Abstract

The ability to create arbitrary patterned linear and circular infrared (IR) liquid crystal polymer (LCP) polarizers is demonstrated. The operating wavelength of the thin-film polarizer ranges from 700 to 4200 nm. The linear micropolarizer is fabricated using IR dichroic dye as a guest in LCP host with feature size as small as 4 μm. The circular micropolarizer is fabricated using cholesteric LCPs with feature size as small as 6.2 μm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Mudge and M. Virgen, “Real time polarimetric dehazing,” Appl. Opt. 52, 1932–1938 (2013).
    [CrossRef]
  2. S. Klein, “Electrophoretic liquid crystal displays: how far are we?” Liq. Cryst. Rev. 1, 52–64 (2013).
    [CrossRef]
  3. A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
    [CrossRef]
  4. J. Soni, H. Purwar, H. Lakhotia, S. Chandel, C. Banerjee, U. Kumar, and N. Ghosh, “Quantitative fluorescence and elastic scattering tissue polarimetry using an eigenvalue calibrated spectroscopic Mueller matrix system,” Opt. Express 21, 15475–15489 (2013).
    [CrossRef]
  5. J. Wyant, “Computerized interferometric surface measurements [Invited],” Appl. Opt. 52, 1–8 (2013).
    [CrossRef]
  6. J. M. Bennett, “Polarizers,” in Handbook of Optics (McGraw-Hill, 1995), Vol. 2, Chap. 3.
  7. P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, 2005).
  8. G. Myhre, A. Sayyad, and S. Pau, “Patterned color liquid crystal polymer polarizers,” Opt. Express 18, 27777–27786 (2010).
    [CrossRef]
  9. N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34, 558–559 (2005).
    [CrossRef]
  10. V. Gruev, A. Ortu, N. Lazarus, J. Van de Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15, 4994–5007 (2007).
    [CrossRef]
  11. Y. L. Zhou and D. J. Klotzkin, “Design and parallel fabrication of wire-grid polarization arrays for polarization-resolved imaging at 1.55  μm,” Appl. Opt. 47, 3555–3560 (2008).
    [CrossRef]
  12. A. Stalmashonak, G. Seifert, A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48, F37–F43 (2009).
    [CrossRef]
  13. G. Myhre, W. L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, and S. Pau, “Liquid crystal polymer full-Stokes division of focal plane polarimeter,” Opt. Express 20, 27393–27409 (2012).
    [CrossRef]
  14. C. T. Lee, H. Y. Lin, and C. H. Tsai, “Designs of broadband and wide-view patterned polarizers for stereoscopic 3D displays,” Opt. Express 18, 27079–27094 (2010).
    [CrossRef]
  15. O. Graydon, “Polarization: making vortices of light,” Nat. Photonics 5, 331 (2011).
    [CrossRef]
  16. P. S. Tan, X.-C. Yuan, G. H. Yuan, and Q. Wang, “High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices,” Appl. Phys. Lett. 97, 241109 (2010).
    [CrossRef]
  17. J. Guo and D. Brady, “Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry,” Appl. Opt. 39, 1486–1492 (2000).
    [CrossRef]
  18. G. Nordin, J. Meier, P. Deguzman, and M. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
    [CrossRef]
  19. T. Furuya, K. Maeda, K. Yamamoto, T. Nakashima, T. Inoue, M. Hangyo, and M. Tani, “Broadband polarization properties of photoconductive spiral antenna,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves, (2009), pp. 1–2.
  20. M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381, 212–215 (1996).
    [CrossRef]
  21. D. Guo, X. Chen, K. Cai, P. Deng, and R. Zong, “Analyzing the molecular orientation of ultrathin organic films by polarized transmission and grazing incidence reflection absorption IR spectroscopy,” Mater. Focus 2, 231–238 (2013).
    [CrossRef]
  22. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  23. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).
  24. J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20, 024212 (2011).
    [CrossRef]
  25. J. Ma and L. Xuan, “Toward nanoscale molecular switch-based liquid crystal displays,” Displays 34, 293–300 (2013).
    [CrossRef]
  26. S. Y. Lu and R. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
    [CrossRef]
  27. B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005).
    [CrossRef]
  28. G. Myhre and S. Pau, “Imaging capability of patterned liquid crystals,” Appl. Opt. 48, 6152–6158 (2009).
    [CrossRef]

2013 (7)

