Abstract

An electrically activated bistable light shutter that exploits polymer-stabilized cholesteric liquid crystal film was developed. Under double-sided three-terminal electrode driving, the device can be bistable and switched between focal conic and homeotropic textures with a uniform in-plane and vertical electrical field. The transparent state with a transmittance of 80% and the opaque/scattering state with a transmittance of 13% can be realized without any optical compensation film, and each can be simply switched to the other by applying a pulse voltage. Also, gray-scale selection can be performed by varying the applied voltage. The designed energy-saving bistable light shutter can be utilized to preserve privacy and control illumination and the flow of energy.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R.-Q. Ma and D.-K. Yang, “Fréedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E 61, 1567–1573 (2000).
    [CrossRef]
  2. I. Dierking, “Polymer network-stabilized liquid crystals,” Adv. Mater. 12, 167–181 (2000).
    [CrossRef]
  3. I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions,” Liq. Cryst. 24, 397–406 (1998).
    [CrossRef]
  4. I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997).
    [CrossRef]
  5. F. Zhang and D.-K. Yang, “Polymer stabilized cholesteric dichroic dye displays,” SID Symp. Dig. Tech. 33, 469–471 (2002).
  6. W. G. Jang, R. Sun, R. J. Twieg, and D.-K. Yang, “Dichroic dye-doped bistable polymer-stabilized cholesteric-texture light valve,” J. Soc. Inf. Disp. 8, 73–77 (2000).
    [CrossRef]
  7. Y.-H. Lin, H. Ren, Y.-H. Fan, Y.-H. Wu, and S.-T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98, 043112 (2005).
    [CrossRef]
  8. H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92, 797–800 (2002).
    [CrossRef]
  9. Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture,” J. Appl. Polym. Sci. 111, 1353–1357 (2009).
    [CrossRef]
  10. R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2, 112401 (2009).
    [CrossRef]
  11. H.-H. Liang, C.-C. Wu, P.-H. Wang, and J.-Y. Lee, “Electro-thermal switchable bistable reverse mode polymer stabilized cholesteric texture light shutter,” Opt. Mater. 33, 1195–1202 (2011).
    [CrossRef]
  12. H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36, 717–726 (2009).
    [CrossRef]
  13. J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3, 021702 (2010).
    [CrossRef]
  14. Y.-C. Hsiao, C.-T. Hou, V. Ya. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express 19, 23952–23957 (2011).
    [CrossRef]
  15. C.-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005).
    [CrossRef]
  16. Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100, 024906 (2006).
    [CrossRef]
  17. C. Y. Xiang, X. W. Sun, and X. J. Yin, “Fast response wide viewing angle liquid crystal cell with double-side fringe-field switching,” Appl. Phys. Lett. 83, 5154 (2003).
    [CrossRef]
  18. M. Jiao, Z. Ge, S.-T. Wu, and W.-K. Choi, “Submillisecond response nematic liquid crystal modulators using dual fringe field switching in a vertically aligned cell,” Appl. Phys. Lett. 92, 111101 (2008).
    [CrossRef]
  19. Y. Chen, Y. Sun, and G. Yang, “Low voltage and high transmittance blue-phase LCDs with double-side in-plane switching electrodes,” Liq. Cryst. 38, 555–559 (2011).
    [CrossRef]
  20. D. Xu, L. Rao, C.-D. Tu, and S.-T. Wu, “Nematic liquid crystal display with submillisecond grayscale response time,” J. Disp. Technol. 9, 67–70 (2013).
    [CrossRef]
  21. H.-C. Jau, P.-H. Liao, H.-W. Li, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Improvement of electro-optical properties of PSBP LCD using a double-sided IPS electrode,” J. Soc. Inf. Disp. 20, 351–353 (2012).
    [CrossRef]

2013 (1)

D. Xu, L. Rao, C.-D. Tu, and S.-T. Wu, “Nematic liquid crystal display with submillisecond grayscale response time,” J. Disp. Technol. 9, 67–70 (2013).
[CrossRef]

