Abstract

In this paper, we carried out experiments to investigate dome-shaped microlaser based on the whispering gallery modes for remote wall temperature sensing. The dome-shaped resonator was made of Norland blocking adhesive (NBA 107) doped with a solution of rhodamine 6G and ethanol. Two different configurations are considered: (i) resonator placed on top of a thin layer of 101 polydimethylsiloxane (101 PDMS), and (ii) resonator encapsulated in a thin layer of 101 PDMS. The microlaser was remotely pumped using a Q switch Nd:YAG laser with pulse repetition rate of 10 Hz, pulse linewidth of 10 ns, and pulse energy of 100μJ/cm2. The excited optical modes showed an average optical quality factor of 104 for both configurations. In addition, the measurements showed sensitivity to temperature of 0.06nm/°C and a resolution of 1°C for both configurations. This sensitivity was limited by the resolution of the experimental setup used in these studies.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105, 013535 (2009).
    [CrossRef]
  2. U. K. Ayaz, T. Ioppolo, and M. V. Ötügen, “Wall shear stress sensor based on the optical resonances of dielectric microspheres,” Meas. Sci. Technol. 22, 075203 (2011).
    [CrossRef]
  3. M. Manzo, T. Ioppolo, U. K. Ayaz, V. LaPenna, and M. V. Ötügen, “A photonic wall pressure sensor for fluid mechanics applications,” Rev. Sci. Instrum. 83, 105003 (2012).
    [CrossRef]
  4. G. Guan, S. Arnold, and M. V. Ötügen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA J. 44, 2385–2389 (2006).
    [CrossRef]
  5. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
    [CrossRef]
  6. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel—a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17, 6230–6238 (2009).
    [CrossRef]
  7. C. E. Finlayson, P. J. A. Sazio, R. Sanchez-Martin, M. Bradley, T. A. Kelf, and J. J. Baumberg, “Whispering gallery mode emission at telecommunications-window wavelengths using PbSe nanocrystals attached to photonic beads,” Semicond. Sci. Technol. 21, L21–L24 (2006).
    [CrossRef]
  8. F. Monifi, S. K. Ozdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode microcavity,” Appl. Phys. Lett. 103, 181103 (2013).
    [CrossRef]
  9. S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15, 15523–15530 (2007).
    [CrossRef]
  10. E. Özelci, M. Aas, A. Jonáš, and A. Kiraz, “Optofluidic FRET microlasers based on surface-supported liquid microdroplets,” Laser Phys. Lett. 11, 045802 (2014).
    [CrossRef]
  11. L. He, S. H. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7, 60–82 (2013).
    [CrossRef]
  12. Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).
  13. M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013).
    [CrossRef]
  14. P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
    [CrossRef]
  15. V. Sandoghdar, F. Treussart, J. Hare, F. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
    [CrossRef]
  16. M. Pelton and Y. Yamamoto, “Ultralow threshold laser using a single quantum dot and a microsphere cavity,” Phys. Rev. A 59, 2418–2421 (1999).
    [CrossRef]
  17. P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J. M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
    [CrossRef]
  18. P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184–186 (2000).
    [CrossRef]
  19. R. Chen, V. D. Ta, and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
  20. V. D. Ta, R. Chen, and H. Sun, “Flexible microresonators: lasing and sensing,” Proc. SPIE 8960, 89600E (2014).
    [CrossRef]
  21. C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, and S. H. Ozdemir, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
    [CrossRef]
  22. http://www.thorlabs.com/NewGroupPage9_PF.cfm?Guide=10&Category_ID=18&ObjectGroup_ID=196 .
  23. https://www.norlandprod.com/adhesives/noa61pg2.html .
  24. T. Ioppolo, N. Das, and M. V. Ötügen, “Whispering gallery modes of microspheres in the presence of a changing surrounding medium: a new ray-tracing analysis and sensor experiment,” J. Appl. Phys. 107, 103105 (2010).
    [CrossRef]

2014 (2)

E. Özelci, M. Aas, A. Jonáš, and A. Kiraz, “Optofluidic FRET microlasers based on surface-supported liquid microdroplets,” Laser Phys. Lett. 11, 045802 (2014).
[CrossRef]