J. Mudge and M. Virgen, “Real time polarimetric dehazing,” Appl. Opt. 52, 1932–1938 (2013).
[CrossRef]

S. Klein, “Electrophoretic liquid crystal displays: how far are we?” Liq. Cryst. Rev. 1, 52–64 (2013).
[CrossRef]

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[CrossRef]

J. Soni, H. Purwar, H. Lakhotia, S. Chandel, C. Banerjee, U. Kumar, and N. Ghosh, “Quantitative fluorescence and elastic scattering tissue polarimetry using an eigenvalue calibrated spectroscopic Mueller matrix system,” Opt. Express 21, 15475–15489 (2013).
[CrossRef]

J. Wyant, “Computerized interferometric surface measurements [Invited],” Appl. Opt. 52, 1–8 (2013).
[CrossRef]

D. Guo, X. Chen, K. Cai, P. Deng, and R. Zong, “Analyzing the molecular orientation of ultrathin organic films by polarized transmission and grazing incidence reflection absorption IR spectroscopy,” Mater. Focus 2, 231–238 (2013).
[CrossRef]

J. Ma and L. Xuan, “Toward nanoscale molecular switch-based liquid crystal displays,” Displays 34, 293–300 (2013).
[CrossRef]

2012 (1)

2011 (2)

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20, 024212 (2011).
[CrossRef]

O. Graydon, “Polarization: making vortices of light,” Nat. Photonics 5, 331 (2011).
[CrossRef]

2010 (3)

2009 (2)

2008 (1)

2007 (1)

2005 (2)

N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34, 558–559 (2005).
[CrossRef]

B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005).
[CrossRef]

2000 (1)

1999 (1)

1996 (2)

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381, 212–215 (1996).
[CrossRef]

S. Y. Lu and R. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
[CrossRef]

Abdolvand, A.

Banerjee, C.

Bennett, J. M.

J. M. Bennett, “Polarizers,” in Handbook of Optics (McGraw-Hill, 1995), Vol. 2, Chap. 3.

Brady, D.

Brasselet, S.

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[CrossRef]

Brock, N.

Broer, D.

B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005).
[CrossRef]

Cai, K.

D. Guo, X. Chen, K. Cai, P. Deng, and R. Zong, “Analyzing the molecular orientation of ultrathin organic films by polarized transmission and grazing incidence reflection absorption IR spectroscopy,” Mater. Focus 2, 231–238 (2013).
[CrossRef]

Chandel, S.

Chen, X.

D. Guo, X. Chen, K. Cai, P. Deng, and R. Zong, “Analyzing the molecular orientation of ultrathin organic films by polarized transmission and grazing incidence reflection absorption IR spectroscopy,” Mater. Focus 2, 231–238 (2013).
[CrossRef]

Chipman, R.

Chipman, R. A.

Deguzman, P.

Deng, P.

D. Guo, X. Chen, K. Cai, P. Deng, and R. Zong, “Analyzing the molecular orientation of ultrathin organic films by polarized transmission and grazing incidence reflection absorption IR spectroscopy,” Mater. Focus 2, 231–238 (2013).
[CrossRef]

Engheta, N.

Ferrand, P.

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[CrossRef]

Fujio, K.

N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34, 558–559 (2005).
[CrossRef]

Furuya, T.

T. Furuya, K. Maeda, K. Yamamoto, T. Nakashima, T. Inoue, M. Hangyo, and M. Tani, “Broadband polarization properties of photoconductive spiral antenna,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves, (2009), pp. 1–2.

Ghosh, N.

Graener, H.

Graydon, O.

O. Graydon, “Polarization: making vortices of light,” Nat. Photonics 5, 331 (2011).
[CrossRef]

Gruev, V.

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

Guo, D.

D. Guo, X. Chen, K. Cai, P. Deng, and R. Zong, “Analyzing the molecular orientation of ultrathin organic films by polarized transmission and grazing incidence reflection absorption IR spectroscopy,” Mater. Focus 2, 231–238 (2013).
[CrossRef]

Guo, J.

Hangyo, M.

T. Furuya, K. Maeda, K. Yamamoto, T. Nakashima, T. Inoue, M. Hangyo, and M. Tani, “Broadband polarization properties of photoconductive spiral antenna,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves, (2009), pp. 1–2.

Hsu, W. L.

Inoue, T.

T. Furuya, K. Maeda, K. Yamamoto, T. Nakashima, T. Inoue, M. Hangyo, and M. Tani, “Broadband polarization properties of photoconductive spiral antenna,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves, (2009), pp. 1–2.

Jones, M.

Kawatsuki, N.

