Abstract

A parametric description of the dielectric function of Pd thin films with thicknesses between 10 and 30 nm is reported. These films were grown at room temperature on amorphous quartz substrates by electron beam evaporation, with a base pressure of 7.0×107mbar. By using nonpolarized normal incident light, transmission spectra were measured for wavelengths between 240 and 1050 nm. Inversion of the spectra by means of a projected gradient method enables us to obtain the mean dielectric function of the Pd grains in the films. We follow the Brendel–Bormann model to describe the frequency dependence of the dielectric function, with the plasma frequency, collision frequency, and screening factor as parameters in the free electron term. The contributions of bound electrons and their interband transitions, described in terms of Lorentz oscillators, involve the resonance frequencies, decay times, strengths, and Gaussian widths as parameters of the model. All these parameters have been optimized from the Pd grains’ dielectric function, which fits the transmission spectra. A similar procedure was followed for Pd films exposed to a hydrogen atmosphere close to one bar. Thus, the dielectric functions of palladium and palladium hydride can easily be calculated through spectral ranges covering near-ultraviolet, visible, and near-infrared wavelengths. This can be used to model the behavior of nano-sized structures in which palladium particles or thin films are exposed to hydrogen pressures close to one bar.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ellipsometric study of dielectric functions of Mg1−yCayHx thin films (0.03≤y≤0.17)

Yasusei Yamada, Kazuki Tajima, Masahisa Okada, Masato Tazawa, Arne Roos, and Kazuki Yoshimura
Appl. Opt. 50(21) 3879-3884 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription