Abstract

The preferential free running laser wavelength at room temperature for different axes cuts of Tm3+-doped YAP and YLF is comparatively analyzed in this paper. The polarized gain spectrum of Tm:YAP and Tm:YLF with different product values of Tm3+-doped concentration and crystal length is theoretically calculated under various cavity output mirror transmissions. From the gain spectrum, it straightforwardly determines the preferential free running laser wavelength for a given light polarization. In addition, a rate equation model is further used to model and compare the laser output performance for both the free running and some common artificially selected oscillating wavelengths, including 1.99 and 1.94 μm of Tm:YAP, and 1.89, 1.91, and 1.94 μm of Tm:YLF, respectively. To achieve an expected laser oscillating wavelength with acceptable output performance, our analysis presented here is very beneficial for one to choose the most suitable axis cut of crystal.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
    [CrossRef]
  2. T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. McKinnie, “Tunable infrared laser sources for DIAL,” Proc. SPIE 4723, 147–155 (2002).
    [CrossRef]
  3. H. Jelinkova, O. Kohler, M. Nemec, P. Koranda, J. Sulc, V. Kubecek, P. Drlik, M. Miyagi, Y. W. Shi, Y. Matsuura, M. R. Kokta, P. Hrabal, and M. Jelinek, “Comparison of mid infrared lasers effect on ureter tissue,” Laser Phys. Lett. 1, 143–146 (2004).
    [CrossRef]
  4. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43, 5092–5099 (2004).
    [CrossRef]
  5. L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.
  6. G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645–1656 (1996).
    [CrossRef]
  7. I. F. Elder and J. Payne, “Diode-pumped, room-temperature Tm: YAP laser,” Appl. Opt. 36, 8606–8610 (1997).
    [CrossRef]
  8. M. Schellhorn, “High-power diode-pumped Tm: YLF laser,” Appl. Phys. B 91, 71–74 (2008).
    [CrossRef]
  9. R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm: YAlO laser,” IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
    [CrossRef]
  10. A. C. Sullivan, G. J. Wagner, D. Gwin, R. C. Stoneman, and A. I. R. Malm, “High power Q-switched Tm: YAlO3 lasers,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper WA7.
  11. X. J. Cheng, J. Q. Xu, Y. Hang, G. J. Zhao, and S. Y. Zhang, “High-power diode-end-pumped Tm: YAP and Tm: YLF slab lasers,” Chin. Opt. Lett. 9, 091406 (2011).
    [CrossRef]
  12. X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm: YLF laser with a volume Bragg grating,” Appl. Phys. B 99, 465–468 (2010).
    [CrossRef]
  13. A. Dergachev, P. F. Moulton, V. Smirnov, and L. Glebov, “High power CW Tm: YLF laser with a holographic output coupler,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2004), paper CThZ3.
  14. H. J. Strauss, M. J. D. Esser, G. King, and L. Maweza, “Volume Bragg grating wavelength selected Tm: YLF slab laser operating at 1890  nm,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2012), paper AW4A-20.
  15. J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient in-band pumped Ho: LuLiF4 2  μm laser,” Opt. Lett. 35, 420–422 (2010).
    [CrossRef]
  16. P. A. Budni, C. R. Ibach, S. D. Setzler, E. J. Gustafson, R. T. Castro, and E. P. Chicklis, “50-mJ, Q-switched, 2.09-μm holmium laser resonantly pumped by a diode-pumped 1.9-μm thulium laser,” Opt. Lett. 28, 1016–1018 (2003).
    [CrossRef]
  17. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Directly diode-pumped high-energy Ho:YAG oscillator,” Opt. Lett. 37, 515–517 (2012).
    [CrossRef]
  18. W. Koen, C. Bollig, H. Strauss, M. Schellhorn, C. Jacobs, and M. J. D. Esser, “Compact fibre-laser-pumped Ho: YLF oscillator–amplifier system,” Appl. Phys. B 99, 101–106 (2010).
    [CrossRef]
  19. H. J. Strauss, D. Preussler, O. J. P. Collett, M. J. D. Esser, C. Jacobs, C. Bollig, W. Koen, and K. Nyangaza, “330  mJ, 2  μm, single frequency, Ho: YLF slab amplifier,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA4.
  20. K. Schmidt, C. Reiter, H. Voss, F. Maßmann, and M. Ostermeyer, “High energy 125  mJ Ho: YAG (2.09  μm) MOPA double pass laser system pumped by cw thulium fiber laser (1.9  μm),” in CLEO/Europe and EQEC Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CA3_4.
  21. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
    [CrossRef]
  22. P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 629–635 (2000).
    [CrossRef]
  23. R. Diehl and G. Brandt, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
    [CrossRef]
  24. O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+: YAP and Tm3+: YAG micro lasers,” Appl. Phys. B 88, 433–442 (2007).
    [CrossRef]
  25. I. M. O’hare and V. L. Donlan, “Crystal-field determination for trivalent thulium in yttrium orthoaluminate,” Phys. Rev. B 14, 3732–3743 (1976).
    [CrossRef]
  26. J. K. Jabczynski, L. Gorajek, W. Zendzian, J. Kwiatkowski, H. Jelinkova, J. Sulc, and M. Nemec, “Actively Q-switched thulium lasers,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (SCIYO, 2010), Chap. 5.
  27. Y. Tian, G. Li, B. Q. Yao, and Y. Z. Wang, “Time-dependent analytical model of thermal effects in continuous-wave end-pumped Tm: YAP lasers,” Appl. Phys. B 103, 107–112 (2011).
    [CrossRef]
  28. J. Marion, “Strengthened solidstate laser materials,” Appl. Phys. Lett. 47, 694–696 (1985).
    [CrossRef]
  29. B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
    [CrossRef]
  30. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho: YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
    [CrossRef]
  31. P. Blanchfield and G. A. Saunders, “The elastic constants and acoustic symmetry of LiYF4,” J. Phys. C 12, 4673–4689 (1979).
    [CrossRef]
  32. E. H. Bernhardi, A. Forbes, C. Bollig, and M. J. D. Esser, “Estimation of thermal fracture limits in quasi-continuous-wave end-pumped lasers through a time-dependent analytical model,” Opt. Express 16, 11115–11123 (2008).
    [CrossRef]
  33. M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 1455–1464 (2002).
    [CrossRef]
  34. Z. D. Zeng, H. Y. Shen, M. L. Huang, H. Xu, R. R. Zeng, Y. P. Zhou, G. F. Yu, and C. H. Huang, “Measurement of the refractive index and thermal refractive index coefficients of Nd: YAP crystal,” Appl. Opt. 29, 1281–1286 (1990).
    [CrossRef]
  35. T. M. Pollack, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd: YLF,” IEEE J. Quantum Electron. 18, 159–163 (1982).
    [CrossRef]
  36. H. P. Jenssen and A. Linz, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11, 92–101 (1975).
    [CrossRef]
  37. D. E. Castleberry and A. Linz, “Measurement of the refractive indices of LiYF4,” Appl. Opt. 14, 2056 (1975).
    [CrossRef]
  38. S. S. Cai, J. Kong, B. Wu, Y. H. Shen, G. J. Zhao, Y. H. Zong, and J. Xu, “Room-temperature cw and pulsed operation of a diode-end-pumped Tm: YAP laser,” Appl. Phys. B 90, 133–136 (2008).
    [CrossRef]
  39. G. Li, B. Q. Yao, P. B. Meng, Y. L. Ju, and Y. Z. Wang, “Efficient continuous wave and Q-switched operation of a dual-end-pumped c-cut Tm: YAP Laser,” Laser Phys. 20, 1871–1876 (2010).
    [CrossRef]
  40. G. Li, B. Q. Yao, X. M. Duan, C. H. Zhang, Y. L. Ju, and Y. Z. Wang, “Thermal analysis and laser performance modeling of dual-end-pumped c-cut CW Tm: YAP laser,” J. Phys. B 43, 205401 (2010).
    [CrossRef]
  41. S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389–393 (2006).
    [CrossRef]