2012 (1)

H.-C. Jau, P.-H. Liao, H.-W. Li, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Improvement of electro-optical properties of PSBP LCD using a double-sided IPS electrode,” J. Soc. Inf. Disp. 20, 351–353 (2012).
[CrossRef]

2011 (3)

Y.-C. Hsiao, C.-T. Hou, V. Ya. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express 19, 23952–23957 (2011).
[CrossRef]

Y. Chen, Y. Sun, and G. Yang, “Low voltage and high transmittance blue-phase LCDs with double-side in-plane switching electrodes,” Liq. Cryst. 38, 555–559 (2011).
[CrossRef]

H.-H. Liang, C.-C. Wu, P.-H. Wang, and J.-Y. Lee, “Electro-thermal switchable bistable reverse mode polymer stabilized cholesteric texture light shutter,” Opt. Mater. 33, 1195–1202 (2011).
[CrossRef]

2010 (1)

J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3, 021702 (2010).
[CrossRef]

2009 (3)

H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36, 717–726 (2009).
[CrossRef]

Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture,” J. Appl. Polym. Sci. 111, 1353–1357 (2009).
[CrossRef]

R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2, 112401 (2009).
[CrossRef]

2008 (1)

M. Jiao, Z. Ge, S.-T. Wu, and W.-K. Choi, “Submillisecond response nematic liquid crystal modulators using dual fringe field switching in a vertically aligned cell,” Appl. Phys. Lett. 92, 111101 (2008).
[CrossRef]

2006 (1)

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100, 024906 (2006).
[CrossRef]

2005 (2)

C.-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005).
[CrossRef]

Y.-H. Lin, H. Ren, Y.-H. Fan, Y.-H. Wu, and S.-T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98, 043112 (2005).
[CrossRef]

2003 (1)

C. Y. Xiang, X. W. Sun, and X. J. Yin, “Fast response wide viewing angle liquid crystal cell with double-side fringe-field switching,” Appl. Phys. Lett. 83, 5154 (2003).
[CrossRef]

2002 (2)

H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92, 797–800 (2002).
[CrossRef]

F. Zhang and D.-K. Yang, “Polymer stabilized cholesteric dichroic dye displays,” SID Symp. Dig. Tech. 33, 469–471 (2002).

2000 (3)

W. G. Jang, R. Sun, R. J. Twieg, and D.-K. Yang, “Dichroic dye-doped bistable polymer-stabilized cholesteric-texture light valve,” J. Soc. Inf. Disp. 8, 73–77 (2000).
[CrossRef]

R.-Q. Ma and D.-K. Yang, “Fréedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E 61, 1567–1573 (2000).
[CrossRef]

I. Dierking, “Polymer network-stabilized liquid crystals,” Adv. Mater. 12, 167–181 (2000).
[CrossRef]

1998 (1)

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions,” Liq. Cryst. 24, 397–406 (1998).
[CrossRef]

1997 (1)

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997).
[CrossRef]

Afzali-Ardakani, A.

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997).
[CrossRef]

Bao, R.

R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2, 112401 (2009).
[CrossRef]

Cao, H.

Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture,” J. Appl. Polym. Sci. 111, 1353–1357 (2009).
[CrossRef]

Cao, M.

Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture,” J. Appl. Polym. Sci. 111, 1353–1357 (2009).
[CrossRef]

Chen, C.-H.

H.-C. Jau, P.-H. Liao, H.-W. Li, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Improvement of electro-optical properties of PSBP LCD using a double-sided IPS electrode,” J. Soc. Inf. Disp. 20, 351–353 (2012).
[CrossRef]

Chen, Y.

Y. Chen, Y. Sun, and G. Yang, “Low voltage and high transmittance blue-phase LCDs with double-side in-plane switching electrodes,” Liq. Cryst. 38, 555–559 (2011).
[CrossRef]

Choi, W.-K.

