Abstract

We present a single-mode–multimode–multimode (SMm) fiber structure with a few interesting device applications. Unlike the single-mode–multimode–single-mode (SMS) structure, SMm has the unique feature of more than one mode in the output fiber. A detailed physical understanding of the transmission properties, and the differences from the SMS structure, is presented. The device can be used to excite selected modes in the output multimode fiber (MMF). This can be used to reduce the number of modes in high-speed MMF applications using an all-fiber structure instead of bulk optics. In yet another possible application, we show a way of designing sensitive refractive index sensors for measurement in different RI ranges.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
    [Crossref]
  2. Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31, 317–319 (2006).
    [Crossref]
  3. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
    [Crossref]
  4. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547–2549 (2006).
    [Crossref]
  5. J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. LiKamWa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35, 324–326 (2010).
    [Crossref]
  6. W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469–477 (2004).
    [Crossref]
  7. Y. O. Yilmaz, A. Mehta, W. S. Mohammed, and E. G. Johnson, “Fiber-optic beam shaper based on multimode interference,” Opt. Lett. 32, 3170–3172 (2007).
    [Crossref]
  8. H. Talbot, “Facts relating to optical science,” Philos. Mag. J. Sci. 9, 401–407 (1836).
  9. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [Crossref]
  10. D. Donlagic and B. Culshaw, “Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber,” J. Lightwave Technol. 17, 1856–1868 (1999).
    [Crossref]
  11. J. Villatoro and D. Monz-Hernandez, “Low-cost optical fiber refractive-index sensor based on core diameter mismatch,” J. Lightwave Technol. 24, 1409–1413 (2006).
    [Crossref]
  12. Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
    [Crossref]
  13. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Investigation of single mode-multimode-single mode and single mode-tapered multimode-single mode fiber structures and their application for refractive index sensing,” J. Opt. Soc. Am. B 28, 1180–1186 (2011).
    [Crossref]
  14. C. R. Biazoli, S. Silva, M. A. R. Franco, O. Frazo, and C. M. B. Cordeiro, “Multimode interference tapered fiber refractive index sensors,” Appl. Opt. 51, 5941–5945 (2012).
    [Crossref]
  15. Z. Haas and M. A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11, 1125–1131 (1993).
    [Crossref]
  16. R. E. Freund, C.-A. Bunge, N. N. Ledentsov, D. Molin, and C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol. 28, 569–586 (2010).
    [Crossref]
  17. S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
    [Crossref]
  18. G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Binary-phase spatial light filters for mode-selective excitation of multimode fibers,” J. Lightwave Technol. 29, 1980–1987 (2011).
    [Crossref]
  19. J. Villatoro, D. Monzon-Hernandez, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fibre,” Electron. Lett. 40, 106–107 (2004).
    [Crossref]
  20. Q. Wang, G. Farrell, and W. Yan, “Investigation on single mode multimode singlemode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008).
    [Crossref]
  21. O. V. Ivanov, S. A. Nikitov, and Y. V. Gulyaev, “Cladding modes of optical fibers: properties and applications,” Phys. Usp. 49, 167–191 (2006).
    [Crossref]
  22. G. R. Hadley, “Wide-angle beam propagation using Padé approximant operators,” Opt. Lett. 17, 1426–1428 (1992).
    [Crossref]

2012 (1)

2011 (2)

2010 (2)

2008 (1)

2007 (1)

2006 (6)

Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31, 317–319 (2006).
[Crossref]

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[Crossref]

W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547–2549 (2006).
[Crossref]

J. Villatoro and D. Monz-Hernandez, “Low-cost optical fiber refractive-index sensor based on core diameter mismatch,” J. Lightwave Technol. 24, 1409–1413 (2006).
[Crossref]

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[Crossref]

O. V. Ivanov, S. A. Nikitov, and Y. V. Gulyaev, “Cladding modes of optical fibers: properties and applications,” Phys. Usp. 49, 167–191 (2006).
[Crossref]

2004 (2)

J. Villatoro, D. Monzon-Hernandez, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fibre,” Electron. Lett. 40, 106–107 (2004).
[Crossref]

W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469–477 (2004).
[Crossref]

2003 (1)

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[Crossref]

2002 (1)

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[Crossref]

1999 (1)

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

1993 (1)

Z. Haas and M. A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11, 1125–1131 (1993).
[Crossref]

1992 (1)

1836 (1)

H. Talbot, “Facts relating to optical science,” Philos. Mag. J. Sci. 9, 401–407 (1836).

Antonio-Lopez, J. E.