N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34, 558–559 (2005).
[CrossRef]

Klein, S.

S. Klein, “Electrophoretic liquid crystal displays: how far are we?” Liq. Cryst. Rev. 1, 52–64 (2013).
[CrossRef]

Klotzkin, D. J.

Kress, A.

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[CrossRef]

Kumar, U.

LaCasse, C.

Lakhotia, H.

Lazarus, N.

Lee, C. T.

Leewis, C.

B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005).
[CrossRef]

Lin, H. Y.

Liu, Y. G.

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20, 024212 (2011).
[CrossRef]

Lu, S. Y.

Lub, J.

B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005).
[CrossRef]

Ma, J.

J. Ma and L. Xuan, “Toward nanoscale molecular switch-based liquid crystal displays,” Displays 34, 293–300 (2013).
[CrossRef]

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20, 024212 (2011).
[CrossRef]

Maeda, K.

T. Furuya, K. Maeda, K. Yamamoto, T. Nakashima, T. Inoue, M. Hangyo, and M. Tani, “Broadband polarization properties of photoconductive spiral antenna,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves, (2009), pp. 1–2.

Meier, J.

Mudge, J.

Myhre, G.

Nakashima, T.

T. Furuya, K. Maeda, K. Yamamoto, T. Nakashima, T. Inoue, M. Hangyo, and M. Tani, “Broadband polarization properties of photoconductive spiral antenna,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves, (2009), pp. 1–2.

Nordin, G.

Ortu, A.

Oswald, P.

P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, 2005).

Pau, S.

Peinado, A.

Pieranski, P.

P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, 2005).

Podlipensky, A.

Purwar, H.

Ranchon, H.

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[CrossRef]

Rigneault, H.

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[CrossRef]

Savatier, J.

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[CrossRef]

Sayyad, A.

Schadt, M.

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381, 212–215 (1996).
[CrossRef]

Schuster, A.

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381, 212–215 (1996).
[CrossRef]

Seiberle, H.

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381, 212–215 (1996).
[CrossRef]

Seifert, G.

Skrzypczak, U.

Soni, J.

Stalmashonak, A.

Steenbakkers, J.

B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005).
[CrossRef]

Tan, P. S.

P. S. Tan, X.-C. Yuan, G. H. Yuan, and Q. Wang, “High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices,” Appl. Phys. Lett. 97, 241109 (2010).
[CrossRef]

Tani, M.

T. Furuya, K. Maeda, K. Yamamoto, T. Nakashima, T. Inoue, M. Hangyo, and M. Tani, “Broadband polarization properties of photoconductive spiral antenna,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves, (2009), pp. 1–2.

Tsai, C. H.

Unal, A.

Van de Spiegel, J.

van der Zande, B.

B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005).
[CrossRef]

Virgen, M.

Wang, Q.

P. S. Tan, X.-C. Yuan, G. H. Yuan, and Q. Wang, “High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices,” Appl. Phys. Lett. 97, 241109 (2010).
[CrossRef]

Wang, X.

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[CrossRef]

Wu, S. T.

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

Wyant, J.

Xuan, L.

J. Ma and L. Xuan, “Toward nanoscale molecular switch-based liquid crystal displays,” Displays 34, 293–300 (2013).
[CrossRef]

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20, 024212 (2011).
[CrossRef]

Yamamoto, K.

T. Furuya, K. Maeda, K. Yamamoto, T. Nakashima, T. Inoue, M. Hangyo, and M. Tani, “Broadband polarization properties of photoconductive spiral antenna,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves, (2009), pp. 1–2.

Yang, D. K.

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

Yeh, P.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

Yuan, G. H.

P. S. Tan, X.-C. Yuan, G. H. Yuan, and Q. Wang, “High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices,” Appl. Phys. Lett. 97, 241109 (2010).
[CrossRef]

Yuan, X.-C.

P. S. Tan, X.-C. Yuan, G. H. Yuan, and Q. Wang, “High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices,” Appl. Phys. Lett. 97, 241109 (2010).
[CrossRef]

Zheng, Z. G.

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20, 024212 (2011).
[CrossRef]

Zhou, Y. L.

Zong, R.