2012 (1)

2011 (2)

X. J. Cheng, J. Q. Xu, Y. Hang, G. J. Zhao, and S. Y. Zhang, “High-power diode-end-pumped Tm: YAP and Tm: YLF slab lasers,” Chin. Opt. Lett. 9, 091406 (2011).
[CrossRef]

Y. Tian, G. Li, B. Q. Yao, and Y. Z. Wang, “Time-dependent analytical model of thermal effects in continuous-wave end-pumped Tm: YAP lasers,” Appl. Phys. B 103, 107–112 (2011).
[CrossRef]

2010 (5)

G. Li, B. Q. Yao, P. B. Meng, Y. L. Ju, and Y. Z. Wang, “Efficient continuous wave and Q-switched operation of a dual-end-pumped c-cut Tm: YAP Laser,” Laser Phys. 20, 1871–1876 (2010).
[CrossRef]

G. Li, B. Q. Yao, X. M. Duan, C. H. Zhang, Y. L. Ju, and Y. Z. Wang, “Thermal analysis and laser performance modeling of dual-end-pumped c-cut CW Tm: YAP laser,” J. Phys. B 43, 205401 (2010).
[CrossRef]

X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm: YLF laser with a volume Bragg grating,” Appl. Phys. B 99, 465–468 (2010).
[CrossRef]

J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient in-band pumped Ho: LuLiF4 2  μm laser,” Opt. Lett. 35, 420–422 (2010).
[CrossRef]

W. Koen, C. Bollig, H. Strauss, M. Schellhorn, C. Jacobs, and M. J. D. Esser, “Compact fibre-laser-pumped Ho: YLF oscillator–amplifier system,” Appl. Phys. B 99, 101–106 (2010).
[CrossRef]

2008 (3)

M. Schellhorn, “High-power diode-pumped Tm: YLF laser,” Appl. Phys. B 91, 71–74 (2008).
[CrossRef]

S. S. Cai, J. Kong, B. Wu, Y. H. Shen, G. J. Zhao, Y. H. Zong, and J. Xu, “Room-temperature cw and pulsed operation of a diode-end-pumped Tm: YAP laser,” Appl. Phys. B 90, 133–136 (2008).
[CrossRef]

E. H. Bernhardi, A. Forbes, C. Bollig, and M. J. D. Esser, “Estimation of thermal fracture limits in quasi-continuous-wave end-pumped lasers through a time-dependent analytical model,” Opt. Express 16, 11115–11123 (2008).
[CrossRef]

2007 (1)

O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+: YAP and Tm3+: YAG micro lasers,” Appl. Phys. B 88, 433–442 (2007).
[CrossRef]

2006 (1)

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389–393 (2006).
[CrossRef]

2004 (2)

H. Jelinkova, O. Kohler, M. Nemec, P. Koranda, J. Sulc, V. Kubecek, P. Drlik, M. Miyagi, Y. W. Shi, Y. Matsuura, M. R. Kokta, P. Hrabal, and M. Jelinek, “Comparison of mid infrared lasers effect on ureter tissue,” Laser Phys. Lett. 1, 143–146 (2004).
[CrossRef]

G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43, 5092–5099 (2004).
[CrossRef]

2003 (1)

2002 (2)

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. McKinnie, “Tunable infrared laser sources for DIAL,” Proc. SPIE 4723, 147–155 (2002).
[CrossRef]

M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 1455–1464 (2002).
[CrossRef]

2000 (1)

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 629–635 (2000).
[CrossRef]

1998 (1)

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

1997 (1)

1996 (1)

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645–1656 (1996).
[CrossRef]

1995 (1)

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm: YAlO laser,” IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
[CrossRef]

1993 (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

1990 (1)

1988 (1)

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho: YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

1985 (1)

J. Marion, “Strengthened solidstate laser materials,” Appl. Phys. Lett. 47, 694–696 (1985).
[CrossRef]

1982 (1)

T. M. Pollack, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd: YLF,” IEEE J. Quantum Electron. 18, 159–163 (1982).
[CrossRef]

1979 (1)

P. Blanchfield and G. A. Saunders, “The elastic constants and acoustic symmetry of LiYF4,” J. Phys. C 12, 4673–4689 (1979).
[CrossRef]

1976 (1)

I. M. O’hare and V. L. Donlan, “Crystal-field determination for trivalent thulium in yttrium orthoaluminate,” Phys. Rev. B 14, 3732–3743 (1976).
[CrossRef]

1975 (3)

R. Diehl and G. Brandt, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
[CrossRef]

H. P. Jenssen and A. Linz, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11, 92–101 (1975).
[CrossRef]

D. E. Castleberry and A. Linz, “Measurement of the refractive indices of LiYF4,” Appl. Opt. 14, 2056 (1975).
[CrossRef]

Amzajerdian, F.

Barnes, B. W.

Barnes, N. P.

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

Bartolo, B. D.

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

Bernhardi, E. H.

Betterton, J. G.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389–393 (2006).
[CrossRef]

Beyon, J. Y.

Blanchfield, P.