M. Jiao, Z. Ge, S.-T. Wu, and W.-K. Choi, “Submillisecond response nematic liquid crystal modulators using dual fringe field switching in a vertically aligned cell,” Appl. Phys. Lett. 92, 111101 (2008).
[CrossRef]

Dierking, I.

I. Dierking, “Polymer network-stabilized liquid crystals,” Adv. Mater. 12, 167–181 (2000).
[CrossRef]

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions,” Liq. Cryst. 24, 397–406 (1998).
[CrossRef]

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997).
[CrossRef]

Fan, Y.-H.

Y.-H. Lin, H. Ren, Y.-H. Fan, Y.-H. Wu, and S.-T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98, 043112 (2005).
[CrossRef]

Ge, Z.

M. Jiao, Z. Ge, S.-T. Wu, and W.-K. Choi, “Submillisecond response nematic liquid crystal modulators using dual fringe field switching in a vertically aligned cell,” Appl. Phys. Lett. 92, 111101 (2008).
[CrossRef]

Guo, J.

Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture,” J. Appl. Polym. Sci. 111, 1353–1357 (2009).
[CrossRef]

He, S.

Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture,” J. Appl. Polym. Sci. 111, 1353–1357 (2009).
[CrossRef]

Held, G. A.

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions,” Liq. Cryst. 24, 397–406 (1998).
[CrossRef]

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997).
[CrossRef]

Hou, C.-T.

Hsiao, Y.-C.

Hsu, H.-K.

H.-C. Jau, P.-H. Liao, H.-W. Li, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Improvement of electro-optical properties of PSBP LCD using a double-sided IPS electrode,” J. Soc. Inf. Disp. 20, 351–353 (2012).
[CrossRef]

Huang, H.

Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture,” J. Appl. Polym. Sci. 111, 1353–1357 (2009).
[CrossRef]

Jang, W. G.

W. G. Jang, R. Sun, R. J. Twieg, and D.-K. Yang, “Dichroic dye-doped bistable polymer-stabilized cholesteric-texture light valve,” J. Soc. Inf. Disp. 8, 73–77 (2000).
[CrossRef]

Jau, H.-C.

H.-C. Jau, P.-H. Liao, H.-W. Li, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Improvement of electro-optical properties of PSBP LCD using a double-sided IPS electrode,” J. Soc. Inf. Disp. 20, 351–353 (2012).
[CrossRef]

Jiao, M.

M. Jiao, Z. Ge, S.-T. Wu, and W.-K. Choi, “Submillisecond response nematic liquid crystal modulators using dual fringe field switching in a vertically aligned cell,” Appl. Phys. Lett. 92, 111101 (2008).
[CrossRef]

Kosbar, L. L.

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions,” Liq. Cryst. 24, 397–406 (1998).
[CrossRef]

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997).
[CrossRef]

Lavrentovich, O. D.

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100, 024906 (2006).
[CrossRef]

Lee, J.-Y.

H.-H. Liang, C.-C. Wu, P.-H. Wang, and J.-Y. Lee, “Electro-thermal switchable bistable reverse mode polymer stabilized cholesteric texture light shutter,” Opt. Mater. 33, 1195–1202 (2011).
[CrossRef]

Lee, W.

Li, B.

Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture,” J. Appl. Polym. Sci. 111, 1353–1357 (2009).
[CrossRef]

Li, H.-W.

H.-C. Jau, P.-H. Liao, H.-W. Li, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Improvement of electro-optical properties of PSBP LCD using a double-sided IPS electrode,” J. Soc. Inf. Disp. 20, 351–353 (2012).
[CrossRef]

Li, W.

Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture,” J. Appl. Polym. Sci. 111, 1353–1357 (2009).
[CrossRef]

Liang, H.-H.

H.-H. Liang, C.-C. Wu, P.-H. Wang, and J.-Y. Lee, “Electro-thermal switchable bistable reverse mode polymer stabilized cholesteric texture light shutter,” Opt. Mater. 33, 1195–1202 (2011).
[CrossRef]

Liao, P.-H.