Biazoli, C. R.

Brambilla, G.

Bunge, C.-A.

Caspar, C.

Castillo-Guzman, A.

Choi, S.

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[Crossref]

Chung, Y. C.

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[Crossref]

Cordeiro, C. M. B.

Culshaw, B.

Ding, M.

Donlagic, D.

Farrell, G.

Franco, M. A. R.

Frazo, O.

Freund, R. E.

Gu, X.

Gulyaev, Y. V.

O. V. Ivanov, S. A. Nikitov, and Y. V. Gulyaev, “Cladding modes of optical fibers: properties and applications,” Phys. Usp. 49, 167–191 (2006).
[Crossref]

Haas, Z.

Z. Haas and M. A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11, 1125–1131 (1993).
[Crossref]

Hadley, G. R.

Ivanov, O. V.

O. V. Ivanov, S. A. Nikitov, and Y. V. Gulyaev, “Cladding modes of optical fibers: properties and applications,” Phys. Usp. 49, 167–191 (2006).
[Crossref]

Johnson, E. G.

Jung, Y.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[Crossref]

Kim, G. Y.

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[Crossref]

Kim, S.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[Crossref]

Ledentsov, N. N.

Lee, D.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[Crossref]

Lee, Y. G.

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[Crossref]

Li, E.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[Crossref]

LiKamWa, P.

Maksymiuk, L.

May-Arrioja, D. A.

Mehta, A.

Mohammed, W.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[Crossref]

Mohammed, W. S.

Molin, D.

Monz-Hernandez, D.

Monzon-Hernandez, D.

J. Villatoro, D. Monzon-Hernandez, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fibre,” Electron. Lett. 40, 106–107 (2004).
[Crossref]

Nikitov, S. A.

O. V. Ivanov, S. A. Nikitov, and Y. V. Gulyaev, “Cladding modes of optical fibers: properties and applications,” Phys. Usp. 49, 167–191 (2006).
[Crossref]

Oh, K.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[Crossref]

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[Crossref]

Paek, U. C.

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[Crossref]

Park, C. S.

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[Crossref]

Park, K. J.

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[Crossref]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Santoro, M. A.

Z. Haas and M. A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11, 1125–1131 (1993).
[Crossref]

Selvas-Aguilar, R.

Semenova, Y.

Shin, W.

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[Crossref]

Silva, S.

Siuzdak, J.

Smith, P. W. E.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Stepniak, G.

Talavera, D.

J. Villatoro, D. Monzon-Hernandez, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fibre,” Electron. Lett. 40, 106–107 (2004).
[Crossref]

Talbot, H.

H. Talbot, “Facts relating to optical science,” Philos. Mag. J. Sci. 9, 401–407 (1836).

Villatoro, J.

J. Villatoro and D. Monz-Hernandez, “Low-cost optical fiber refractive-index sensor based on core diameter mismatch,” J. Lightwave Technol. 24, 1409–1413 (2006).
[Crossref]

J. Villatoro, D. Monzon-Hernandez, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fibre,” Electron. Lett. 40, 106–107 (2004).
[Crossref]

Wang, P.

Wang, Q.

Wang, X.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[Crossref]

Wu, Q.

Yan, W.

Yilmaz, Y. O.

