Abstract

The effect of self-absorption on emission intensity distributions can be used for species concentration measurements. A calculation model is developed based on the Beer–Lambert law to quantify this effect. And then, a calibration-free measurement method is proposed on the basis of this model by establishing the relationship between gas concentration and absorption strength. The effect of collision parameters and rotational temperature on the method is also discussed. The proposed method is verified by investigating the nitric oxide emission bands (A2+X2) that are generated by a pulsed corona discharge at various gas concentrations. Experiment results coincide well with the expectations, thus confirming the precision and accuracy of the proposed measurement method.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. M. Peng, Y. J. Ding, X. D. Zhai, Q. S. Yang, Z. L. Jiang, “Spectral characteristics of CN radical (B→X) and its application in determination of rotational and vibrational temperatures of plasma,” Chin. Phys. Lett. 28, 044703 (2011).
    [CrossRef]
  2. C. O. Laux, T. G. Spence, C. H. Kruger, R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12, 125–138 (2003).
    [CrossRef]
  3. C. O. Laux, R. J. Gessman, C. H. Kruger, F. Roux, F. Michaud, S. P. Davis, “Rotational temperature measurements in air and nitrogen plasmas using the first negative system of N2+,” J. Quant. Spectrosc. Radiat. Transfer 68, 473–482 (2001).
    [CrossRef]
  4. Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, V. Foltin, V. Martišovitš, M. Morvova, “Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications,” J. Mol. Spectrosc. 243, 194–201 (2007).
    [CrossRef]
  5. Q. S. Yang, J. H. Sun, N. Y. Zhu, “Determination of temperatures using CH radical emission spectroscopy,” Chin. Phys. Lett. 29, 104707 (2012).
    [CrossRef]
  6. D. Carinhana, L. G. Barreta, C. A. U. J. Rocha, A. M. Dos Santosa, C. A. Bertranb, “Determination of liquefied petroleum flame temperatures using emission spectroscopy,” J. Brazilian Chem. Soc. 19, 1326–1335 (2008).
    [CrossRef]
  7. N. Omenetto, S. Nikdel, J. D. Bradshaw, M. S. Epstein, R. D. Reeves, J. D. Winefordner, “Diagnostic and analytical studies of the inductively coupled plasma by atomic fluorescence spectrometry,” Anal. Chem. 51, 1521–1525 (1979).
    [CrossRef]
  8. D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 339–353 (2002).
    [CrossRef]
  9. A. D. Dakashev, S. V. Pavlov, K. A. Stancheva, “Flame atomic absorption spectrometry based on self-absorption in the flame and using the flame as a light emission source,” Anal. Chem. 2, 37–40 (2012).
  10. D. Liu, A. L. Pan, G. Xu, Y. Bai, X. Zhu, B. S. Zou, “Self-absorption effect in the spatial resolved spectra of CdS nano-ribbon optical waveguide observed by near-field spectroscopy,” Opt. Rev. 13, 235–238 (2006).
    [CrossRef]
  11. F. Bredice, F. Borges, H. Sobral, M. Villagran-Muniz, H. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 61, 1294–1303 (2006).
    [CrossRef]
  12. X. D. Zhai, Y. J. Ding, Z. M. Peng, R. Luo, “Concentration measurement of NO using self-absorption spectroscopy of the γ band system in a pulsed corona discharge,” Appl. Opt. 51, 4605–4611 (2012).
    [CrossRef]
  13. P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 57, 581–589 (1997).
    [CrossRef]
  14. J. Luque, D. R. Crosley, “LIFBASE: database and spectral simulation for diatomic molecules,” http://www.sri.com/psd/lifbase/ .
  15. G. Herzberg, J. W. T. Spinks, Molecular Spectra and Molecular Structure (Prentice-Hall, 1966).
  16. T. B. Settersten, B. D. Patterson, W. H. Humphries, “Radiative lifetimes of NO A2Σ+ (v′ = 0, 1, 2) and the electronic transition moment of the A2Σ+-X2Π system,” J. Chem. Phys. 131, 104309 (2009).
    [CrossRef]
  17. J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A2Δ–X2Π system,” J. Chem. Phys. 104, 2146–2155 (1996).
    [CrossRef]
  18. A. Velasco, E. Bustos, I. Martín, C. Lavín, “Intensities of vibronic transitions for the main bands observed in the electronic spectrum of atmospherically relevant nitric oxide,” J. Phys. Chem. A 106, 6401–6405 (2002).
    [CrossRef]
  19. Y. Y. Liu, J. L. Lin, G. M. Huang, Y. Q. Guo, C. X. Duan, “Simple empirical analytical approximation to the Voigt profile,” J. Opt. Soc. Am. B 18, 666–672 (2001).
    [CrossRef]
  20. H. Trad, P. Higelin, N. Djebaïli-Chaumeix, C. Mounaim-Rousselle, “Experimental study and calculations of nitric oxide absorption in the γ(0, 0) and γ(1, 0) bands for strong temperature conditions,” J. Quant. Spectrosc. Radiat. Transfer 90, 275–289 (2005).
    [CrossRef]
  21. U. Visentini, G. Cristoforetti, S. Legnaioli, A. Salvetti, E. Tognoni, V. Palleschi, “Accurate measurement of magnesium content in alpha-olefins by laser induced breakdown spectroscopy (LIBS) technique,” Optoelectron. Lett. 3, 222–226 (2007).
    [CrossRef]

