Abstract

Evaluating the contrast in speckle patterns produced by laser projection displays can facilitate the development of methods to suppress such imperfection. Computer simulations were first conducted to characterize the contrast (Cgs) of fully developed speckle patterns with spatial factor k and power factor r. Results showed that 0.1r2.0 and k4.0 were required to obtain a Cgs with less than 5% error. Experimental results, however, revealed that a power factor within the range 0.5r2.0 was needed, meaning that the speckle dimension was at least four times the pixel pitch and the largest speckle intensity was of the order of magnitude of the saturation level of the camera. The method proposed here is that the spatial factor be determined by adjusting the distance between the object and the camera, and the power factor be determined by monitoring the real-time histogram representing the speckle pattern.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).
  2. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976).
    [CrossRef]
  3. L. I. Goldfischer, “Autocorrelation function and power spectral density of laser-produced speckle patterns,” J. Opt. Soc. Am. 55, 247–253 (1965).
    [CrossRef]
  4. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
    [CrossRef]
  5. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
    [CrossRef]
  6. Q. Liu, S. Zhou, Z. Zhang, and Q. Luo, “Laser speckle contrast imaging: monitoring blood flow dynamics and vascular structure of photodynamic therapy,” Proc. SPIE 5630, 26–33 (2005).
    [CrossRef]
  7. Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Opt. Express 18, 1024–1032 (2010).
    [CrossRef]
  8. C. Hun, J. Caussignac, and M. Brynooghe, “Speckle techniques for pavement surface analysis,” Proc. SPIE 4933, 261–266 (2003).
    [CrossRef]
  9. S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49, 4385–4391 (2010).
    [CrossRef]
  10. J. D. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13, 345–350 (1996).
    [CrossRef]
  11. O. Noordman, A. Tychkov, J. Baselmans, J. Tsacoyeanes, G. Politi, M. Patra, V. Blahnik, and M. Maul, “Speckle in optical lithography and the influence on line width roughness,” Proc. SPIE 7274, 72741R (2009).
    [CrossRef]
  12. P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 72320Y (2009).
    [CrossRef]
  13. W.-F. Hsu, Y.-W. Chen, and Y.-H. Su, “Implementation of phase-shift patterns using a holographic projection system with phase-only diffractive optical elements,” Appl. Opt. 50, 3646–3652 (2011).
    [CrossRef]
  14. L. Wang, T. Tschudi, T. Halldorsson, and P. R. Petursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770–1775 (1998).
    [CrossRef]
  15. S.-H. Shin and B. Javidi, “Speckle-reduced three-dimensional volume holographic display by use of integral imaging,” Appl. Opt. 41, 2644–2649 (2002).
    [CrossRef]
  16. J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29, 11–13 (2004).
    [CrossRef]
  17. Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A 27, 1812–1817 (2010).
    [CrossRef]
  18. W.-F. Hsu and C.-F. Yeh, “Speckle suppression in holographic projection displays using temporal integration of speckle images from diffractive optical elements,” Appl. Opt. 50, H50–H55 (2011).
    [CrossRef]
  19. E. Buckley, “Holographic laser projection,” J. Display Technology 7, 135–140 (2011).
    [CrossRef]
  20. F. Wyrowski and O. Bryngdahl, “Speckle-free reconstruction in digital holography,” J. Opt. Soc. Am. A 6, 1171–1174 (1989).
    [CrossRef]
  21. C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46, 115801 (2007).
    [CrossRef]
  22. B. Katz, D. Wulich, and J. Rosen, “Optimal noise suppression in Fresnel incoherent correlation holography (FINCH) configured for maximum imaging resolution,” Appl. Opt. 49, 5757–5763 (2010).
    [CrossRef]
  23. Numerous articles were found in D. A. Zimnyakov, ed., Saratov Fall Meeting 2003: Coherent Optics of Ordered and Random Media IV, Proc. SPIE5475 (2004).V. V. Tuchin and L. V. Wang, eds., Complex Dynamics and Fluctuations in Biomedical Photonics V, Proc. SPIE6855 (2008).V. V. Tuchin, L. V. Wang, and D. D. Duncan, eds., Dynamics and Fluctuations in Biomedical Photonics VI, Proc. SPIE7176 (2009).

2011 (3)

2010 (4)

2009 (2)

O. Noordman, A. Tychkov, J. Baselmans, J. Tsacoyeanes, G. Politi, M. Patra, V. Blahnik, and M. Maul, “Speckle in optical lithography and the influence on line width roughness,” Proc. SPIE 7274, 72741R (2009).
[CrossRef]

P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 72320Y (2009).
[CrossRef]

2007 (1)

C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46, 115801 (2007).
[CrossRef]

2005 (1)

Q. Liu, S. Zhou, Z. Zhang, and Q. Luo, “Laser speckle contrast imaging: monitoring blood flow dynamics and vascular structure of photodynamic therapy,” Proc. SPIE 5630, 26–33 (2005).
[CrossRef]

2004 (1)

2003 (1)

C. Hun, J. Caussignac, and M. Brynooghe, “Speckle techniques for pavement surface analysis,” Proc. SPIE 4933, 261–266 (2003).
[CrossRef]

2002 (1)

2001 (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[CrossRef]

1998 (1)

1996 (2)

J. D. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13, 345–350 (1996).
[CrossRef]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[CrossRef]

1989 (1)

1976 (1)

1965 (1)

Baselmans, J.