V. D. Ta, R. Chen, and H. Sun, “Flexible microresonators: lasing and sensing,” Proc. SPIE 8960, 89600E (2014).
[CrossRef]

2013 (3)

L. He, S. H. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7, 60–82 (2013).
[CrossRef]

M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013).
[CrossRef]

F. Monifi, S. K. Ozdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode microcavity,” Appl. Phys. Lett. 103, 181103 (2013).
[CrossRef]

2012 (2)

R. Chen, V. D. Ta, and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).

M. Manzo, T. Ioppolo, U. K. Ayaz, V. LaPenna, and M. V. Ötügen, “A photonic wall pressure sensor for fluid mechanics applications,” Rev. Sci. Instrum. 83, 105003 (2012).
[CrossRef]

2011 (1)

U. K. Ayaz, T. Ioppolo, and M. V. Ötügen, “Wall shear stress sensor based on the optical resonances of dielectric microspheres,” Meas. Sci. Technol. 22, 075203 (2011).
[CrossRef]

2010 (2)

T. Ioppolo, N. Das, and M. V. Ötügen, “Whispering gallery modes of microspheres in the presence of a changing surrounding medium: a new ray-tracing analysis and sensor experiment,” J. Appl. Phys. 107, 103105 (2010).
[CrossRef]

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J. M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[CrossRef]

2009 (3)

T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105, 013535 (2009).
[CrossRef]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, and S. H. Ozdemir, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel—a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17, 6230–6238 (2009).
[CrossRef]

2008 (2)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[CrossRef]

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).

2007 (1)

2006 (2)

C. E. Finlayson, P. J. A. Sazio, R. Sanchez-Martin, M. Bradley, T. A. Kelf, and J. J. Baumberg, “Whispering gallery mode emission at telecommunications-window wavelengths using PbSe nanocrystals attached to photonic beads,” Semicond. Sci. Technol. 21, L21–L24 (2006).
[CrossRef]

G. Guan, S. Arnold, and M. V. Ötügen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA J. 44, 2385–2389 (2006).
[CrossRef]

2005 (1)

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[CrossRef]

2000 (1)

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184–186 (2000).
[CrossRef]

1999 (1)

M. Pelton and Y. Yamamoto, “Ultralow threshold laser using a single quantum dot and a microsphere cavity,” Phys. Rev. A 59, 2418–2421 (1999).
[CrossRef]

1996 (1)

V. Sandoghdar, F. Treussart, J. Hare, F. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef]

Aas, M.

E. Özelci, M. Aas, A. Jonáš, and A. Kiraz, “Optofluidic FRET microlasers based on surface-supported liquid microdroplets,” Laser Phys. Lett. 11, 045802 (2014).
[CrossRef]

M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013).
[CrossRef]

Arnold, S.

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel—a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17, 6230–6238 (2009).
[CrossRef]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[CrossRef]

G. Guan, S. Arnold, and M. V. Ötügen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA J. 44, 2385–2389 (2006).
[CrossRef]

Ayaz, U. K.

M. Manzo, T. Ioppolo, U. K. Ayaz, V. LaPenna, and M. V. Ötügen, “A photonic wall pressure sensor for fluid mechanics applications,” Rev. Sci. Instrum. 83, 105003 (2012).
[CrossRef]

U. K. Ayaz, T. Ioppolo, and M. V. Ötügen, “Wall shear stress sensor based on the optical resonances of dielectric microspheres,” Meas. Sci. Technol. 22, 075203 (2011).
[CrossRef]

T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105, 013535 (2009).
[CrossRef]

Baumberg, J. J.

C. E. Finlayson, P. J. A. Sazio, R. Sanchez-Martin, M. Bradley, T. A. Kelf, and J. J. Baumberg, “Whispering gallery mode emission at telecommunications-window wavelengths using PbSe nanocrystals attached to photonic beads,” Semicond. Sci. Technol. 21, L21–L24 (2006).
[CrossRef]

Bawendi, M. G.

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[CrossRef]

Bazin, M.

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J. M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184–186 (2000).
[CrossRef]

Bradley, M.

C. E. Finlayson, P. J. A. Sazio, R. Sanchez-Martin, M. Bradley, T. A. Kelf, and J. J. Baumberg, “Whispering gallery mode emission at telecommunications-window wavelengths using PbSe nanocrystals attached to photonic beads,” Semicond. Sci. Technol. 21, L21–L24 (2006).
[CrossRef]

Chan, Y.