Zhang, C.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[Crossref]

Electron. Lett. (1)

J. Villatoro, D. Monzon-Hernandez, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fibre,” Electron. Lett. 40, 106–107 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (2)

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[Crossref]

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[Crossref]

J. Lightwave Technol. (8)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

D. Donlagic and B. Culshaw, “Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber,” J. Lightwave Technol. 17, 1856–1868 (1999).
[Crossref]

J. Villatoro and D. Monz-Hernandez, “Low-cost optical fiber refractive-index sensor based on core diameter mismatch,” J. Lightwave Technol. 24, 1409–1413 (2006).
[Crossref]

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Binary-phase spatial light filters for mode-selective excitation of multimode fibers,” J. Lightwave Technol. 29, 1980–1987 (2011).
[Crossref]

Q. Wang, G. Farrell, and W. Yan, “Investigation on single mode multimode singlemode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008).
[Crossref]

Z. Haas and M. A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11, 1125–1131 (1993).
[Crossref]

R. E. Freund, C.-A. Bunge, N. N. Ledentsov, D. Molin, and C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol. 28, 569–586 (2010).
[Crossref]

W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469–477 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[Crossref]

Opt. Lett. (5)

Philos. Mag. J. Sci. (1)

H. Talbot, “Facts relating to optical science,” Philos. Mag. J. Sci. 9, 401–407 (1836).

Phys. Usp. (1)

O. V. Ivanov, S. A. Nikitov, and Y. V. Gulyaev, “Cladding modes of optical fibers: properties and applications,” Phys. Usp. 49, 167–191 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Single-mode–multimode–multimode (SMm) fiber structure (not to scale).

Fig. 2.
Fig. 2.

Transmission of SMm fiber structure as a function of the length of MMF1 and the error between guided mode propagation analysis and beam propagation analysis for the structure.

Fig. 3.
Fig. 3.

Transmission loss of the SMm structure for various lengths of MMF1 and different core diameters of MMF2.

Fig. 4.
Fig. 4.

Fractional power in MMF1 for various areas (indicated by diameters) at lengths corresponding to the points “A” and “B.”

Fig. 5.
Fig. 5.

Power coupling coefficients of the modes of MMF2 at lengths indicated by points “A”, “B”, and “C” for 50, 40, 30, and 20 μm core diameter of MMF2.

Fig. 6.
Fig. 6.

Fraction of the total power in MMF1 for various areas (indicated by the diameters) near the length corresponding to point “C.”

Fig. 7.
Fig. 7.

Transmission of SMm near the length of maximum transmission (point “C”) for various core diameters of MMF2 in comparison with that of the SMS structure.

Fig. 8.
Fig. 8.

Fraction of the total power in MMF1 in various circular areas along the axis of MMF1 at different lengths near point “C.” The area of integration in the figure is indicated by the diameter.

Fig. 9.
Fig. 9.

Spectral response of SMS and SMm for various core diameters of 50, 40, 30, and 20 μm of MMF2.

Fig. 10.
Fig. 10.

3 dB transmission window of SMm and 50% power fraction in MMF1 in an area equal to the core area of MMF2 for various core diameters of MMF2.

Fig. 11.
Fig. 11.

Transmission spectrum of SMm structure for different cases listed in Table 1.

Fig. 12.
Fig. 12.

Different modal power profile to launch maximum power in LP0,1-LP0,7 modes at different lengths of MMF1.

Fig. 13.
Fig. 13.

Simulation structure for an RI sensor for three different launch conditions obtained by three different lengths of MMF1.

Fig. 14.
Fig. 14.

Transmission of the sensing structure shown in Fig. 13. The maximum sensitivity region of the sensor, near the effective RIs of LP0,1(1.4444), LP0,4(1.4403), and LP0,6(1.4346) modes, is obtained for different lengths of MMF1 of 9132, 31,173, and 21,175 μm, respectively.

Tables (2)

Tables Icon

Table 1. Transmission Loss of SMm Corresponding to Points “B” and “C” at Different Wavelengths

Tables Icon

Table 2. Effective Refractive Index of Radial Modes of MMF2 with Their Excitation Powers as a Fraction of Input Power for Different Lengths of MMF1

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

R=N1N2|ninjni+nj|2N1N2.
Ψ=2cϵonψA|ψ|2dA,
φ(z)=ncnΨnexp(iβnz),
cn=AΦsΨndAAΨn2dA,
bm=Aφ(l)ΨmdAAΨm2dA,
bm=nαmnscnamnexp(iβnl),
cn=AϕsAϕs2dAψnAψn2dAdA,
amn=AψnAψn2dAψmAψm2dAdA.
L(dB)=10log10(m|bm|2).
F=A|φ|2dAA|φ|2dA,

Metrics