Abstract

To avoid the use of ultrasound transducers and coupling gel in photoacoustic microscopy (PAM), we propose photo-acousto-optic tomography (PAOT) for noncontact photoacoustic (PA) sensing. The process consists of two parts. The first portion is the same as typical PAM, which employs a pulsed laser to induce acoustic waves. The difference from typical methods lies in the second part of the process, which applies a DC beam, rather than a conventional transducer, to sense the PA signal. A two-beam optical microscope system was designed to verify the PAOT effect, whereby an AC spot acted as the source to induce a PA signal, while a DC beam is applied to induce the acousto-optic effect for detection of the acoustic wave. We demonstrated the preliminary result that 5–100 Hz AC radiation could derive PA waves in a water-like medium along with detection sensitivity as high as 4.9%–10.0%; besides, the signal waveform could be detected by a DC spot 10–100 μm away for noncontact sensing with detection sensitivity of about 3.7%–10.4%. Without the need for a transducer or coupling gel, PAOT has the potential to modify conventional PAM into a pure optical system, which could make PA imaging more promising in practical applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. R. Sheppard and D. M. Shotton, Confocal Laser Scanning Microscopy (Springer, 1997).
  2. M. Gu, Principle of Three-Dimensional Imaging in Confocal Microscopes (WSPC, 1996).
  3. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
  4. L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17, 1685–1694 (2000).
    [CrossRef]
  5. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef]
  6. A. Diaspro, Confocal and Two-Photon Microscopy: Foundations, Applications and Advances (Wiley, 2001).
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  8. J. G. Fujimoto and D. Farkas, Biomedical Optical Imaging (Oxford, 2009).
  9. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007).
  10. B. W. Yang and H. P. D. Shieh, “Interlayer crosstalk in dual-layer read-only optical disks,” Appl. Opt. 38, 333–338 (1999).
    [CrossRef]
  11. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2001).
  12. D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, 1989).
  13. B. W. Yang, L. M. Chan, and K. C. Wang, “The characteristics of three-dimensional skin imaging system by full-colored optical coherence tomography,” Opt. Rev. 16, 392–395 (2009).
    [CrossRef]
  14. B. W. Yang and X. C. Chen, “Full-color skin imaging using RGB LED and floating lens in optical coherence tomography,” Biomed. Opt. Express 1, 1341–1346 (2010).
    [CrossRef]
  15. A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Simultaneous en-face imaging of two layers in the human retina by low-coherence reflectometry,” Opt. Lett. 22, 1039–1041 (1997).
    [CrossRef]
  16. B. W. Yang, P. K. Yang, Y. S. Chang, X. C. Chen, and W. T. Shih, “The design and application of non-invasive tissue recognition imaging in tomography of human skin and crystal structure,” Spectrosc. Spec. Anal. 30, 2546–2549 (2010).
  17. http://www.edison-opto.com.tw/ .
  18. G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Dover, 1989).
  19. http://www.otophotonics.com/ .
  20. http://www.microvision.com/ .

2010 (2)

B. W. Yang, P. K. Yang, Y. S. Chang, X. C. Chen, and W. T. Shih, “The design and application of non-invasive tissue recognition imaging in tomography of human skin and crystal structure,” Spectrosc. Spec. Anal. 30, 2546–2549 (2010).

B. W. Yang and X. C. Chen, “Full-color skin imaging using RGB LED and floating lens in optical coherence tomography,” Biomed. Opt. Express 1, 1341–1346 (2010).
[CrossRef]

2009 (1)

B. W. Yang, L. M. Chan, and K. C. Wang, “The characteristics of three-dimensional skin imaging system by full-colored optical coherence tomography,” Opt. Rev. 16, 392–395 (2009).
[CrossRef]

2003 (1)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).

2000 (1)

1999 (1)

1997 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Bouma, B. E.

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2001).

Chan, L. M.

B. W. Yang, L. M. Chan, and K. C. Wang, “The characteristics of three-dimensional skin imaging system by full-colored optical coherence tomography,” Opt. Rev. 16, 392–395 (2009).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chang, Y. S.

B. W. Yang, P. K. Yang, Y. S. Chang, X. C. Chen, and W. T. Shih, “The design and application of non-invasive tissue recognition imaging in tomography of human skin and crystal structure,” Spectrosc. Spec. Anal. 30, 2546–2549 (2010).

Chen, X. C.

B. W. Yang, P. K. Yang, Y. S. Chang, X. C. Chen, and W. T. Shih, “The design and application of non-invasive tissue recognition imaging in tomography of human skin and crystal structure,” Spectrosc. Spec. Anal. 30, 2546–2549 (2010).

B. W. Yang and X. C. Chen, “Full-color skin imaging using RGB LED and floating lens in optical coherence tomography,” Biomed. Opt. Express 1, 1341–1346 (2010).
[CrossRef]

Cheng, D. K.

D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, 1989).

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Diaspro, A.

A. Diaspro, Confocal and Two-Photon Microscopy: Foundations, Applications and Advances (Wiley, 2001).

Dobre, G. M.