P. Blanchfield and G. A. Saunders, “The elastic constants and acoustic symmetry of LiYF4,” J. Phys. C 12, 4673–4689 (1979).
[CrossRef]

Bollig, C.

W. Koen, C. Bollig, H. Strauss, M. Schellhorn, C. Jacobs, and M. J. D. Esser, “Compact fibre-laser-pumped Ho: YLF oscillator–amplifier system,” Appl. Phys. B 99, 101–106 (2010).
[CrossRef]

E. H. Bernhardi, A. Forbes, C. Bollig, and M. J. D. Esser, “Estimation of thermal fracture limits in quasi-continuous-wave end-pumped lasers through a time-dependent analytical model,” Opt. Express 16, 11115–11123 (2008).
[CrossRef]

H. J. Strauss, D. Preussler, O. J. P. Collett, M. J. D. Esser, C. Jacobs, C. Bollig, W. Koen, and K. Nyangaza, “330  mJ, 2  μm, single frequency, Ho: YLF slab amplifier,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA4.

Brandt, G.

R. Diehl and G. Brandt, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
[CrossRef]

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Budni, P. A.

P. A. Budni, C. R. Ibach, S. D. Setzler, E. J. Gustafson, R. T. Castro, and E. P. Chicklis, “50-mJ, Q-switched, 2.09-μm holmium laser resonantly pumped by a diode-pumped 1.9-μm thulium laser,” Opt. Lett. 28, 1016–1018 (2003).
[CrossRef]

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 629–635 (2000).
[CrossRef]

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.

Buryy, O. A.

O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+: YAP and Tm3+: YAG micro lasers,” Appl. Phys. B 88, 433–442 (2007).
[CrossRef]

Byer, R. L.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho: YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

Cai, S. S.

S. S. Cai, J. Kong, B. Wu, Y. H. Shen, G. J. Zhao, Y. H. Zong, and J. Xu, “Room-temperature cw and pulsed operation of a diode-end-pumped Tm: YAP laser,” Appl. Phys. B 90, 133–136 (2008).
[CrossRef]

Carrig, T. J.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. McKinnie, “Tunable infrared laser sources for DIAL,” Proc. SPIE 4723, 147–155 (2002).
[CrossRef]

Castleberry, D. E.

Castro, R. T.

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Cheng, X. J.

Chicklis, E. P.

P. A. Budni, C. R. Ibach, S. D. Setzler, E. J. Gustafson, R. T. Castro, and E. P. Chicklis, “50-mJ, Q-switched, 2.09-μm holmium laser resonantly pumped by a diode-pumped 1.9-μm thulium laser,” Opt. Lett. 28, 1016–1018 (2003).
[CrossRef]

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 629–635 (2000).
[CrossRef]

T. M. Pollack, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd: YLF,” IEEE J. Quantum Electron. 18, 159–163 (1982).
[CrossRef]

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.

Clarkson, W. A.

J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient in-band pumped Ho: LuLiF4 2  μm laser,” Opt. Lett. 35, 420–422 (2010).
[CrossRef]

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389–393 (2006).
[CrossRef]

Collett, O. J. P.

H. J. Strauss, D. Preussler, O. J. P. Collett, M. J. D. Esser, C. Jacobs, C. Bollig, W. Koen, and K. Nyangaza, “330  mJ, 2  μm, single frequency, Ho: YLF slab amplifier,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA4.

Davis, R. E.

Dergachev, A.

A. Dergachev, P. F. Moulton, V. Smirnov, and L. Glebov, “High power CW Tm: YLF laser with a holographic output coupler,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2004), paper CThZ3.

Diehl, R.

R. Diehl and G. Brandt, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
[CrossRef]

Donlan, V. L.

I. M. O’hare and V. L. Donlan, “Crystal-field determination for trivalent thulium in yttrium orthoaluminate,” Phys. Rev. B 14, 3732–3743 (1976).
[CrossRef]

Drlik, P.

H. Jelinkova, O. Kohler, M. Nemec, P. Koranda, J. Sulc, V. Kubecek, P. Drlik, M. Miyagi, Y. W. Shi, Y. Matsuura, M. R. Kokta, P. Hrabal, and M. Jelinek, “Comparison of mid infrared lasers effect on ureter tissue,” Laser Phys. Lett. 1, 143–146 (2004).
[CrossRef]

Duan, X. M.

X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm: YLF laser with a volume Bragg grating,” Appl. Phys. B 99, 465–468 (2010).
[CrossRef]

G. Li, B. Q. Yao, X. M. Duan, C. H. Zhang, Y. L. Ju, and Y. Z. Wang, “Thermal analysis and laser performance modeling of dual-end-pumped c-cut CW Tm: YAP laser,” J. Phys. B 43, 205401 (2010).
[CrossRef]

Elder, I. F.

Esser, M. J. D.

W. Koen, C. Bollig, H. Strauss, M. Schellhorn, C. Jacobs, and M. J. D. Esser, “Compact fibre-laser-pumped Ho: YLF oscillator–amplifier system,” Appl. Phys. B 99, 101–106 (2010).
[CrossRef]

E. H. Bernhardi, A. Forbes, C. Bollig, and M. J. D. Esser, “Estimation of thermal fracture limits in quasi-continuous-wave end-pumped lasers through a time-dependent analytical model,” Opt. Express 16, 11115–11123 (2008).
[CrossRef]

H. J. Strauss, D. Preussler, O. J. P. Collett, M. J. D. Esser, C. Jacobs, C. Bollig, W. Koen, and K. Nyangaza, “330  mJ, 2  μm, single frequency, Ho: YLF slab amplifier,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA4.

H. J. Strauss, M. J. D. Esser, G. King, and L. Maweza, “Volume Bragg grating wavelength selected Tm: YLF slab laser operating at 1890  nm,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2012), paper AW4A-20.

Esterowitz, L.

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm: YAlO laser,” IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
[CrossRef]

Ezzo, K. M.

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.

Fan, T. Y.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho: YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

Forbes, A.

Fuhrberg, P.

Glebov, L.

A. Dergachev, P. F. Moulton, V. Smirnov, and L. Glebov, “High power CW Tm: YLF laser with a holographic output coupler,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2004), paper CThZ3.

Gorajek, L.

J. K. Jabczynski, L. Gorajek, W. Zendzian, J. Kwiatkowski, H. Jelinkova, J. Sulc, and M. Nemec, “Actively Q-switched thulium lasers,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (SCIYO, 2010), Chap. 5.

Gorton, E. K.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389–393 (2006).
[CrossRef]

Grasso, R. J.