2012 (3)

Q. S. Yang, J. H. Sun, N. Y. Zhu, “Determination of temperatures using CH radical emission spectroscopy,” Chin. Phys. Lett. 29, 104707 (2012).
[CrossRef]

A. D. Dakashev, S. V. Pavlov, K. A. Stancheva, “Flame atomic absorption spectrometry based on self-absorption in the flame and using the flame as a light emission source,” Anal. Chem. 2, 37–40 (2012).

X. D. Zhai, Y. J. Ding, Z. M. Peng, R. Luo, “Concentration measurement of NO using self-absorption spectroscopy of the γ band system in a pulsed corona discharge,” Appl. Opt. 51, 4605–4611 (2012).
[CrossRef]

2011 (1)

Z. M. Peng, Y. J. Ding, X. D. Zhai, Q. S. Yang, Z. L. Jiang, “Spectral characteristics of CN radical (B→X) and its application in determination of rotational and vibrational temperatures of plasma,” Chin. Phys. Lett. 28, 044703 (2011).
[CrossRef]

2009 (1)

T. B. Settersten, B. D. Patterson, W. H. Humphries, “Radiative lifetimes of NO A2Σ+ (v′ = 0, 1, 2) and the electronic transition moment of the A2Σ+-X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

2008 (1)

D. Carinhana, L. G. Barreta, C. A. U. J. Rocha, A. M. Dos Santosa, C. A. Bertranb, “Determination of liquefied petroleum flame temperatures using emission spectroscopy,” J. Brazilian Chem. Soc. 19, 1326–1335 (2008).
[CrossRef]

2007 (2)

Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, V. Foltin, V. Martišovitš, M. Morvova, “Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications,” J. Mol. Spectrosc. 243, 194–201 (2007).
[CrossRef]

U. Visentini, G. Cristoforetti, S. Legnaioli, A. Salvetti, E. Tognoni, V. Palleschi, “Accurate measurement of magnesium content in alpha-olefins by laser induced breakdown spectroscopy (LIBS) technique,” Optoelectron. Lett. 3, 222–226 (2007).
[CrossRef]

2006 (2)

D. Liu, A. L. Pan, G. Xu, Y. Bai, X. Zhu, B. S. Zou, “Self-absorption effect in the spatial resolved spectra of CdS nano-ribbon optical waveguide observed by near-field spectroscopy,” Opt. Rev. 13, 235–238 (2006).
[CrossRef]

F. Bredice, F. Borges, H. Sobral, M. Villagran-Muniz, H. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 61, 1294–1303 (2006).
[CrossRef]

2005 (1)

H. Trad, P. Higelin, N. Djebaïli-Chaumeix, C. Mounaim-Rousselle, “Experimental study and calculations of nitric oxide absorption in the γ(0, 0) and γ(1, 0) bands for strong temperature conditions,” J. Quant. Spectrosc. Radiat. Transfer 90, 275–289 (2005).
[CrossRef]

