Abstract

We have demonstrated an efficient speckle reduction method for laser illumination using a micro-vibrated paper screen along the projection direction. Using this method, a micro-vibrated amplitude of 0.532 μm, or a 2π phase change is sufficient to de-correlate the generated speckle pattern for a static SHG green laser beam image. When the measured speckle contrast is lowered to about 5.0%, and comparable with an LED source, a speckle-free image can be achieved. This technique will be suitable for compact and portable laser illumination equipment, image display, signal sensing devices, and so forth. Wearable and near-to-eye laser display applications are also included.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976).
    [CrossRef]
  2. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).
  3. M. N. Akram, Z. Tong, G. Ouyang, X. Chen, and V. Kartashov, “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Appl. Opt. 49, 3297–3304 (2010).
    [CrossRef]
  4. S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49, 4385–4391 (2010).
    [CrossRef]
  5. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
    [CrossRef]
  6. J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
    [CrossRef]
  7. V. Yurlov, A. Lapchuk, S. Yun, J. Song, and H. Yang, “Speckle suppression in scanning laser display,” Appl. Opt. 47, 179–187 (2008).
    [CrossRef]
  8. Basics of Polarizing Microscopy, Olympus, http://physics.berkeley.edu/research/yildiz/Teaching/PHYS250/Lecture_PDFs/polarization%20microscopy.pdf .
  9. S. Svenberg, Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications (Springer-Verlag, 2004).
  10. S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91–96 (2006).
    [CrossRef]
  11. C. E. Hauber and R. E. Kittredge, “Optical screen orbital movement system,” U.S. patent3,473,862 (21October1969).
  12. I. Leifer, C. J. D. Spencer, and W. T. Welford, “Grainless screens for projection microscopy,” J. Opt. Soc. Am. 51, 1422–1423 (1961).
    [CrossRef]
  13. E. G. Rawson, A. B. Nafarrate, R. E. Norton, and J. W. Goodman, “Speckle-free rear-projection screen using two close screens in slow relative motion,” J. Opt. Soc. Am. 66, 1290–1294 (1976).
    [CrossRef]
  14. F. S. MacAdam, “Improvements in or relating to translucent diffusion screens,” Taylor, Taylor & Hobson, Ltd., British patent592,815 (1947).
  15. M. Kuwata, T. Sasagawa, K. Kojima, A. Michimori, H. Sugiura, Y. Hirano, and T. Endo, “Reducing speckle in laser displays with moving screen system,” J. Inst. Image Inform. Televis. Eng. 65, 224–228 (2011).
  16. M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projector,” Optic. Photon. News 20(5), 28–34 (2009).
    [CrossRef]
  17. C. Davies, GlassUP wearable display takes on Google Glass, http://www.slashgear.com/glassup-wearable-display-takes-on-google-glass-17290726/
  18. D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Siggraph 2013 Talks (2013), http://lightfield-forum.com/2013/07/refocus-your-eyes-nvidia-presents-near-eye-light-field-display-prototype/
  19. C. Leising, “Paper roughness measurement,” NANOVEA inc. http://www.nanovea.com/Application%20Notes/paperroughness.pdf .
  20. W. Klippel, “Assessment of voice coil peak displacement Xmax,” Klippel GmbH Company, http://www.klippel.de/ .
  21. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), Vol. 2.
  22. J. W. Goodman, Statistical Properties of Laser Speckle Patterns, Vol. 9 of Springer Series Topics in Applied Physics (Springer-Verlag, 1984).

2012 (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[CrossRef]

2011 (1)

M. Kuwata, T. Sasagawa, K. Kojima, A. Michimori, H. Sugiura, Y. Hirano, and T. Endo, “Reducing speckle in laser displays with moving screen system,” J. Inst. Image Inform. Televis. Eng. 65, 224–228 (2011).

2010 (2)

2009 (1)

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projector,” Optic. Photon. News 20(5), 28–34 (2009).
[CrossRef]

2008 (1)

2006 (1)

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91–96 (2006).
[CrossRef]

2002 (1)

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[CrossRef]

1976 (2)

1961 (1)

Akram, M. N.

Cao, H.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[CrossRef]

Champion, M.

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projector,” Optic. Photon. News 20(5), 28–34 (2009).
[CrossRef]

Chen, X.

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[CrossRef]

Endo, T.

M. Kuwata, T. Sasagawa, K. Kojima, A. Michimori, H. Sugiura, Y. Hirano, and T. Endo, “Reducing speckle in laser displays with moving screen system,” J. Inst. Image Inform. Televis. Eng. 65, 224–228 (2011).