T. M. Pollack, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd: YLF,” IEEE J. Quantum Electron. 18, 159–163 (1982).
[CrossRef]

Gustafson, E. J.

Gwin, D.

A. C. Sullivan, G. J. Wagner, D. Gwin, R. C. Stoneman, and A. I. R. Malm, “High power Q-switched Tm: YAlO3 lasers,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper WA7.

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Hang, Y.

Hankla, A. K.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. McKinnie, “Tunable infrared laser sources for DIAL,” Proc. SPIE 4723, 147–155 (2002).
[CrossRef]

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Hirth, A.

M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 1455–1464 (2002).
[CrossRef]

Hrabal, P.

H. Jelinkova, O. Kohler, M. Nemec, P. Koranda, J. Sulc, V. Kubecek, P. Drlik, M. Miyagi, Y. W. Shi, Y. Matsuura, M. R. Kokta, P. Hrabal, and M. Jelinek, “Comparison of mid infrared lasers effect on ureter tissue,” Laser Phys. Lett. 1, 143–146 (2004).
[CrossRef]

Huang, C. H.

Huang, M. L.

Huber, G.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho: YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

Ibach, C. R.

Ismail, S.

Izhnin, I. I.

O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+: YAP and Tm3+: YAG micro lasers,” Appl. Phys. B 88, 433–442 (2007).
[CrossRef]

Jabczynski, J. K.

J. K. Jabczynski, L. Gorajek, W. Zendzian, J. Kwiatkowski, H. Jelinkova, J. Sulc, and M. Nemec, “Actively Q-switched thulium lasers,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (SCIYO, 2010), Chap. 5.

Jacobs, C.

W. Koen, C. Bollig, H. Strauss, M. Schellhorn, C. Jacobs, and M. J. D. Esser, “Compact fibre-laser-pumped Ho: YLF oscillator–amplifier system,” Appl. Phys. B 99, 101–106 (2010).
[CrossRef]

H. J. Strauss, D. Preussler, O. J. P. Collett, M. J. D. Esser, C. Jacobs, C. Bollig, W. Koen, and K. Nyangaza, “330  mJ, 2  μm, single frequency, Ho: YLF slab amplifier,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA4.

Jelinek, M.

H. Jelinkova, O. Kohler, M. Nemec, P. Koranda, J. Sulc, V. Kubecek, P. Drlik, M. Miyagi, Y. W. Shi, Y. Matsuura, M. R. Kokta, P. Hrabal, and M. Jelinek, “Comparison of mid infrared lasers effect on ureter tissue,” Laser Phys. Lett. 1, 143–146 (2004).
[CrossRef]

Jelinkova, H.

H. Jelinkova, O. Kohler, M. Nemec, P. Koranda, J. Sulc, V. Kubecek, P. Drlik, M. Miyagi, Y. W. Shi, Y. Matsuura, M. R. Kokta, P. Hrabal, and M. Jelinek, “Comparison of mid infrared lasers effect on ureter tissue,” Laser Phys. Lett. 1, 143–146 (2004).
[CrossRef]

J. K. Jabczynski, L. Gorajek, W. Zendzian, J. Kwiatkowski, H. Jelinkova, J. Sulc, and M. Nemec, “Actively Q-switched thulium lasers,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (SCIYO, 2010), Chap. 5.

Jenssen, H. P.

T. M. Pollack, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd: YLF,” IEEE J. Quantum Electron. 18, 159–163 (1982).
[CrossRef]

H. P. Jenssen and A. Linz, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11, 92–101 (1975).
[CrossRef]

Ju, Y. L.

G. Li, B. Q. Yao, X. M. Duan, C. H. Zhang, Y. L. Ju, and Y. Z. Wang, “Thermal analysis and laser performance modeling of dual-end-pumped c-cut CW Tm: YAP laser,” J. Phys. B 43, 205401 (2010).
[CrossRef]

G. Li, B. Q. Yao, P. B. Meng, Y. L. Ju, and Y. Z. Wang, “Efficient continuous wave and Q-switched operation of a dual-end-pumped c-cut Tm: YAP Laser,” Laser Phys. 20, 1871–1876 (2010).
[CrossRef]

X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm: YLF laser with a volume Bragg grating,” Appl. Phys. B 99, 465–468 (2010).
[CrossRef]

Kavaya, M. J.

Ketteridge, P. A.

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.

Kim, J. W.

King, G.

H. J. Strauss, M. J. D. Esser, G. King, and L. Maweza, “Volume Bragg grating wavelength selected Tm: YLF slab laser operating at 1890  nm,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2012), paper AW4A-20.

Koch, G. J.

Koen, W.

W. Koen, C. Bollig, H. Strauss, M. Schellhorn, C. Jacobs, and M. J. D. Esser, “Compact fibre-laser-pumped Ho: YLF oscillator–amplifier system,” Appl. Phys. B 99, 101–106 (2010).
[CrossRef]

H. J. Strauss, D. Preussler, O. J. P. Collett, M. J. D. Esser, C. Jacobs, C. Bollig, W. Koen, and K. Nyangaza, “330  mJ, 2  μm, single frequency, Ho: YLF slab amplifier,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA4.

Kohler, O.

H. Jelinkova, O. Kohler, M. Nemec, P. Koranda, J. Sulc, V. Kubecek, P. Drlik, M. Miyagi, Y. W. Shi, Y. Matsuura, M. R. Kokta, P. Hrabal, and M. Jelinek, “Comparison of mid infrared lasers effect on ureter tissue,” Laser Phys. Lett. 1, 143–146 (2004).
[CrossRef]

Kokta, M. R.

H. Jelinkova, O. Kohler, M. Nemec, P. Koranda, J. Sulc, V. Kubecek, P. Drlik, M. Miyagi, Y. W. Shi, Y. Matsuura, M. R. Kokta, P. Hrabal, and M. Jelinek, “Comparison of mid infrared lasers effect on ureter tissue,” Laser Phys. Lett. 1, 143–146 (2004).
[CrossRef]

Kong, J.

S. S. Cai, J. Kong, B. Wu, Y. H. Shen, G. J. Zhao, Y. H. Zong, and J. Xu, “Room-temperature cw and pulsed operation of a diode-end-pumped Tm: YAP laser,” Appl. Phys. B 90, 133–136 (2008).
[CrossRef]

Koopmann, P.

Koranda, P.

H. Jelinkova, O. Kohler, M. Nemec, P. Koranda, J. Sulc, V. Kubecek, P. Drlik, M. Miyagi, Y. W. Shi, Y. Matsuura, M. R. Kokta, P. Hrabal, and M. Jelinek, “Comparison of mid infrared lasers effect on ureter tissue,” Laser Phys. Lett. 1, 143–146 (2004).
[CrossRef]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Kubecek, V.

