Abstract

Electro-optical properties of liquid crystal (LC) gratings with alternate twisted nematic (TN) and planar aligned (PA) regions are simulated. Three typical steps are introduced: first, the LC director distributions of the two different regions are simulated. Then, the phase and amplitude of the emergent light in each region are calculated through Jones matrix. Based on this information, the voltage-dependent diffraction efficiency is achieved by Fourier transformation, finally. It gives an exact explanation for the mechanism of this kind of gratings. Experiments with optimized parameters are carried out through photopatterning. The trend of the measured voltage-dependent efficiency fits the simulation result very well. This method can be used to optimize the performance of LC gratings with alternate TN and PA regions, and exhibits great potential in the simulation of corresponding photonics and display applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett. 37, 3627–3629 (2012).
    [CrossRef]
  2. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
    [CrossRef]
  3. B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43, 11–19 (2004).
    [CrossRef]
  4. W. M. Gibbons and S. T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65, 2542–2544 (1994).
    [CrossRef]
  5. X. K. Hu, B. Y. Wei, X. W. Lin, W. Hu, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Complex liquid crystal alignments accomplished by Talbot self-imaging,” Opt. Express 21, 7608–7613 (2013).
    [CrossRef]
  6. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
    [CrossRef]
  7. Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
    [CrossRef]
  8. D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71, 3323–3325 (1997).
    [CrossRef]
  9. Z. Zheng, F. Guo, Y. Liu, and L. Xuan, “Low threshold and high contrast polymer dispersed liquid crystal grating based on twisted nematic polarization modulator,” Appl. Phys. B 91, 17–20 (2008).
    [CrossRef]
  10. J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36, 1404–1406 (2011).
    [CrossRef]
  11. G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20, 341–346 (2012).
    [CrossRef]
  12. R. G. Lindquist, J. H. Kulick, G. P. Nordin, J. M. Jarem, S. T. Kowel, M. Friends, and T. M. Leslie, “High-resolution liquid-crystal phase grating formed by fringing fields from interdigitated electrodes,” Opt. Lett. 19, 670–672 (1994).
    [CrossRef]
  13. M. Bouvier and T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng. 39, 2129–2137 (2000).
    [CrossRef]
  14. L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87, 201106 (2005).
    [CrossRef]
  15. B. Wen, R. G. Petschek, and C. Rosenblatt, “Nematic liquid-crystal polarization gratings by modification of surface alignment,” Appl. Opt. 41, 1246–1250 (2002).
    [CrossRef]
  16. J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
    [CrossRef]
  17. W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
    [CrossRef]
  18. W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20, 5384–5391 (2012).
    [CrossRef]
  19. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).
  20. S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88, 041104 (2006).
    [CrossRef]
  21. V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
    [CrossRef]
  22. B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
    [CrossRef]
  23. H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20, 16684–16689 (2012).
    [CrossRef]

2014

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[CrossRef]

2013

2012

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20, 5384–5391 (2012).
[CrossRef]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20, 16684–16689 (2012).
[CrossRef]

X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett. 37, 3627–3629 (2012).
[CrossRef]

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20, 341–346 (2012).
[CrossRef]

2011

2009

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

2008

Z. Zheng, F. Guo, Y. Liu, and L. Xuan, “Low threshold and high contrast polymer dispersed liquid crystal grating based on twisted nematic polarization modulator,” Appl. Phys. B 91, 17–20 (2008).
[CrossRef]

2006

S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88, 041104 (2006).
[CrossRef]

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[CrossRef]

2005

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87, 201106 (2005).
[CrossRef]

2004

Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43, 11–19 (2004).
[CrossRef]

2002

2000

M. Bouvier and T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng. 39, 2129–2137 (2000).
[CrossRef]

1997

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71, 3323–3325 (1997).
[CrossRef]

1995

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

1994

R. G. Lindquist, J. H. Kulick, G. P. Nordin, J. M. Jarem, S. T. Kowel, M. Friends, and T. M. Leslie, “High-resolution liquid-crystal phase grating formed by fringing fields from interdigitated electrodes,” Opt. Lett. 19, 670–672 (1994).
[CrossRef]

W. M. Gibbons and S. T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65, 2542–2544 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Apter, B.