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[CrossRef]

Chen, R.

V. D. Ta, R. Chen, and H. Sun, “Flexible microresonators: lasing and sensing,” Proc. SPIE 8960, 89600E (2014).
[CrossRef]

R. Chen, V. D. Ta, and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).

Claudon, J.

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J. M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[CrossRef]

Cupps, J. M.

Das, N.

T. Ioppolo, N. Das, and M. V. Ötügen, “Whispering gallery modes of microspheres in the presence of a changing surrounding medium: a new ray-tracing analysis and sensor experiment,” J. Appl. Phys. 107, 103105 (2010).
[CrossRef]

Dong, C. H.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, and S. H. Ozdemir, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Fan, X.

Finlayson, C. E.

C. E. Finlayson, P. J. A. Sazio, R. Sanchez-Martin, M. Bradley, T. A. Kelf, and J. J. Baumberg, “Whispering gallery mode emission at telecommunications-window wavelengths using PbSe nanocrystals attached to photonic beads,” Semicond. Sci. Technol. 21, L21–L24 (2006).
[CrossRef]

Forchel, A.

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J. M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[CrossRef]

Gaddam, V. R.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, and S. H. Ozdemir, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Gerard, J. M.

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J. M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[CrossRef]

Guan, G.

G. Guan, S. Arnold, and M. V. Ötügen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA J. 44, 2385–2389 (2006).
[CrossRef]

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, F. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, F. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef]

He, L.

L. He, S. H. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7, 60–82 (2013).
[CrossRef]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, and S. H. Ozdemir, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Holler, S.

Hu, E.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184–186 (2000).
[CrossRef]

Imamoglu, A.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184–186 (2000).
[CrossRef]

Ioppolo, T.

M. Manzo, T. Ioppolo, U. K. Ayaz, V. LaPenna, and M. V. Ötügen, “A photonic wall pressure sensor for fluid mechanics applications,” Rev. Sci. Instrum. 83, 105003 (2012).
[CrossRef]

U. K. Ayaz, T. Ioppolo, and M. V. Ötügen, “Wall shear stress sensor based on the optical resonances of dielectric microspheres,” Meas. Sci. Technol. 22, 075203 (2011).
[CrossRef]

T. Ioppolo, N. Das, and M. V. Ötügen, “Whispering gallery modes of microspheres in the presence of a changing surrounding medium: a new ray-tracing analysis and sensor experiment,” J. Appl. Phys. 107, 103105 (2010).
[CrossRef]

T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105, 013535 (2009).
[CrossRef]

Jaffrennou, P.

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J. M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[CrossRef]

Jonáš, A.

E. Özelci, M. Aas, A. Jonáš, and A. Kiraz, “Optofluidic FRET microlasers based on surface-supported liquid microdroplets,” Laser Phys. Lett. 11, 045802 (2014).
[CrossRef]

M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013).
[CrossRef]

Kamp, M.

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J. M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[CrossRef]

Kelf, T. A.

C. E. Finlayson, P. J. A. Sazio, R. Sanchez-Martin, M. Bradley, T. A. Kelf, and J. J. Baumberg, “Whispering gallery mode emission at telecommunications-window wavelengths using PbSe nanocrystals attached to photonic beads,” Semicond. Sci. Technol. 21, L21–L24 (2006).
[CrossRef]

Keng, D.

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel—a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17, 6230–6238 (2009).
[CrossRef]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[CrossRef]

Kiraz, A.

E. Özelci, M. Aas, A. Jonáš, and A. Kiraz, “Optofluidic FRET microlasers based on surface-supported liquid microdroplets,” Laser Phys. Lett. 11, 045802 (2014).
[CrossRef]

M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013).
[CrossRef]

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184–186 (2000).
[CrossRef]

Lacey, S.

LaPenna, V.

M. Manzo, T. Ioppolo, U. K. Ayaz, V. LaPenna, and M. V. Ötügen, “A photonic wall pressure sensor for fluid mechanics applications,” Rev. Sci. Instrum. 83, 105003 (2012).
[CrossRef]

Lefevre-Seguin, F.