H. Jelinkova, O. Kohler, M. Nemec, P. Koranda, J. Sulc, V. Kubecek, P. Drlik, M. Miyagi, Y. W. Shi, Y. Matsuura, M. R. Kokta, P. Hrabal, and M. Jelinek, “Comparison of mid infrared lasers effect on ureter tissue,” Laser Phys. Lett. 1, 143–146 (2004).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Kwiatkowski, J.

J. K. Jabczynski, L. Gorajek, W. Zendzian, J. Kwiatkowski, H. Jelinkova, J. Sulc, and M. Nemec, “Actively Q-switched thulium lasers,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (SCIYO, 2010), Chap. 5.

Lamrini, S.

Lemons, M. L.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 629–635 (2000).
[CrossRef]

Li, G.

Y. Tian, G. Li, B. Q. Yao, and Y. Z. Wang, “Time-dependent analytical model of thermal effects in continuous-wave end-pumped Tm: YAP lasers,” Appl. Phys. B 103, 107–112 (2011).
[CrossRef]

X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm: YLF laser with a volume Bragg grating,” Appl. Phys. B 99, 465–468 (2010).
[CrossRef]

G. Li, B. Q. Yao, P. B. Meng, Y. L. Ju, and Y. Z. Wang, “Efficient continuous wave and Q-switched operation of a dual-end-pumped c-cut Tm: YAP Laser,” Laser Phys. 20, 1871–1876 (2010).
[CrossRef]

G. Li, B. Q. Yao, X. M. Duan, C. H. Zhang, Y. L. Ju, and Y. Z. Wang, “Thermal analysis and laser performance modeling of dual-end-pumped c-cut CW Tm: YAP laser,” J. Phys. B 43, 205401 (2010).
[CrossRef]

Linz, A.

H. P. Jenssen and A. Linz, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11, 92–101 (1975).
[CrossRef]

D. E. Castleberry and A. Linz, “Measurement of the refractive indices of LiYF4,” Appl. Opt. 14, 2056 (1975).
[CrossRef]

Mackenzie, J. I.

J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient in-band pumped Ho: LuLiF4 2  μm laser,” Opt. Lett. 35, 420–422 (2010).
[CrossRef]

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389–393 (2006).
[CrossRef]

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Malm, A. I. R.

A. C. Sullivan, G. J. Wagner, D. Gwin, R. C. Stoneman, and A. I. R. Malm, “High power Q-switched Tm: YAlO3 lasers,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper WA7.

Marion, J.

J. Marion, “Strengthened solidstate laser materials,” Appl. Phys. Lett. 47, 694–696 (1985).
[CrossRef]

Maßmann, F.

K. Schmidt, C. Reiter, H. Voss, F. Maßmann, and M. Ostermeyer, “High energy 125  mJ Ho: YAG (2.09  μm) MOPA double pass laser system pumped by cw thulium fiber laser (1.9  μm),” in CLEO/Europe and EQEC Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CA3_4.

Matsuura, Y.

H. Jelinkova, O. Kohler, M. Nemec, P. Koranda, J. Sulc, V. Kubecek, P. Drlik, M. Miyagi, Y. W. Shi, Y. Matsuura, M. R. Kokta, P. Hrabal, and M. Jelinek, “Comparison of mid infrared lasers effect on ureter tissue,” Laser Phys. Lett. 1, 143–146 (2004).
[CrossRef]

Maweza, L.

H. J. Strauss, M. J. D. Esser, G. King, and L. Maweza, “Volume Bragg grating wavelength selected Tm: YLF slab laser operating at 1890  nm,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2012), paper AW4A-20.

McKinnie, I. T.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. McKinnie, “Tunable infrared laser sources for DIAL,” Proc. SPIE 4723, 147–155 (2002).
[CrossRef]

Meng, P. B.

G. Li, B. Q. Yao, P. B. Meng, Y. L. Ju, and Y. Z. Wang, “Efficient continuous wave and Q-switched operation of a dual-end-pumped c-cut Tm: YAP Laser,” Laser Phys. 20, 1871–1876 (2010).
[CrossRef]

Mitzscherlich, P.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho: YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

Miyagi, M.

H. Jelinkova, O. Kohler, M. Nemec, P. Koranda, J. Sulc, V. Kubecek, P. Drlik, M. Miyagi, Y. W. Shi, Y. Matsuura, M. R. Kokta, P. Hrabal, and M. Jelinek, “Comparison of mid infrared lasers effect on ureter tissue,” Laser Phys. Lett. 1, 143–146 (2004).
[CrossRef]

Mosto, J. R.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 629–635 (2000).
[CrossRef]

Moulton, P. F.

A. Dergachev, P. F. Moulton, V. Smirnov, and L. Glebov, “High power CW Tm: YLF laser with a holographic output coupler,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2004), paper CThZ3.

Nemec, M.

H. Jelinkova, O. Kohler, M. Nemec, P. Koranda, J. Sulc, V. Kubecek, P. Drlik, M. Miyagi, Y. W. Shi, Y. Matsuura, M. R. Kokta, P. Hrabal, and M. Jelinek, “Comparison of mid infrared lasers effect on ureter tissue,” Laser Phys. Lett. 1, 143–146 (2004).
[CrossRef]

J. K. Jabczynski, L. Gorajek, W. Zendzian, J. Kwiatkowski, H. Jelinkova, J. Sulc, and M. Nemec, “Actively Q-switched thulium lasers,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (SCIYO, 2010), Chap. 5.

Nyangaza, K.

H. J. Strauss, D. Preussler, O. J. P. Collett, M. J. D. Esser, C. Jacobs, C. Bollig, W. Koen, and K. Nyangaza, “330  mJ, 2  μm, single frequency, Ho: YLF slab amplifier,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA4.

O’hare, I. M.

I. M. O’hare and V. L. Donlan, “Crystal-field determination for trivalent thulium in yttrium orthoaluminate,” Phys. Rev. B 14, 3732–3743 (1976).
[CrossRef]

Ostermeyer, M.

K. Schmidt, C. Reiter, H. Voss, F. Maßmann, and M. Ostermeyer, “High energy 125  mJ Ho: YAG (2.09  μm) MOPA double pass laser system pumped by cw thulium fiber laser (1.9  μm),” in CLEO/Europe and EQEC Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CA3_4.

Parisi, D.

Payne, J.

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Petros, M.