Freeman, M.

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projector,” Optic. Photon. News 20(5), 28–34 (2009).
[CrossRef]

Goodman, J. W.

Hauber, C. E.

C. E. Hauber and R. E. Kittredge, “Optical screen orbital movement system,” U.S. patent3,473,862 (21October1969).

Hirano, Y.

M. Kuwata, T. Sasagawa, K. Kojima, A. Michimori, H. Sugiura, Y. Hirano, and T. Endo, “Reducing speckle in laser displays with moving screen system,” J. Inst. Image Inform. Televis. Eng. 65, 224–228 (2011).

Kartashov, V.

Kittredge, R. E.

C. E. Hauber and R. E. Kittredge, “Optical screen orbital movement system,” U.S. patent3,473,862 (21October1969).

Kojima, K.

M. Kuwata, T. Sasagawa, K. Kojima, A. Michimori, H. Sugiura, Y. Hirano, and T. Endo, “Reducing speckle in laser displays with moving screen system,” J. Inst. Image Inform. Televis. Eng. 65, 224–228 (2011).

Kubota, S.

Kuwata, M.

M. Kuwata, T. Sasagawa, K. Kojima, A. Michimori, H. Sugiura, Y. Hirano, and T. Endo, “Reducing speckle in laser displays with moving screen system,” J. Inst. Image Inform. Televis. Eng. 65, 224–228 (2011).

Kwon, J. W.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91–96 (2006).
[CrossRef]

Lapchuk, A.

Lee, S. Y.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91–96 (2006).
[CrossRef]

Lee, S.-G.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91–96 (2006).
[CrossRef]

Leifer, I.

MacAdam, F. S.

F. S. MacAdam, “Improvements in or relating to translucent diffusion screens,” Taylor, Taylor & Hobson, Ltd., British patent592,815 (1947).

Madhavan, S.

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projector,” Optic. Photon. News 20(5), 28–34 (2009).
[CrossRef]

Michimori, A.

M. Kuwata, T. Sasagawa, K. Kojima, A. Michimori, H. Sugiura, Y. Hirano, and T. Endo, “Reducing speckle in laser displays with moving screen system,” J. Inst. Image Inform. Televis. Eng. 65, 224–228 (2011).

Nafarrate, A. B.

Norton, R. E.

Ouyang, G.

Park, C.-Y.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91–96 (2006).
[CrossRef]

Park, S.-Y.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91–96 (2006).
[CrossRef]

Rawson, E. G.

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[CrossRef]

Sasagawa, T.

M. Kuwata, T. Sasagawa, K. Kojima, A. Michimori, H. Sugiura, Y. Hirano, and T. Endo, “Reducing speckle in laser displays with moving screen system,” J. Inst. Image Inform. Televis. Eng. 65, 224–228 (2011).

Shin, S. C.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91–96 (2006).
[CrossRef]

Song, J.

Spencer, C. J. D.

Sugiura, H.

M. Kuwata, T. Sasagawa, K. Kojima, A. Michimori, H. Sugiura, Y. Hirano, and T. Endo, “Reducing speckle in laser displays with moving screen system,” J. Inst. Image Inform. Televis. Eng. 65, 224–228 (2011).

Svenberg, S.

S. Svenberg, Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications (Springer-Verlag, 2004).

Tong, Z.

Trisnadi, J. I.

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[CrossRef]

Welford, W. T.

Yang, H.

Yoo, S. S.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91–96 (2006).
[CrossRef]

Yun, S.

Yurlov, V.

Appl. Opt. (3)

Displays (1)

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91–96 (2006).
[CrossRef]

J. Inst. Image Inform. Televis. Eng. (1)

M. Kuwata, T. Sasagawa, K. Kojima, A. Michimori, H. Sugiura, Y. Hirano, and T. Endo, “Reducing speckle in laser displays with moving screen system,” J. Inst. Image Inform. Televis. Eng. 65, 224–228 (2011).

J. Opt. Soc. Am. (3)

Nat. Photonics (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[CrossRef]

Optic. Photon. News (1)

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projector,” Optic. Photon. News 20(5), 28–34 (2009).
[CrossRef]

Proc. SPIE (1)

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[CrossRef]

Other (11)

Basics of Polarizing Microscopy, Olympus, http://physics.berkeley.edu/research/yildiz/Teaching/PHYS250/Lecture_PDFs/polarization%20microscopy.pdf .