H.-C. Jau, P.-H. Liao, H.-W. Li, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Improvement of electro-optical properties of PSBP LCD using a double-sided IPS electrode,” J. Soc. Inf. Disp. 20, 351–353 (2012).
[CrossRef]

Lin, C.-L.

H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36, 717–726 (2009).
[CrossRef]

Lin, T.-H.

H.-C. Jau, P.-H. Liao, H.-W. Li, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Improvement of electro-optical properties of PSBP LCD using a double-sided IPS electrode,” J. Soc. Inf. Disp. 20, 351–353 (2012).
[CrossRef]

Lin, Y.-H.

Y.-H. Lin, H. Ren, Y.-H. Fan, Y.-H. Wu, and S.-T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98, 043112 (2005).
[CrossRef]

Liu, C.-M.

R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2, 112401 (2009).
[CrossRef]

Lowe, A. C.

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions,” Liq. Cryst. 24, 397–406 (1998).
[CrossRef]

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997).
[CrossRef]

Ma, J.

J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3, 021702 (2010).
[CrossRef]

Ma, R.-Q.

R.-Q. Ma and D.-K. Yang, “Fréedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E 61, 1567–1573 (2000).
[CrossRef]

Ouyang, C.

Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture,” J. Appl. Polym. Sci. 111, 1353–1357 (2009).
[CrossRef]

Rao, L.

D. Xu, L. Rao, C.-D. Tu, and S.-T. Wu, “Nematic liquid crystal display with submillisecond grayscale response time,” J. Disp. Technol. 9, 67–70 (2013).
[CrossRef]

Ren, H.

Y.-H. Lin, H. Ren, Y.-H. Fan, Y.-H. Wu, and S.-T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98, 043112 (2005).
[CrossRef]

H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92, 797–800 (2002).
[CrossRef]

Shi, L.

J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3, 021702 (2010).
[CrossRef]

Shiyanovskii, S. V.

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100, 024906 (2006).
[CrossRef]

Sun, R.

W. G. Jang, R. Sun, R. J. Twieg, and D.-K. Yang, “Dichroic dye-doped bistable polymer-stabilized cholesteric-texture light valve,” J. Soc. Inf. Disp. 8, 73–77 (2000).
[CrossRef]

Sun, X. W.

C. Y. Xiang, X. W. Sun, and X. J. Yin, “Fast response wide viewing angle liquid crystal cell with double-side fringe-field switching,” Appl. Phys. Lett. 83, 5154 (2003).
[CrossRef]

Sun, Y.

Y. Chen, Y. Sun, and G. Yang, “Low voltage and high transmittance blue-phase LCDs with double-side in-plane switching electrodes,” Liq. Cryst. 38, 555–559 (2011).
[CrossRef]

Tu, C.-D.

D. Xu, L. Rao, C.-D. Tu, and S.-T. Wu, “Nematic liquid crystal display with submillisecond grayscale response time,” J. Disp. Technol. 9, 67–70 (2013).
[CrossRef]

Twieg, R. J.

W. G. Jang, R. Sun, R. J. Twieg, and D.-K. Yang, “Dichroic dye-doped bistable polymer-stabilized cholesteric-texture light valve,” J. Soc. Inf. Disp. 8, 73–77 (2000).
[CrossRef]

Wang, C.-C.

H.-C. Jau, P.-H. Liao, H.-W. Li, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Improvement of electro-optical properties of PSBP LCD using a double-sided IPS electrode,” J. Soc. Inf. Disp. 20, 351–353 (2012).
[CrossRef]

Wang, P.-H.

H.-H. Liang, C.-C. Wu, P.-H. Wang, and J.-Y. Lee, “Electro-thermal switchable bistable reverse mode polymer stabilized cholesteric texture light shutter,” Opt. Mater. 33, 1195–1202 (2011).
[CrossRef]

Wen, C.-H.