Pollack, T. M.

T. M. Pollack, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd: YLF,” IEEE J. Quantum Electron. 18, 159–163 (1982).
[CrossRef]

Pomeranz, L. A.

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.

Preussler, D.

H. J. Strauss, D. Preussler, O. J. P. Collett, M. J. D. Esser, C. Jacobs, C. Bollig, W. Koen, and K. Nyangaza, “330  mJ, 2  μm, single frequency, Ho: YLF slab amplifier,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA4.

Rawle, C. B.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. McKinnie, “Tunable infrared laser sources for DIAL,” Proc. SPIE 4723, 147–155 (2002).
[CrossRef]

Reiter, C.

K. Schmidt, C. Reiter, H. Voss, F. Maßmann, and M. Ostermeyer, “High energy 125  mJ Ho: YAG (2.09  μm) MOPA double pass laser system pumped by cw thulium fiber laser (1.9  μm),” in CLEO/Europe and EQEC Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CA3_4.

Rines, D. M.

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.

Rustad, G.

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645–1656 (1996).
[CrossRef]

Saunders, G. A.

P. Blanchfield and G. A. Saunders, “The elastic constants and acoustic symmetry of LiYF4,” J. Phys. C 12, 4673–4689 (1979).
[CrossRef]

Schäfer, M.

Schellhorn, M.

W. Koen, C. Bollig, H. Strauss, M. Schellhorn, C. Jacobs, and M. J. D. Esser, “Compact fibre-laser-pumped Ho: YLF oscillator–amplifier system,” Appl. Phys. B 99, 101–106 (2010).
[CrossRef]

M. Schellhorn, “High-power diode-pumped Tm: YLF laser,” Appl. Phys. B 91, 71–74 (2008).
[CrossRef]

M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 1455–1464 (2002).
[CrossRef]

Schmidt, K.

K. Schmidt, C. Reiter, H. Voss, F. Maßmann, and M. Ostermeyer, “High energy 125  mJ Ho: YAG (2.09  μm) MOPA double pass laser system pumped by cw thulium fiber laser (1.9  μm),” in CLEO/Europe and EQEC Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CA3_4.

Scholle, K.

Setzler, S. D.

Shen, H. Y.

Shen, Y. H.

S. S. Cai, J. Kong, B. Wu, Y. H. Shen, G. J. Zhao, Y. H. Zong, and J. Xu, “Room-temperature cw and pulsed operation of a diode-end-pumped Tm: YAP laser,” Appl. Phys. B 90, 133–136 (2008).
[CrossRef]

Shepherd, D. P.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389–393 (2006).
[CrossRef]

Shi, Y. W.

H. Jelinkova, O. Kohler, M. Nemec, P. Koranda, J. Sulc, V. Kubecek, P. Drlik, M. Miyagi, Y. W. Shi, Y. Matsuura, M. R. Kokta, P. Hrabal, and M. Jelinek, “Comparison of mid infrared lasers effect on ureter tissue,” Laser Phys. Lett. 1, 143–146 (2004).
[CrossRef]

Singh, U. N.

Smirnov, V.

A. Dergachev, P. F. Moulton, V. Smirnov, and L. Glebov, “High power CW Tm: YLF laser with a holographic output coupler,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2004), paper CThZ3.

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

So, S.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389–393 (2006).
[CrossRef]

Solskii, I. M.

O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+: YAP and Tm3+: YAG micro lasers,” Appl. Phys. B 88, 433–442 (2007).
[CrossRef]

Stenersen, K.

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645–1656 (1996).
[CrossRef]

Stoneman, R. C.

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm: YAlO laser,” IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
[CrossRef]

A. C. Sullivan, G. J. Wagner, D. Gwin, R. C. Stoneman, and A. I. R. Malm, “High power Q-switched Tm: YAlO3 lasers,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper WA7.

Strauss, H.

W. Koen, C. Bollig, H. Strauss, M. Schellhorn, C. Jacobs, and M. J. D. Esser, “Compact fibre-laser-pumped Ho: YLF oscillator–amplifier system,” Appl. Phys. B 99, 101–106 (2010).
[CrossRef]

Strauss, H. J.

H. J. Strauss, D. Preussler, O. J. P. Collett, M. J. D. Esser, C. Jacobs, C. Bollig, W. Koen, and K. Nyangaza, “330  mJ, 2  μm, single frequency, Ho: YLF slab amplifier,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA4.

H. J. Strauss, M. J. D. Esser, G. King, and L. Maweza, “Volume Bragg grating wavelength selected Tm: YLF slab laser operating at 1890  nm,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2012), paper AW4A-20.

Sugak, D. Y.

O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+: YAP and Tm3+: YAG micro lasers,” Appl. Phys. B 88, 433–442 (2007).
[CrossRef]

Sulc, J.

H. Jelinkova, O. Kohler, M. Nemec, P. Koranda, J. Sulc, V. Kubecek, P. Drlik, M. Miyagi, Y. W. Shi, Y. Matsuura, M. R. Kokta, P. Hrabal, and M. Jelinek, “Comparison of mid infrared lasers effect on ureter tissue,” Laser Phys. Lett. 1, 143–146 (2004).
[CrossRef]

J. K. Jabczynski, L. Gorajek, W. Zendzian, J. Kwiatkowski, H. Jelinkova, J. Sulc, and M. Nemec, “Actively Q-switched thulium lasers,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (SCIYO, 2010), Chap. 5.

Sullivan, A. C.

A. C. Sullivan, G. J. Wagner, D. Gwin, R. C. Stoneman, and A. I. R. Malm, “High power Q-switched Tm: YAlO3 lasers,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper WA7.

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Tian, Y.

Y. Tian, G. Li, B. Q. Yao, and Y. Z. Wang, “Time-dependent analytical model of thermal effects in continuous-wave end-pumped Tm: YAP lasers,” Appl. Phys. B 103, 107–112 (2011).
[CrossRef]

Tonelli, M.

Ubizskii, S. B.

O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+: YAP and Tm3+: YAG micro lasers,” Appl. Phys. B 88, 433–442 (2007).
[CrossRef]

Vakiv, M. M.

O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+: YAP and Tm3+: YAG micro lasers,” Appl. Phys. B 88, 433–442 (2007).
[CrossRef]

Vay, S.

Veronesi, S.

Voss, H.

K. Schmidt, C. Reiter, H. Voss, F. Maßmann, and M. Ostermeyer, “High energy 125  mJ Ho: YAG (2.09  μm) MOPA double pass laser system pumped by cw thulium fiber laser (1.9  μm),” in CLEO/Europe and EQEC Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CA3_4.