Bahat-Treidel, E.

Bos, P.

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71, 3323–3325 (1997).
[CrossRef]

Bos, P. J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

Bouvier, M.

M. Bouvier and T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng. 39, 2129–2137 (2000).
[CrossRef]

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Chen, J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

Chen, R. T.

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87, 201106 (2005).
[CrossRef]

Chen, X. N.

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87, 201106 (2005).
[CrossRef]

Chen, Y.

Chigrinov, V.

Chigrinov, V. G.

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).

Choi, J. W.

Cui, H. Q.

Du, F.

Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

Efron, U.

Friends, M.

Fuh, A. Y. G.

S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88, 041104 (2006).
[CrossRef]

Gibbons, W. M.

W. M. Gibbons and S. T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65, 2542–2544 (1994).
[CrossRef]

Gu, L. L.

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87, 201106 (2005).
[CrossRef]

Guo, F.

Z. Zheng, F. Guo, Y. Liu, and L. Xuan, “Low threshold and high contrast polymer dispersed liquid crystal grating based on twisted nematic polarization modulator,” Appl. Phys. B 91, 17–20 (2008).
[CrossRef]

Howley, B.

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87, 201106 (2005).
[CrossRef]

Hu, H. C.

Hu, W.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[CrossRef]

X. K. Hu, B. Y. Wei, X. W. Lin, W. Hu, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Complex liquid crystal alignments accomplished by Talbot self-imaging,” Opt. Express 21, 7608–7613 (2013).
[CrossRef]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20, 16684–16689 (2012).
[CrossRef]

X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett. 37, 3627–3629 (2012).
[CrossRef]

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20, 341–346 (2012).
[CrossRef]

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20, 5384–5391 (2012).
[CrossRef]

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

Hu, X. K.

Huang, S. Y.

S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88, 041104 (2006).
[CrossRef]

Jarem, J. M.

Jiang, W.

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87, 201106 (2005).
[CrossRef]

Johnson, D. L.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

Kapoustine, V.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[CrossRef]

Kazakevitch, A.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[CrossRef]

Kimball, B. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

Kowel, S. T.

Kozenkov, V. M.

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).

Kulick, J. H.

Kwok, H. S.

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).

Lavrentovich, O. D.

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71, 3323–3325 (1997).
[CrossRef]

Leslie, T. M.

Li, J. N.

X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett. 37, 3627–3629 (2012).
[CrossRef]

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20, 341–346 (2012).
[CrossRef]

Li, Y.

Liang, X.

X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett. 37, 3627–3629 (2012).
[CrossRef]

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

Lin, X. W.

Lindquist, R. G.

Liu, Y.

Z. Zheng, F. Guo, Y. Liu, and L. Xuan, “Low threshold and high contrast polymer dispersed liquid crystal grating based on twisted nematic polarization modulator,” Appl. Phys. B 91, 17–20 (2008).
[CrossRef]

Lu, Y. Q.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[CrossRef]

X. K. Hu, B. Y. Wei, X. W. Lin, W. Hu, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Complex liquid crystal alignments accomplished by Talbot self-imaging,” Opt. Express 21, 7608–7613 (2013).
[CrossRef]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20, 16684–16689 (2012).
[CrossRef]

X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett. 37, 3627–3629 (2012).
[CrossRef]

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20, 5384–5391 (2012).
[CrossRef]

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20, 341–346 (2012).
[CrossRef]

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

Ming, Y.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[CrossRef]

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Nersisyan, S. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

Nordin, G. P.

Petschek, R. G.

Rosenblatt, C.

Rubin, S.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[CrossRef]

Scharf, T.

M. Bouvier and T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng. 39, 2129–2137 (2000).
[CrossRef]

Shen, D.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20, 341–346 (2012).
[CrossRef]

Shiyanovskii, S. V.

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71, 3323–3325 (1997).
[CrossRef]

So, V.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[CrossRef]

Srivastava, A.

Srivastava, A. K.

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

Steeves, D. M.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

Subacius, D.

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71, 3323–3325 (1997).
[CrossRef]

Sun, J. T.