V. Sandoghdar, F. Treussart, J. Hare, F. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef]

Li, Z.

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).

Malik, N. S.

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J. M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[CrossRef]

Manzo, M.

M. Manzo, T. Ioppolo, U. K. Ayaz, V. LaPenna, and M. V. Ötügen, “A photonic wall pressure sensor for fluid mechanics applications,” Rev. Sci. Instrum. 83, 105003 (2012).
[CrossRef]

Michler, P.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184–186 (2000).
[CrossRef]

Monifi, F.

F. Monifi, S. K. Ozdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode microcavity,” Appl. Phys. Lett. 103, 181103 (2013).
[CrossRef]

Nocera, D. G.

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[CrossRef]

Ötügen, M. V.

M. Manzo, T. Ioppolo, U. K. Ayaz, V. LaPenna, and M. V. Ötügen, “A photonic wall pressure sensor for fluid mechanics applications,” Rev. Sci. Instrum. 83, 105003 (2012).
[CrossRef]

U. K. Ayaz, T. Ioppolo, and M. V. Ötügen, “Wall shear stress sensor based on the optical resonances of dielectric microspheres,” Meas. Sci. Technol. 22, 075203 (2011).
[CrossRef]

T. Ioppolo, N. Das, and M. V. Ötügen, “Whispering gallery modes of microspheres in the presence of a changing surrounding medium: a new ray-tracing analysis and sensor experiment,” J. Appl. Phys. 107, 103105 (2010).
[CrossRef]

T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105, 013535 (2009).
[CrossRef]

G. Guan, S. Arnold, and M. V. Ötügen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA J. 44, 2385–2389 (2006).
[CrossRef]

Ozdemir, S. H.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, and S. H. Ozdemir, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Ozdemir, S. K.

F. Monifi, S. K. Ozdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode microcavity,” Appl. Phys. Lett. 103, 181103 (2013).
[CrossRef]

Özdemir, S. H.

L. He, S. H. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7, 60–82 (2013).
[CrossRef]

Özelci, E.

E. Özelci, M. Aas, A. Jonáš, and A. Kiraz, “Optofluidic FRET microlasers based on surface-supported liquid microdroplets,” Laser Phys. Lett. 11, 045802 (2014).
[CrossRef]

Pelton, M.

M. Pelton and Y. Yamamoto, “Ultralow threshold laser using a single quantum dot and a microsphere cavity,” Phys. Rev. A 59, 2418–2421 (1999).
[CrossRef]

Psaltis, D.

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).

Raimond, J. M.

V. Sandoghdar, F. Treussart, J. Hare, F. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef]

Reitzenstein, S.

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J. M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[CrossRef]

Sanchez-Martin, R.

C. E. Finlayson, P. J. A. Sazio, R. Sanchez-Martin, M. Bradley, T. A. Kelf, and J. J. Baumberg, “Whispering gallery mode emission at telecommunications-window wavelengths using PbSe nanocrystals attached to photonic beads,” Semicond. Sci. Technol. 21, L21–L24 (2006).
[CrossRef]

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, F. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef]

Sazio, P. J. A.

C. E. Finlayson, P. J. A. Sazio, R. Sanchez-Martin, M. Bradley, T. A. Kelf, and J. J. Baumberg, “Whispering gallery mode emission at telecommunications-window wavelengths using PbSe nanocrystals attached to photonic beads,” Semicond. Sci. Technol. 21, L21–L24 (2006).
[CrossRef]

Shopova, S. I.

Snee, P. T.

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[CrossRef]

Sun, H.

V. D. Ta, R. Chen, and H. Sun, “Flexible microresonators: lasing and sensing,” Proc. SPIE 8960, 89600E (2014).
[CrossRef]

Sun, H. D.

R. Chen, V. D. Ta, and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).

Sun, Y.

Ta, V. D.

V. D. Ta, R. Chen, and H. Sun, “Flexible microresonators: lasing and sensing,” Proc. SPIE 8960, 89600E (2014).
[CrossRef]

R. Chen, V. D. Ta, and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, F. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef]

Vollmer, F.

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel—a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17, 6230–6238 (2009).
[CrossRef]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[CrossRef]

White, I. M.

Worschech, L.