Wagner, G. J.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. McKinnie, “Tunable infrared laser sources for DIAL,” Proc. SPIE 4723, 147–155 (2002).
[CrossRef]

A. C. Sullivan, G. J. Wagner, D. Gwin, R. C. Stoneman, and A. I. R. Malm, “High power Q-switched Tm: YAlO3 lasers,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper WA7.

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

Wang, T. H.

X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm: YLF laser with a volume Bragg grating,” Appl. Phys. B 99, 465–468 (2010).
[CrossRef]

Wang, Y. Z.

Y. Tian, G. Li, B. Q. Yao, and Y. Z. Wang, “Time-dependent analytical model of thermal effects in continuous-wave end-pumped Tm: YAP lasers,” Appl. Phys. B 103, 107–112 (2011).
[CrossRef]

X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm: YLF laser with a volume Bragg grating,” Appl. Phys. B 99, 465–468 (2010).
[CrossRef]

G. Li, B. Q. Yao, P. B. Meng, Y. L. Ju, and Y. Z. Wang, “Efficient continuous wave and Q-switched operation of a dual-end-pumped c-cut Tm: YAP Laser,” Laser Phys. 20, 1871–1876 (2010).
[CrossRef]

G. Li, B. Q. Yao, X. M. Duan, C. H. Zhang, Y. L. Ju, and Y. Z. Wang, “Thermal analysis and laser performance modeling of dual-end-pumped c-cut CW Tm: YAP laser,” J. Phys. B 43, 205401 (2010).
[CrossRef]

Wing, W. F.

T. M. Pollack, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd: YLF,” IEEE J. Quantum Electron. 18, 159–163 (1982).
[CrossRef]

Wu, B.

S. S. Cai, J. Kong, B. Wu, Y. H. Shen, G. J. Zhao, Y. H. Zong, and J. Xu, “Room-temperature cw and pulsed operation of a diode-end-pumped Tm: YAP laser,” Appl. Phys. B 90, 133–136 (2008).
[CrossRef]

Xu, H.

Xu, J.

S. S. Cai, J. Kong, B. Wu, Y. H. Shen, G. J. Zhao, Y. H. Zong, and J. Xu, “Room-temperature cw and pulsed operation of a diode-end-pumped Tm: YAP laser,” Appl. Phys. B 90, 133–136 (2008).
[CrossRef]

Xu, J. Q.

Yao, B. Q.

Y. Tian, G. Li, B. Q. Yao, and Y. Z. Wang, “Time-dependent analytical model of thermal effects in continuous-wave end-pumped Tm: YAP lasers,” Appl. Phys. B 103, 107–112 (2011).
[CrossRef]

X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm: YLF laser with a volume Bragg grating,” Appl. Phys. B 99, 465–468 (2010).
[CrossRef]

G. Li, B. Q. Yao, P. B. Meng, Y. L. Ju, and Y. Z. Wang, “Efficient continuous wave and Q-switched operation of a dual-end-pumped c-cut Tm: YAP Laser,” Laser Phys. 20, 1871–1876 (2010).
[CrossRef]

G. Li, B. Q. Yao, X. M. Duan, C. H. Zhang, Y. L. Ju, and Y. Z. Wang, “Thermal analysis and laser performance modeling of dual-end-pumped c-cut CW Tm: YAP laser,” J. Phys. B 43, 205401 (2010).
[CrossRef]

Yu, G. F.

Yu, J.

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Zendzian, W.

J. K. Jabczynski, L. Gorajek, W. Zendzian, J. Kwiatkowski, H. Jelinkova, J. Sulc, and M. Nemec, “Actively Q-switched thulium lasers,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (SCIYO, 2010), Chap. 5.

Zeng, R. R.

Zeng, Z. D.

Zhang, C. H.

G. Li, B. Q. Yao, X. M. Duan, C. H. Zhang, Y. L. Ju, and Y. Z. Wang, “Thermal analysis and laser performance modeling of dual-end-pumped c-cut CW Tm: YAP laser,” J. Phys. B 43, 205401 (2010).
[CrossRef]

Zhang, S. Y.

Zhao, G. J.

X. J. Cheng, J. Q. Xu, Y. Hang, G. J. Zhao, and S. Y. Zhang, “High-power diode-end-pumped Tm: YAP and Tm: YLF slab lasers,” Chin. Opt. Lett. 9, 091406 (2011).
[CrossRef]

S. S. Cai, J. Kong, B. Wu, Y. H. Shen, G. J. Zhao, Y. H. Zong, and J. Xu, “Room-temperature cw and pulsed operation of a diode-end-pumped Tm: YAP laser,” Appl. Phys. B 90, 133–136 (2008).
[CrossRef]

Zhou, Y. P.

Zong, Y. H.

S. S. Cai, J. Kong, B. Wu, Y. H. Shen, G. J. Zhao, Y. H. Zong, and J. Xu, “Room-temperature cw and pulsed operation of a diode-end-pumped Tm: YAP laser,” Appl. Phys. B 90, 133–136 (2008).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (7)

S. S. Cai, J. Kong, B. Wu, Y. H. Shen, G. J. Zhao, Y. H. Zong, and J. Xu, “Room-temperature cw and pulsed operation of a diode-end-pumped Tm: YAP laser,” Appl. Phys. B 90, 133–136 (2008).
[CrossRef]

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm: YLF lasers,” Appl. Phys. B 84, 389–393 (2006).
[CrossRef]

O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii, “The comparative analysis and optimization of the free-running Tm3+: YAP and Tm3+: YAG micro lasers,” Appl. Phys. B 88, 433–442 (2007).
[CrossRef]

Y. Tian, G. Li, B. Q. Yao, and Y. Z. Wang, “Time-dependent analytical model of thermal effects in continuous-wave end-pumped Tm: YAP lasers,” Appl. Phys. B 103, 107–112 (2011).
[CrossRef]

M. Schellhorn, “High-power diode-pumped Tm: YLF laser,” Appl. Phys. B 91, 71–74 (2008).
[CrossRef]

X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, and Y. Z. Wang, “Stable output, high power diode-pumped Tm: YLF laser with a volume Bragg grating,” Appl. Phys. B 99, 465–468 (2010).
[CrossRef]

W. Koen, C. Bollig, H. Strauss, M. Schellhorn, C. Jacobs, and M. J. D. Esser, “Compact fibre-laser-pumped Ho: YLF oscillator–amplifier system,” Appl. Phys. B 99, 101–106 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