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20, 5384–5391 (2012).
[CrossRef]

Sun, S. T.

W. M. Gibbons and S. T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65, 2542–2544 (1994).
[CrossRef]

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Tabiryan, N. V.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

Tam, R.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[CrossRef]

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Vithana, H.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

Wang, H. F.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20, 341–346 (2012).
[CrossRef]

Wang, J. G.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[CrossRef]

Wei, B. Y.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[CrossRef]

X. K. Hu, B. Y. Wei, X. W. Lin, W. Hu, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Complex liquid crystal alignments accomplished by Talbot self-imaging,” Opt. Express 21, 7608–7613 (2013).
[CrossRef]

Wen, B.

Wu, H.

Wu, S. T.

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36, 1404–1406 (2011).
[CrossRef]

S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88, 041104 (2006).
[CrossRef]

Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

Wu, Z. J.

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

Xu, F.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[CrossRef]

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20, 5384–5391 (2012).
[CrossRef]

Xuan, L.

Z. Zheng, F. Guo, Y. Liu, and L. Xuan, “Low threshold and high contrast polymer dispersed liquid crystal grating based on twisted nematic polarization modulator,” Appl. Phys. B 91, 17–20 (2008).
[CrossRef]

Yan, J.

Zheng, Z.

Z. Zheng, F. Guo, Y. Liu, and L. Xuan, “Low threshold and high contrast polymer dispersed liquid crystal grating based on twisted nematic polarization modulator,” Appl. Phys. B 91, 17–20 (2008).
[CrossRef]

Zheng, Z. G.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20, 341–346 (2012).
[CrossRef]

Zhu, G.

X. K. Hu, B. Y. Wei, X. W. Lin, W. Hu, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Complex liquid crystal alignments accomplished by Talbot self-imaging,” Opt. Express 21, 7608–7613 (2013).
[CrossRef]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20, 16684–16689 (2012).
[CrossRef]

X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett. 37, 3627–3629 (2012).
[CrossRef]

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20, 341–346 (2012).
[CrossRef]

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

Adv. Mater.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[CrossRef]

Appl. Opt.

Appl. Phys. B

Z. Zheng, F. Guo, Y. Liu, and L. Xuan, “Low threshold and high contrast polymer dispersed liquid crystal grating based on twisted nematic polarization modulator,” Appl. Phys. B 91, 17–20 (2008).
[CrossRef]

Appl. Phys. Lett.

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87, 201106 (2005).
[CrossRef]

W. M. Gibbons and S. T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65, 2542–2544 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71, 3323–3325 (1997).
[CrossRef]

S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88, 041104 (2006).
[CrossRef]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

J. Appl. Phys.

Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

J. Soc. Inf. Disp.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20, 341–346 (2012).
[CrossRef]

Opt. Commun.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[CrossRef]

Opt. Eng.

M. Bouvier and T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng. 39, 2129–2137 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Other

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scheme of LC orientations in TN/PA gratings; the yellow arrow represents light propagation, whereas the black double-headed arrows indicate transmitted polarization.

Fig. 2.
Fig. 2.

Voltage-dependent (a) amplitude and (b) phase of TN and PA regions. (c) Voltage-dependent phase difference (Δφ) between adjacent TN and PA regions, and its cosine value. Cell gap is 6 μm.

Fig. 3.
Fig. 3.

Simulation result of cell gap-dependent diffraction efficiency of the first order in the applied voltage range from 0 to 3 V.

Fig. 4.
Fig. 4.

(a) Micrograph of the grating under crossed polarizers; the scale bar is 50 μm. (b) Diffraction patterns under different voltages. (c) Simulation and experimental results of first-order intensity versus applied voltage.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

J=MJ0,
M=RnWnRnR2W2R2R1W1R1,
Rn=(cosψsinψsinψcosψ),
W=(ei2πneff(z)d/λ00ei2πnod/λ).
neff(z)=nenone2(sinθ)2+no2(cosθ)2,
E1=1Λ0ΛAeiφ(x)ei2πrΛdx=1i2π(ei2πr1)×(APAeiφPAATNeiφTN),
I1=|E1|2=|1i2π(ei2πr1)|2(APA2+ATN22APAATNcosΔφ);

Metrics