Farkas, D.

J. G. Fujimoto and D. Farkas, Biomedical Optical Imaging (Oxford, 2009).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Fowles, G. R.

G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Dover, 1989).

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

J. G. Fujimoto and D. Farkas, Biomedical Optical Imaging (Oxford, 2009).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Gu, M.

M. Gu, Principle of Three-Dimensional Imaging in Confocal Microscopes (WSPC, 1996).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hyman, B. T.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).

Jackson, D. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Mertz, J.

Moreaux, L.

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).

Podoleanu, A. G.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Sandre, O.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Sheppard, C. J. R.

C. J. R. Sheppard and D. M. Shotton, Confocal Laser Scanning Microscopy (Springer, 1997).

Shieh, H. P. D.

Shih, W. T.

B. W. Yang, P. K. Yang, Y. S. Chang, X. C. Chen, and W. T. Shih, “The design and application of non-invasive tissue recognition imaging in tomography of human skin and crystal structure,” Spectrosc. Spec. Anal. 30, 2546–2549 (2010).

Shotton, D. M.

C. J. R. Sheppard and D. M. Shotton, Confocal Laser Scanning Microscopy (Springer, 1997).

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Tearney, G. J.

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2001).

Tuchin, V. V.

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007).

Wang, K. C.

B. W. Yang, L. M. Chan, and K. C. Wang, “The characteristics of three-dimensional skin imaging system by full-colored optical coherence tomography,” Opt. Rev. 16, 392–395 (2009).
[CrossRef]

Webb, D. J.

Webb, W. W.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Williams, R. M.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).

Yang, B. W.

B. W. Yang, P. K. Yang, Y. S. Chang, X. C. Chen, and W. T. Shih, “The design and application of non-invasive tissue recognition imaging in tomography of human skin and crystal structure,” Spectrosc. Spec. Anal. 30, 2546–2549 (2010).

B. W. Yang and X. C. Chen, “Full-color skin imaging using RGB LED and floating lens in optical coherence tomography,” Biomed. Opt. Express 1, 1341–1346 (2010).
[CrossRef]

B. W. Yang, L. M. Chan, and K. C. Wang, “The characteristics of three-dimensional skin imaging system by full-colored optical coherence tomography,” Opt. Rev. 16, 392–395 (2009).
[CrossRef]

B. W. Yang and H. P. D. Shieh, “Interlayer crosstalk in dual-layer read-only optical disks,” Appl. Opt. 38, 333–338 (1999).
[CrossRef]

Yang, P. K.

B. W. Yang, P. K. Yang, Y. S. Chang, X. C. Chen, and W. T. Shih, “The design and application of non-invasive tissue recognition imaging in tomography of human skin and crystal structure,” Spectrosc. Spec. Anal. 30, 2546–2549 (2010).

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).

Appl. Opt. (1)

Biomed. Opt. Express (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Opt. Rev. (1)

B. W. Yang, L. M. Chan, and K. C. Wang, “The characteristics of three-dimensional skin imaging system by full-colored optical coherence tomography,” Opt. Rev. 16, 392–395 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).

Science (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Spectrosc. Spec. Anal. (1)

B. W. Yang, P. K. Yang, Y. S. Chang, X. C. Chen, and W. T. Shih, “The design and application of non-invasive tissue recognition imaging in tomography of human skin and crystal structure,” Spectrosc. Spec. Anal. 30, 2546–2549 (2010).

Other (11)

http://www.edison-opto.com.tw/ .

G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Dover, 1989).

http://www.otophotonics.com/ .

http://www.microvision.com/ .

J. G. Fujimoto and D. Farkas, Biomedical Optical Imaging (Oxford, 2009).

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007).

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2001).

D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, 1989).

A. Diaspro, Confocal and Two-Photon Microscopy: Foundations, Applications and Advances (Wiley, 2001).

C. J. R. Sheppard and D. M. Shotton, Confocal Laser Scanning Microscopy (Springer, 1997).

M. Gu, Principle of Three-Dimensional Imaging in Confocal Microscopes (WSPC, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Principle of photoacoustic (PA) microscopy.

Fig. 2.
Fig. 2.

Imaging principles of photo-acousto-optic tomography (PAOT): (A) the first part, which implies the PA effect, and (B) the second part, which implies the acousto-optic (AO) effect.

Fig. 3.
Fig. 3.

Two-beam optical microscope system constructed to demonstrate the PAO effect.

Fig. 4.
Fig. 4.

(A) Waveform of a 5 Hz input signal (from the infrared spot). (B) Waveform of the corresponding readout signal (from the red spot).

Fig. 5.
Fig. 5.

Dependence of readout signal amplitude on the input frequency f of the PAOT system, 5% error bars included.

Fig. 6.
Fig. 6.

Dependence of readout signal strength on the spot distance d of the PAOT system, 5% error bars included.

Fig. 7.
Fig. 7.

Mechanism of the acousto-optic effect.

Metrics