J. Marion, “Strengthened solidstate laser materials,” Appl. Phys. Lett. 47, 694–696 (1985).
[CrossRef]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (5)

M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 1455–1464 (2002).
[CrossRef]

T. M. Pollack, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd: YLF,” IEEE J. Quantum Electron. 18, 159–163 (1982).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho: YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645–1656 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm: YAlO laser,” IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
[CrossRef]

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 629–635 (2000).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

J. Appl. Phys. (1)

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[CrossRef]

J. Phys. B (1)

G. Li, B. Q. Yao, X. M. Duan, C. H. Zhang, Y. L. Ju, and Y. Z. Wang, “Thermal analysis and laser performance modeling of dual-end-pumped c-cut CW Tm: YAP laser,” J. Phys. B 43, 205401 (2010).
[CrossRef]

J. Phys. C (1)

P. Blanchfield and G. A. Saunders, “The elastic constants and acoustic symmetry of LiYF4,” J. Phys. C 12, 4673–4689 (1979).
[CrossRef]

Laser Phys. (1)

G. Li, B. Q. Yao, P. B. Meng, Y. L. Ju, and Y. Z. Wang, “Efficient continuous wave and Q-switched operation of a dual-end-pumped c-cut Tm: YAP Laser,” Laser Phys. 20, 1871–1876 (2010).
[CrossRef]

Laser Phys. Lett. (1)

H. Jelinkova, O. Kohler, M. Nemec, P. Koranda, J. Sulc, V. Kubecek, P. Drlik, M. Miyagi, Y. W. Shi, Y. Matsuura, M. R. Kokta, P. Hrabal, and M. Jelinek, “Comparison of mid infrared lasers effect on ureter tissue,” Laser Phys. Lett. 1, 143–146 (2004).
[CrossRef]

Mater. Res. Bull. (1)

R. Diehl and G. Brandt, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (2)

I. M. O’hare and V. L. Donlan, “Crystal-field determination for trivalent thulium in yttrium orthoaluminate,” Phys. Rev. B 14, 3732–3743 (1976).
[CrossRef]

H. P. Jenssen and A. Linz, “Analysis of the optical spectrum of Tm3+ in LiYF4,” Phys. Rev. B 11, 92–101 (1975).
[CrossRef]

Proc. SPIE (1)

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. McKinnie, “Tunable infrared laser sources for DIAL,” Proc. SPIE 4723, 147–155 (2002).
[CrossRef]

Other (7)

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “Tm:YAlO3 laser pumped ZGP mid-IR source,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.

A. C. Sullivan, G. J. Wagner, D. Gwin, R. C. Stoneman, and A. I. R. Malm, “High power Q-switched Tm: YAlO3 lasers,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper WA7.

H. J. Strauss, D. Preussler, O. J. P. Collett, M. J. D. Esser, C. Jacobs, C. Bollig, W. Koen, and K. Nyangaza, “330  mJ, 2  μm, single frequency, Ho: YLF slab amplifier,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA4.

K. Schmidt, C. Reiter, H. Voss, F. Maßmann, and M. Ostermeyer, “High energy 125  mJ Ho: YAG (2.09  μm) MOPA double pass laser system pumped by cw thulium fiber laser (1.9  μm),” in CLEO/Europe and EQEC Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CA3_4.

A. Dergachev, P. F. Moulton, V. Smirnov, and L. Glebov, “High power CW Tm: YLF laser with a holographic output coupler,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2004), paper CThZ3.

H. J. Strauss, M. J. D. Esser, G. King, and L. Maweza, “Volume Bragg grating wavelength selected Tm: YLF slab laser operating at 1890  nm,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2012), paper AW4A-20.

J. K. Jabczynski, L. Gorajek, W. Zendzian, J. Kwiatkowski, H. Jelinkova, J. Sulc, and M. Nemec, “Actively Q-switched thulium lasers,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (SCIYO, 2010), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Gain spectrum of Tm:YAP for Ea polarization under various cavity output mirror transmissions with (a) N·l=8.1, (b) N·l=14, (c) N·l=28, and (d) N·l=42.

Fig. 2.
Fig. 2.

Gain spectrum of Tm:YAP for Ec polarization under various cavity output mirror transmissions with (a) N·l=8.1 and (b) N·l=14.

Fig. 3.
Fig. 3.

Gain spectrum of Tm:YLF for Ea under various cavity output mirror transmissions with (a) N·l=8 and (b) N·l=42.

Fig. 4.
Fig. 4.

Gain spectrum of Tm:YLF for Ec under various cavity output mirror transmissions with (a) N·l=8 and (b) N·l=42.

Fig. 5.
Fig. 5.

Calculated steady-state inversion parameter β for 1.91 μm (Ea) and 1.89 μm (Ec) of Tm:YLF as a function of output mirror transmission Toc under (a) N·l=8 and (b) N·l=42.

Fig. 6.
Fig. 6.

Simulation of the laser output performance for (a) Tm:YLF with a axis emission at 1.91 μm, a axis emission at 1.94 μm, and c axis emission at 1.89 μm, and (b) Tm:YAP with a axis emission at 1.99 μm, a axis emission at 1.94 μm, and c axis emission at 1.94 μm, respectively.

Fig. 7.
Fig. 7.

Simulation of the laser output power (a) under 60 W total incident pump power, and slope efficiency (b) for Tm:YLF with a axis emission at 1.91 μm, a axis emission at 1.94 μm, and c axis emission at 1.89 μm as a function of output mirror transmission.

Fig. 8.
Fig. 8.

Simulation of the laser output power (a) under 60 W total incident pump power, and slope efficiency (b) for Tm:YAP with a axis emission at 1.99 μm, a axis emission at 1.94 μm, and c axis emission at 1.94 μm as a function of output mirror transmission.

Tables (3)

Tables Icon

Table 1. Parameters of Tm:YAP and Tm:YLF Laser Crystal

Tables Icon

Table 2. Parameters for Gain (G) Spectrum Calculations in Tm:YAP and Tm:YLF

Tables Icon

Table 3. Parameters for Tm:YAP and Tm:YLF Laser Performance Modeling

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g=N2σem(λ)(NN2)σabs(λ),
σem(λ)=σabs(λ)ZgndZexcexp[(EZL1λ)hc0/kbT],
Gg·l=(N·l)σem(λ)·[β(1β)ZexcZgndexp((EZL1λ)hc0/kbT)]=ln[(1Toc)Tsp2]/2,
dN2dt=c0nσabs(λp)ηp(Pf+Pr)N1c0nσem(λl)(Sf+Sr)[N2f1f2N1]N2τ2kΣTmN22,

Metrics