O. Noordman, A. Tychkov, J. Baselmans, J. Tsacoyeanes, G. Politi, M. Patra, V. Blahnik, and M. Maul, “Speckle in optical lithography and the influence on line width roughness,” Proc. SPIE 7274, 72741R (2009).
[CrossRef]

Blahnik, V.

O. Noordman, A. Tychkov, J. Baselmans, J. Tsacoyeanes, G. Politi, M. Patra, V. Blahnik, and M. Maul, “Speckle in optical lithography and the influence on line width roughness,” Proc. SPIE 7274, 72741R (2009).
[CrossRef]

Boas, D. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[CrossRef]

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[CrossRef]

Briers, J. D.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[CrossRef]

J. D. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13, 345–350 (1996).
[CrossRef]

Bryngdahl, O.

Brynooghe, M.

C. Hun, J. Caussignac, and M. Brynooghe, “Speckle techniques for pavement surface analysis,” Proc. SPIE 4933, 261–266 (2003).
[CrossRef]

Buckley, E.

E. Buckley, “Holographic laser projection,” J. Display Technology 7, 135–140 (2011).
[CrossRef]

Caussignac, J.

C. Hun, J. Caussignac, and M. Brynooghe, “Speckle techniques for pavement surface analysis,” Proc. SPIE 4933, 261–266 (2003).
[CrossRef]

Chen, Y.-W.

Chen, Z.

Dunn, A. K.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[CrossRef]

Goldfischer, L. I.

Goodman, J. W.

Halldorsson, T.

Hsu, W.-F.

Hun, C.

C. Hun, J. Caussignac, and M. Brynooghe, “Speckle techniques for pavement surface analysis,” Proc. SPIE 4933, 261–266 (2003).
[CrossRef]

Janssens, P.

P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 72320Y (2009).
[CrossRef]

Javidi, B.

Jian, Z.

Kang, X.

C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46, 115801 (2007).
[CrossRef]

Katagiri, B.

Katz, B.

Kawakami, T.

Kubota, S.

Kuratomi, Y.

Liu, Q.

Q. Liu, S. Zhou, Z. Zhang, and Q. Luo, “Laser speckle contrast imaging: monitoring blood flow dynamics and vascular structure of photodynamic therapy,” Proc. SPIE 5630, 26–33 (2005).
[CrossRef]

Luo, Q.

Q. Liu, S. Zhou, Z. Zhang, and Q. Luo, “Laser speckle contrast imaging: monitoring blood flow dynamics and vascular structure of photodynamic therapy,” Proc. SPIE 5630, 26–33 (2005).
[CrossRef]

Malfait, K.

P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 72320Y (2009).
[CrossRef]

Maul, M.

O. Noordman, A. Tychkov, J. Baselmans, J. Tsacoyeanes, G. Politi, M. Patra, V. Blahnik, and M. Maul, “Speckle in optical lithography and the influence on line width roughness,” Proc. SPIE 7274, 72741R (2009).
[CrossRef]

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[CrossRef]

Noordman, O.

O. Noordman, A. Tychkov, J. Baselmans, J. Tsacoyeanes, G. Politi, M. Patra, V. Blahnik, and M. Maul, “Speckle in optical lithography and the influence on line width roughness,” Proc. SPIE 7274, 72741R (2009).
[CrossRef]

Patra, M.

O. Noordman, A. Tychkov, J. Baselmans, J. Tsacoyeanes, G. Politi, M. Patra, V. Blahnik, and M. Maul, “Speckle in optical lithography and the influence on line width roughness,” Proc. SPIE 7274, 72741R (2009).
[CrossRef]

Petursson, P. R.

Politi, G.

O. Noordman, A. Tychkov, J. Baselmans, J. Tsacoyeanes, G. Politi, M. Patra, V. Blahnik, and M. Maul, “Speckle in optical lithography and the influence on line width roughness,” Proc. SPIE 7274, 72741R (2009).
[CrossRef]

Quan, C.

C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46, 115801 (2007).
[CrossRef]

Rao, B.

Rosen, J.

Satoh, H.

Sekiya, K.

Shin, S.-H.

Su, Y.-H.

Suzuki, Y.

Tay, C. J.

C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46, 115801 (2007).
[CrossRef]

Tomiyama, T.

Trisnadi, J. I.

Tromberg, B. J.

Tsacoyeanes, J.

O. Noordman, A. Tychkov, J. Baselmans, J. Tsacoyeanes, G. Politi, M. Patra, V. Blahnik, and M. Maul, “Speckle in optical lithography and the influence on line width roughness,” Proc. SPIE 7274, 72741R (2009).
[CrossRef]

Tschudi, T.