D. Guo, X. Chen, K. Cai, P. Deng, and R. Zong, “Analyzing the molecular orientation of ultrathin organic films by polarized transmission and grazing incidence reflection absorption IR spectroscopy,” Mater. Focus 2, 231–238 (2013).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

P. S. Tan, X.-C. Yuan, G. H. Yuan, and Q. Wang, “High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices,” Appl. Phys. Lett. 97, 241109 (2010).
[CrossRef]

Biophys. J. (1)

A. Kress, X. Wang, H. Ranchon, J. Savatier, H. Rigneault, P. Ferrand, and S. Brasselet, “Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy,” Biophys. J. 105, 127–136 (2013).
[CrossRef]

Chem. Lett. (1)

N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34, 558–559 (2005).
[CrossRef]

Chin. Phys. B (1)

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20, 024212 (2011).
[CrossRef]

Displays (1)

J. Ma and L. Xuan, “Toward nanoscale molecular switch-based liquid crystal displays,” Displays 34, 293–300 (2013).
[CrossRef]

J. Appl. Phys. (1)

B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005).
[CrossRef]

J. Opt. Soc. Am. A (2)

Liq. Cryst. Rev. (1)

S. Klein, “Electrophoretic liquid crystal displays: how far are we?” Liq. Cryst. Rev. 1, 52–64 (2013).
[CrossRef]

Mater. Focus (1)

D. Guo, X. Chen, K. Cai, P. Deng, and R. Zong, “Analyzing the molecular orientation of ultrathin organic films by polarized transmission and grazing incidence reflection absorption IR spectroscopy,” Mater. Focus 2, 231–238 (2013).
[CrossRef]

Nat. Photonics (1)

O. Graydon, “Polarization: making vortices of light,” Nat. Photonics 5, 331 (2011).
[CrossRef]

Nature (1)

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381, 212–215 (1996).
[CrossRef]

Opt. Express (5)

Other (5)

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

T. Furuya, K. Maeda, K. Yamamoto, T. Nakashima, T. Inoue, M. Hangyo, and M. Tani, “Broadband polarization properties of photoconductive spiral antenna,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves, (2009), pp. 1–2.

J. M. Bennett, “Polarizers,” in Handbook of Optics (McGraw-Hill, 1995), Vol. 2, Chap. 3.

P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Methods of patterning IR LCP micropolarizers. (Schematic, dimensions are not to scale.)

Fig. 2.
Fig. 2.

(a) ER of the IR absorption-based micropolarizer is shown as a function of wavelength. Three different concentrations (15, 20, 30 mg/ml) of dye are shown. (b) Parallel polarization transmittance is shown as a function of ER in logarithmic scales. (c) Theoretical parallel polarization transmittance is shown as a function of ER. Four different dichroic ratios (DR) are shown.

Fig. 3.
Fig. 3.

(a) Transmission spectra of Ch-LCP of different chiral dopant concentrations are shown. (b) The minimum transmittance of different chiral dopant concentration is shown as a function of wavelength.

Fig. 4.
Fig. 4.

(a) The designed wavelength of Ch-LCP is shown as a function of chiral dopant concentration. A linear relationship exists between these two parameters in logarithmic scales. (b) FWHM of Ch-LCP is also shown as a linear function of chiral dopant concentration in logarithmic scales.

Fig. 5.
Fig. 5.

(a) ER of the IR interference-based micropolarizer is shown as a function of wavelength. Measured results of single and double layers are shown. (b) SEM image of double Ch-LCP thin-film stacks is shown, and the half-pitch of the periodic Ch-LCP periodic structural layers is measured to be 291.98 nm.

Fig. 6.
Fig. 6.

Magnified images of (a) the chromium USAF mask with a 915 nm diode laser, (b) the 15 mg/ml absorption-based micropolarizer illuminated with a 915 nm diode laser polarized horizontally, and the interference-based (c) thermal annealing as well as (d) solvent rinse micropolarizers illuminated with a 880 nm diode laser left-handed polarized are shown.

Fig. 7.
Fig. 7.

(a) Polarizance is shown as a function of the feature size. Three different samples (absorption, thermal annealing, and solvent rinse) are shown. (b) Surface profile of the 31.25 μm solvent rinse feature is measured using a Veeco Dektek profilometer.

Fig. 8.
Fig. 8.

Polarization properties of the micropolarizer can be modified using retarders. For example, (a) an absorption-based circular micropolarizer and (b) an interference-based linear micropolarizer are created with a quarter-wave retarder. The vertical dots denote additional layer which can improve the ER. (c) A broadband micropolarizer can be fabricated using two or more retarder layers of different LCP materials.

Tables (1)

Tables Icon

Table 1. Polarizer Type and Operating Mechanism

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ER=TT,
DR=,
ER=eLeL,
DR=1ln(T)ln(ER).
λ=n×P=nHTP×x,

Metrics