.

Jiao, S.

Jungwirth, J.

J. Jungwirth, B. Baumann, M. Pircher, E. Gotainger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14, 050501 (2009).
[CrossRef]

Kai, M.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Kim, M.

H. Cheng, G. Nair, T. Walker, M. Kim, M. Pardue, P. Thulé, D. Olson, and T. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. USA 103, 17525–17530 (2006).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Leitgeb, R.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Lindner, M. W.

U. G. Ha and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Liu, J. J.

Lockwood, G.

G. Lockwood, D. Turnball, D. Christopher, and F. Foster, “Beyond 30  MHz: applications of high-frequency ultrasound imaging,” IEEE Eng. Med. Biol. Mag. 15(6), 60–71 (1996).
[CrossRef]

Lu, C. D.

Manns, F.

Nair, G.

H. Cheng, G. Nair, T. Walker, M. Kim, M. Pardue, P. Thulé, D. Olson, and T. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. USA 103, 17525–17530 (2006).
[CrossRef]

Olson, D.

H. Cheng, G. Nair, T. Walker, M. Kim, M. Pardue, P. Thulé, D. Olson, and T. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. USA 103, 17525–17530 (2006).
[CrossRef]

Pardue, M.

H. Cheng, G. Nair, T. Walker, M. Kim, M. Pardue, P. Thulé, D. Olson, and T. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. USA 103, 17525–17530 (2006).
[CrossRef]

Parel, J. M.

Pircher, M.

Poddar, R.

R. Poddar, D. E. Cortés, and J. S. Werner, “Three-dimensional anterior segment imaging in patients with type 1 Boston Keratoprosthesis with switchable full depth range swept source optical coherence tomography,” J. Biomed. Opt. 18, 086002 (2013).

Podoleanu, A. Gh.

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Ren, Q.

Ruggeri, M.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Shao, Y.

Sheem, S. K.

S. K. Sheem, “Optical fiber interferometers with 3×3 directional couplers: analysis,” J. Appl. Phys. 52, 3865–3872 (1981).
[CrossRef]

Shen, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Tao, A.

Thulé, P.

H. Cheng, G. Nair, T. Walker, M. Kim, M. Pardue, P. Thulé, D. Olson, and T. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. USA 103, 17525–17530 (2006).
[CrossRef]

Turnball, D.

G. Lockwood, D. Turnball, D. Christopher, and F. Foster, “Beyond 30  MHz: applications of high-frequency ultrasound imaging,” IEEE Eng. Med. Biol. Mag. 15(6), 60–71 (1996).
[CrossRef]

Uhlhorn, S. R.

Walker, T.

H. Cheng, G. Nair, T. Walker, M. Kim, M. Pardue, P. Thulé, D. Olson, and T. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. USA 103, 17525–17530 (2006).
[CrossRef]

Wang, J.

Wang, R.

Werner, J. S.

R. Poddar, D. E. Cortés, and J. S. Werner, “Three-dimensional anterior segment imaging in patients with type 1 Boston Keratoprosthesis with switchable full depth range swept source optical coherence tomography,” J. Biomed. Opt. 18, 086002 (2013).

Xi, P.

Zhong, J.

Zhou, C.

Zurauskas, M.

Appl. Opt. (1)

Biomed. Opt. Express (4)

IEEE Eng. Med. Biol. Mag. (1)

G. Lockwood, D. Turnball, D. Christopher, and F. Foster, “Beyond 30  MHz: applications of high-frequency ultrasound imaging,” IEEE Eng. Med. Biol. Mag. 15(6), 60–71 (1996).
[CrossRef]

J. Appl. Phys. (1)

S. K. Sheem, “Optical fiber interferometers with 3×3 directional couplers: analysis,” J. Appl. Phys. 52, 3865–3872 (1981).
[CrossRef]

J. Biomed. Opt. (3)

R. Poddar, D. E. Cortés, and J. S. Werner, “Three-dimensional anterior segment imaging in patients with type 1 Boston Keratoprosthesis with switchable full depth range swept source optical coherence tomography,” J. Biomed. Opt. 18, 086002 (2013).

J. Jungwirth, B. Baumann, M. Pircher, E. Gotainger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14, 050501 (2009).
[CrossRef]

U. G. Ha and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. USA (1)

H. Cheng, G. Nair, T. Walker, M. Kim, M. Pardue, P. Thulé, D. Olson, and T. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. USA 103, 17525–17530 (2006).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the dual-channel SD-OCT system based on a 3×3 fiber coupler.

Fig. 2.
Fig. 2.

Flowchart of signal processing of two channels in the SD-OCT system (the solid line section, channel 1; the dotted line section, channel 2, * indicates the conjugate).

Fig. 3.
Fig. 3.

(a) In vivo image obtained in channel 1 reconstruction using standard SD-OCT process. (b) Reconstruction of channel 1 by FFT of the complex spectral interferometric signal. (c) Image of the rear segment of the lens obtained in channel 2. (d) Image of the anterior segment of an eye constructed in scale. The composite image size is 4475(axial)×2048(lateral) pixels, i.e., 12mm(axial)×14mm(lateral). Acquisition time of each frame is 73.7 ms; the switch time is 100ms.

Fig. 4.
Fig. 4.

In vivo whole eye segment imaging. (a) Anterior segment of eye, (b) retina, (c) the combined whole eye image in which a gap between two channels is filled with blank. (d) A-line signal of the central reflexes of the eye segment. The composite image size is 10112(axial)×2048(lateral) pixels, i.e., 26.8mm(axial)×14mm(lateral). Total acquisition time is 0.3s.

Tables (1)

Tables Icon

Table 1. Ocular Distance Measurements using a Dual-Channel OCT System Based On 3×3 Fiber Coupler.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(k,x)=Ir(k,x)+2Ir(k,x)Is(k,x)nαncos(k,x)+Is(k,x),

Metrics