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J. M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[CrossRef]

Xiao, Y. F.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, and S. H. Ozdemir, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Yamamoto, Y.

M. Pelton and Y. Yamamoto, “Ultralow threshold laser using a single quantum dot and a microsphere cavity,” Phys. Rev. A 59, 2418–2421 (1999).
[CrossRef]

Yang, L.

F. Monifi, S. K. Ozdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode microcavity,” Appl. Phys. Lett. 103, 181103 (2013).
[CrossRef]

L. He, S. H. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7, 60–82 (2013).
[CrossRef]

Zhang, L.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184–186 (2000).
[CrossRef]

Zhang, P.

Zurawsky, W.

Adv. Mater. (1)

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[CrossRef]

AIAA J. (1)

G. Guan, S. Arnold, and M. V. Ötügen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA J. 44, 2385–2389 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, and S. H. Ozdemir, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J. M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010).
[CrossRef]

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184–186 (2000).
[CrossRef]

F. Monifi, S. K. Ozdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode microcavity,” Appl. Phys. Lett. 103, 181103 (2013).
[CrossRef]

J. Appl. Phys. (2)

T. Ioppolo, N. Das, and M. V. Ötügen, “Whispering gallery modes of microspheres in the presence of a changing surrounding medium: a new ray-tracing analysis and sensor experiment,” J. Appl. Phys. 107, 103105 (2010).
[CrossRef]

T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105, 013535 (2009).
[CrossRef]

Laser Photonics Rev. (1)

L. He, S. H. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7, 60–82 (2013).
[CrossRef]

Laser Phys. Lett. (1)

E. Özelci, M. Aas, A. Jonáš, and A. Kiraz, “Optofluidic FRET microlasers based on surface-supported liquid microdroplets,” Laser Phys. Lett. 11, 045802 (2014).
[CrossRef]

Meas. Sci. Technol. (1)

U. K. Ayaz, T. Ioppolo, and M. V. Ötügen, “Wall shear stress sensor based on the optical resonances of dielectric microspheres,” Meas. Sci. Technol. 22, 075203 (2011).
[CrossRef]

Microfluid. Nanofluid. (1)

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).

Opt. Commun. (1)

M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (2)

V. Sandoghdar, F. Treussart, J. Hare, F. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef]

M. Pelton and Y. Yamamoto, “Ultralow threshold laser using a single quantum dot and a microsphere cavity,” Phys. Rev. A 59, 2418–2421 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[CrossRef]

Proc. SPIE (1)

V. D. Ta, R. Chen, and H. Sun, “Flexible microresonators: lasing and sensing,” Proc. SPIE 8960, 89600E (2014).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Manzo, T. Ioppolo, U. K. Ayaz, V. LaPenna, and M. V. Ötügen, “A photonic wall pressure sensor for fluid mechanics applications,” Rev. Sci. Instrum. 83, 105003 (2012).
[CrossRef]

Sci. Rep. (1)

R. Chen, V. D. Ta, and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).

Semicond. Sci. Technol. (1)

C. E. Finlayson, P. J. A. Sazio, R. Sanchez-Martin, M. Bradley, T. A. Kelf, and J. J. Baumberg, “Whispering gallery mode emission at telecommunications-window wavelengths using PbSe nanocrystals attached to photonic beads,” Semicond. Sci. Technol. 21, L21–L24 (2006).
[CrossRef]

Other (2)

http://www.thorlabs.com/NewGroupPage9_PF.cfm?Guide=10&Category_ID=18&ObjectGroup_ID=196 .

https://www.norlandprod.com/adhesives/noa61pg2.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Photograph of the dome-shaped resonator (diameter 110μm).

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

Emission spectra from the embedded dome-shaped resonator.

Fig. 4.
Fig. 4.

Emission spectra from the external dome-shaped resonator.

Fig. 5.
Fig. 5.

Laser mode emission as a function of the fluence. Embedded resonator laser mode λ=593.14nm and external resonator laser mode λ=597.04nm.

Fig. 6.
Fig. 6.

Emission spectra for three different values of the temperature (embedded resonator).

Fig. 7.
Fig. 7.

Temperature sensitivity for the embedded resonator.

Fig. 8.
Fig. 8.

Temperature sensitivity for the external resonator.

Metrics