C.-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005).
[CrossRef]

Wu, C.-C.

H.-H. Liang, C.-C. Wu, P.-H. Wang, and J.-Y. Lee, “Electro-thermal switchable bistable reverse mode polymer stabilized cholesteric texture light shutter,” Opt. Mater. 33, 1195–1202 (2011).
[CrossRef]

Wu, S.-T.

D. Xu, L. Rao, C.-D. Tu, and S.-T. Wu, “Nematic liquid crystal display with submillisecond grayscale response time,” J. Disp. Technol. 9, 67–70 (2013).
[CrossRef]

H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36, 717–726 (2009).
[CrossRef]

M. Jiao, Z. Ge, S.-T. Wu, and W.-K. Choi, “Submillisecond response nematic liquid crystal modulators using dual fringe field switching in a vertically aligned cell,” Appl. Phys. Lett. 92, 111101 (2008).
[CrossRef]

C.-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005).
[CrossRef]

Y.-H. Lin, H. Ren, Y.-H. Fan, Y.-H. Wu, and S.-T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98, 043112 (2005).
[CrossRef]

H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92, 797–800 (2002).
[CrossRef]

Wu, Y.-H.

Y.-H. Lin, H. Ren, Y.-H. Fan, Y.-H. Wu, and S.-T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98, 043112 (2005).
[CrossRef]

Xiang, C. Y.

C. Y. Xiang, X. W. Sun, and X. J. Yin, “Fast response wide viewing angle liquid crystal cell with double-side fringe-field switching,” Appl. Phys. Lett. 83, 5154 (2003).
[CrossRef]

Xianyu, H.

H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36, 717–726 (2009).
[CrossRef]

Xu, D.

D. Xu, L. Rao, C.-D. Tu, and S.-T. Wu, “Nematic liquid crystal display with submillisecond grayscale response time,” J. Disp. Technol. 9, 67–70 (2013).
[CrossRef]

Ya. Zyryanov, V.

Yang, D.-K.

J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3, 021702 (2010).
[CrossRef]

R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2, 112401 (2009).
[CrossRef]

F. Zhang and D.-K. Yang, “Polymer stabilized cholesteric dichroic dye displays,” SID Symp. Dig. Tech. 33, 469–471 (2002).

R.-Q. Ma and D.-K. Yang, “Fréedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E 61, 1567–1573 (2000).
[CrossRef]

W. G. Jang, R. Sun, R. J. Twieg, and D.-K. Yang, “Dichroic dye-doped bistable polymer-stabilized cholesteric-texture light valve,” J. Soc. Inf. Disp. 8, 73–77 (2000).
[CrossRef]

Yang, G.

Y. Chen, Y. Sun, and G. Yang, “Low voltage and high transmittance blue-phase LCDs with double-side in-plane switching electrodes,” Liq. Cryst. 38, 555–559 (2011).
[CrossRef]

Yang, H.

Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture,” J. Appl. Polym. Sci. 111, 1353–1357 (2009).
[CrossRef]

Yin, X. J.

C. Y. Xiang, X. W. Sun, and X. J. Yin, “Fast response wide viewing angle liquid crystal cell with double-side fringe-field switching,” Appl. Phys. Lett. 83, 5154 (2003).
[CrossRef]

Yin, Y.

Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture,” J. Appl. Polym. Sci. 111, 1353–1357 (2009).
[CrossRef]

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100, 024906 (2006).
[CrossRef]

Zhang, F.

F. Zhang and D.-K. Yang, “Polymer stabilized cholesteric dichroic dye displays,” SID Symp. Dig. Tech. 33, 469–471 (2002).