Tychkov, A.

O. Noordman, A. Tychkov, J. Baselmans, J. Tsacoyeanes, G. Politi, M. Patra, V. Blahnik, and M. Maul, “Speckle in optical lithography and the influence on line width roughness,” Proc. SPIE 7274, 72741R (2009).
[CrossRef]

Uchida, T.

Wang, L.

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[CrossRef]

Wulich, D.

Wyrowski, F.

Yeh, C.-F.

Yu, L.

Zhang, Z.

Q. Liu, S. Zhou, Z. Zhang, and Q. Luo, “Laser speckle contrast imaging: monitoring blood flow dynamics and vascular structure of photodynamic therapy,” Proc. SPIE 5630, 26–33 (2005).
[CrossRef]

Zhou, S.

Q. Liu, S. Zhou, Z. Zhang, and Q. Luo, “Laser speckle contrast imaging: monitoring blood flow dynamics and vascular structure of photodynamic therapy,” Proc. SPIE 5630, 26–33 (2005).
[CrossRef]

Appl. Opt. (6)

J. Biomed. Opt. (1)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[CrossRef]

J. Cereb. Blood Flow Metab. (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[CrossRef]

J. Display Technology (1)

E. Buckley, “Holographic laser projection,” J. Display Technology 7, 135–140 (2011).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

Opt. Eng. (1)

C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46, 115801 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (4)

C. Hun, J. Caussignac, and M. Brynooghe, “Speckle techniques for pavement surface analysis,” Proc. SPIE 4933, 261–266 (2003).
[CrossRef]

O. Noordman, A. Tychkov, J. Baselmans, J. Tsacoyeanes, G. Politi, M. Patra, V. Blahnik, and M. Maul, “Speckle in optical lithography and the influence on line width roughness,” Proc. SPIE 7274, 72741R (2009).
[CrossRef]

P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 72320Y (2009).
[CrossRef]

Q. Liu, S. Zhou, Z. Zhang, and Q. Luo, “Laser speckle contrast imaging: monitoring blood flow dynamics and vascular structure of photodynamic therapy,” Proc. SPIE 5630, 26–33 (2005).
[CrossRef]

Other (2)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

Numerous articles were found in D. A. Zimnyakov, ed., Saratov Fall Meeting 2003: Coherent Optics of Ordered and Random Media IV, Proc. SPIE5475 (2004).V. V. Tuchin and L. V. Wang, eds., Complex Dynamics and Fluctuations in Biomedical Photonics V, Proc. SPIE6855 (2008).V. V. Tuchin, L. V. Wang, and D. D. Duncan, eds., Dynamics and Fluctuations in Biomedical Photonics VI, Proc. SPIE7176 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic diagram representing the generation of fully developed speckle patterns.

Fig. 2.
Fig. 2.

Numerical simulation of fully developed speckle pattern with Cs=1.0002; the probability density function is presented in the inset.

Fig. 3.
Fig. 3.

Simulation of spatial sampling effects of the speckle block marked in Fig. 2, with fixed power factor (r=1) and spatial factor k of (a) 16, (b) 8, (c) 4, and (d) 2.

Fig. 4.
Fig. 4.

Normalized probability density function of the grayscale speckle blocks in Fig. 3.

Fig. 5.
Fig. 5.

Simulation of spatial sampling effect of the speckle block marked in Fig. 2 with a fixed spatial factor (k=8) and power factor r of (a) 2, (b) 1, (c) 0.5, and (d) 0.25.

Fig. 6.
Fig. 6.

Normalized probability density functions of the grayscale speckle blocks in Fig. 5.

Fig. 7.
Fig. 7.

Speckle contrast Cgs of grayscale speckle patterns in terms of logarithm r and linear k.

Fig. 8.
Fig. 8.

Contour map of Cgs in terms of logarithm r and linear k.

Fig. 9.
Fig. 9.

Contour map of Cgs in terms of mean graylevel I¯gs and k.

Fig. 10.
Fig. 10.

Experimental setup for measurement of Cgs values. A real-time histogram was used to monitor the graylevel distribution of speckle patterns. The red circle indicates a grayscale bias (9 levels) produced in the digital camera.

Fig. 11.
Fig. 11.

Three grayscale speckle patterns with r=1 and k = (a) 4, (b) 8, and (c) 16.

Fig. 12.
Fig. 12.

Three grayscale speckle patterns with k=16 and r = (a) 0.5, (b) 1.0, and (c) 2.0.

Fig. 13.
Fig. 13.

Contour map of Cgs in the grayscale speckle patterns produced by ground glass.

Tables (2)

Tables Icon

Table 1. Contrast of Grayscale Speckle Patterns with r=1

Tables Icon

Table 2. Contrast of Grayscale Speckle Patterns with k=8

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A=1Nn=1NAn=1Nn=1Nanejϕn,
Cs=σsI¯s,
Cgs=σgsI¯gs,
r=Igs,maxICCDsat,
dS=λzL,
k=dSdCCD.
k=λzLdCCD0.3z,

Metrics