S. Svenberg, Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications (Springer-Verlag, 2004).

C. E. Hauber and R. E. Kittredge, “Optical screen orbital movement system,” U.S. patent3,473,862 (21October1969).

F. S. MacAdam, “Improvements in or relating to translucent diffusion screens,” Taylor, Taylor & Hobson, Ltd., British patent592,815 (1947).

C. Davies, GlassUP wearable display takes on Google Glass, http://www.slashgear.com/glassup-wearable-display-takes-on-google-glass-17290726/

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Siggraph 2013 Talks (2013), http://lightfield-forum.com/2013/07/refocus-your-eyes-nvidia-presents-near-eye-light-field-display-prototype/

C. Leising, “Paper roughness measurement,” NANOVEA inc. http://www.nanovea.com/Application%20Notes/paperroughness.pdf .

W. Klippel, “Assessment of voice coil peak displacement Xmax,” Klippel GmbH Company, http://www.klippel.de/ .

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), Vol. 2.

J. W. Goodman, Statistical Properties of Laser Speckle Patterns, Vol. 9 of Springer Series Topics in Applied Physics (Springer-Verlag, 1984).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Schematic of a micro-vibrated screen on VCM.

Fig. 2.
Fig. 2.

3D image of the standard paper surface [19].

Fig. 3.
Fig. 3.

Model of the single micro-vibrated screen.

Fig. 4.
Fig. 4.

Calculation of the required t displacement for completely de-correlating the perceived speckle patterns for different scattering angles of the laser beam.

Fig. 5.
Fig. 5.

Calculation of the required d displacement for completely de-correlating the perceived speckle patterns for different scattering angles of the laser beam.

Fig. 6.
Fig. 6.

Calculation of the t/d ratio for completely de-correlating the perceived speckle patterns for different scattering angles of the laser beam.

Fig. 7.
Fig. 7.

Theoretically calculated speckle contrast versus scattering angle relation. The blue curve is for f=350Hz, d=400μm, and τ=16ms while the red curve is for f=1kHz, d=1μm, and τ=2ms.

Fig. 8.
Fig. 8.

Setup of the speckle reduction system.

Fig. 9.
Fig. 9.

Measured d displacement and total displacements per second when the VCM device is operated from 1 Hz to 1 kHz.

Fig. 10.
Fig. 10.

Measured background image with SC of about 5%, when LED light illuminates the paper screen and the image is captured by the CCD camera in a 16-ms integration time.

Fig. 11.
Fig. 11.

Measured speckle beam pattern on a static screen. The speckle contrast is 50% in a 16-ms integration time. (a) 2D plot of the speckle pattern and (b) 3D plot of the speckle pattern on laser beam. (c) x- and (d) y-axis intensity profiles of the laser beam.

Fig. 12.
Fig. 12.

Measured speckle-free beam pattern on a 350-Hz vibrated screen. Speckle contrast is 5.0% in a 16-ms integration time. (a) 2D speckle pattern and (b) 3D speckle pattern on laser beam. (c) x- and (d) y-axis intensity profiles of the laser beam.

Fig. 13.
Fig. 13.

Measured speckle contrast versus VCM frequency relation in a 16-ms integration time.

Fig. 14.
Fig. 14.

Speckle contrast versus VCM frequency relation in a 2-ms integration time. (a) The blue square curve is for measured SC, (b) the red solid curve is for theoretical SC, and (c) the green dashed curve is for theoretical SC plus 5.5% background SC. The dip is located at 380 Hz VCM frequency.

Fig. 15.
Fig. 15.

Measured speckled and speckle-free image patterns on a 380-Hz vibrated screen. The residual SC is 5.0% in a 16-ms integration time.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ΔS1=λ/sin(θ1/2),
ΔS2=λ/sin(θ2/2),
ΔSe=λ/sin(θe/2).
t=d·tan(θ1/2).
Nm=2·f·t/ΔS1=2·f·2d·tan(θ1/2)/(λ/sin(θ/12)),
Nm=4·f·d·tan(θ1/2)·sin(θ1/2)/λ,
S.C.(%,τ)=100%·(N)1/2=100%·(Nt·Ns··Nm)1/2,
Nm=Nm·τ,
S.C.(%)=I2I2/I=σ/I¯,
M.S.C.(%)=S.C.(%)+B.G.1(%)+B.G.2(%),
Rf=S.C.(static)/S.C.(vibrated).

Metrics