Adv. Mater. (1)

I. Dierking, “Polymer network-stabilized liquid crystals,” Adv. Mater. 12, 167–181 (2000).
[CrossRef]

Appl. Phys. Express (2)

R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2, 112401 (2009).
[CrossRef]

J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3, 021702 (2010).
[CrossRef]

Appl. Phys. Lett. (4)

C.-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005).
[CrossRef]

C. Y. Xiang, X. W. Sun, and X. J. Yin, “Fast response wide viewing angle liquid crystal cell with double-side fringe-field switching,” Appl. Phys. Lett. 83, 5154 (2003).
[CrossRef]

M. Jiao, Z. Ge, S.-T. Wu, and W.-K. Choi, “Submillisecond response nematic liquid crystal modulators using dual fringe field switching in a vertically aligned cell,” Appl. Phys. Lett. 92, 111101 (2008).
[CrossRef]

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997).
[CrossRef]

J. Appl. Phys. (3)

Y.-H. Lin, H. Ren, Y.-H. Fan, Y.-H. Wu, and S.-T. Wu, “Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,” J. Appl. Phys. 98, 043112 (2005).
[CrossRef]

H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92, 797–800 (2002).
[CrossRef]

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100, 024906 (2006).
[CrossRef]

J. Appl. Polym. Sci. (1)

Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, and H. Yang, “Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture,” J. Appl. Polym. Sci. 111, 1353–1357 (2009).
[CrossRef]

J. Disp. Technol. (1)

D. Xu, L. Rao, C.-D. Tu, and S.-T. Wu, “Nematic liquid crystal display with submillisecond grayscale response time,” J. Disp. Technol. 9, 67–70 (2013).
[CrossRef]

J. Soc. Inf. Disp. (2)

H.-C. Jau, P.-H. Liao, H.-W. Li, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Improvement of electro-optical properties of PSBP LCD using a double-sided IPS electrode,” J. Soc. Inf. Disp. 20, 351–353 (2012).
[CrossRef]

W. G. Jang, R. Sun, R. J. Twieg, and D.-K. Yang, “Dichroic dye-doped bistable polymer-stabilized cholesteric-texture light valve,” J. Soc. Inf. Disp. 8, 73–77 (2000).
[CrossRef]

Liq. Cryst. (3)

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions,” Liq. Cryst. 24, 397–406 (1998).
[CrossRef]

Y. Chen, Y. Sun, and G. Yang, “Low voltage and high transmittance blue-phase LCDs with double-side in-plane switching electrodes,” Liq. Cryst. 38, 555–559 (2011).
[CrossRef]

H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36, 717–726 (2009).
[CrossRef]

Opt. Express (1)

Opt. Mater. (1)

H.-H. Liang, C.-C. Wu, P.-H. Wang, and J.-Y. Lee, “Electro-thermal switchable bistable reverse mode polymer stabilized cholesteric texture light shutter,” Opt. Mater. 33, 1195–1202 (2011).
[CrossRef]

Phys. Rev. E (1)

R.-Q. Ma and D.-K. Yang, “Fréedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E 61, 1567–1573 (2000).
[CrossRef]

SID Symp. Dig. Tech. (1)

F. Zhang and D.-K. Yang, “Polymer stabilized cholesteric dichroic dye displays,” SID Symp. Dig. Tech. 33, 469–471 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Double-sided three-terminal electrode and distribution of its electric field lines under (a) dual-sided in-plane switching and (b) vertical field switching.

Fig. 2.
Fig. 2.

Operating principles and driving method of bistable PSCT light shutter.

Fig. 3.
Fig. 3.

(a) Voltage-dependent transmittance driven from the homeotropic state under in-plane switching. POM images of (b) cell 1 (electrode spacing=4μm) and (c) cell 2 (electrode spacing=20μm) in the focal-conic state under crossed polarizers.

Fig. 4.
Fig. 4.

(a) Voltage-dependent transmittance driven from the focal conic state under vertical switching. POM images of (b) cell 1 (electrode spacing=4μm) and (c) cell 2 (electrode spacing=20μm) in the homeotropic state under crossed polarizers.

Fig. 5.
Fig. 5.

Photograph of bistable light shutter (cell with 20 μm electrode spacing).

Metrics