2003 (1)

C. O. Laux, T. G. Spence, C. H. Kruger, R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12, 125–138 (2003).
[CrossRef]

2002 (2)

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 339–353 (2002).
[CrossRef]

A. Velasco, E. Bustos, I. Martín, C. Lavín, “Intensities of vibronic transitions for the main bands observed in the electronic spectrum of atmospherically relevant nitric oxide,” J. Phys. Chem. A 106, 6401–6405 (2002).
[CrossRef]

2001 (2)

Y. Y. Liu, J. L. Lin, G. M. Huang, Y. Q. Guo, C. X. Duan, “Simple empirical analytical approximation to the Voigt profile,” J. Opt. Soc. Am. B 18, 666–672 (2001).
[CrossRef]

C. O. Laux, R. J. Gessman, C. H. Kruger, F. Roux, F. Michaud, S. P. Davis, “Rotational temperature measurements in air and nitrogen plasmas using the first negative system of N2+,” J. Quant. Spectrosc. Radiat. Transfer 68, 473–482 (2001).
[CrossRef]

1997 (1)

P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 57, 581–589 (1997).
[CrossRef]

1996 (1)

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A2Δ–X2Π system,” J. Chem. Phys. 104, 2146–2155 (1996).
[CrossRef]

1979 (1)

N. Omenetto, S. Nikdel, J. D. Bradshaw, M. S. Epstein, R. D. Reeves, J. D. Winefordner, “Diagnostic and analytical studies of the inductively coupled plasma by atomic fluorescence spectrometry,” Anal. Chem. 51, 1521–1525 (1979).
[CrossRef]

Bai, Y.

D. Liu, A. L. Pan, G. Xu, Y. Bai, X. Zhu, B. S. Zou, “Self-absorption effect in the spatial resolved spectra of CdS nano-ribbon optical waveguide observed by near-field spectroscopy,” Opt. Rev. 13, 235–238 (2006).
[CrossRef]

Barreta, L. G.

D. Carinhana, L. G. Barreta, C. A. U. J. Rocha, A. M. Dos Santosa, C. A. Bertranb, “Determination of liquefied petroleum flame temperatures using emission spectroscopy,” J. Brazilian Chem. Soc. 19, 1326–1335 (2008).
[CrossRef]

Bertranb, C. A.

D. Carinhana, L. G. Barreta, C. A. U. J. Rocha, A. M. Dos Santosa, C. A. Bertranb, “Determination of liquefied petroleum flame temperatures using emission spectroscopy,” J. Brazilian Chem. Soc. 19, 1326–1335 (2008).
[CrossRef]

Borges, F.

F. Bredice, F. Borges, H. Sobral, M. Villagran-Muniz, H. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 61, 1294–1303 (2006).
[CrossRef]

Bradshaw, J. D.

N. Omenetto, S. Nikdel, J. D. Bradshaw, M. S. Epstein, R. D. Reeves, J. D. Winefordner, “Diagnostic and analytical studies of the inductively coupled plasma by atomic fluorescence spectrometry,” Anal. Chem. 51, 1521–1525 (1979).
[CrossRef]

Bredice, F.

F. Bredice, F. Borges, H. Sobral, M. Villagran-Muniz, H. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 61, 1294–1303 (2006).
[CrossRef]

Bulajic, D.

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 339–353 (2002).
[CrossRef]

Bustos, E.

A. Velasco, E. Bustos, I. Martín, C. Lavín, “Intensities of vibronic transitions for the main bands observed in the electronic spectrum of atmospherically relevant nitric oxide,” J. Phys. Chem. A 106, 6401–6405 (2002).
[CrossRef]

Carinhana, D.

D. Carinhana, L. G. Barreta, C. A. U. J. Rocha, A. M. Dos Santosa, C. A. Bertranb, “Determination of liquefied petroleum flame temperatures using emission spectroscopy,” J. Brazilian Chem. Soc. 19, 1326–1335 (2008).
[CrossRef]

Corsi, M.

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 339–353 (2002).
[CrossRef]

Cristoforetti, G.

U. Visentini, G. Cristoforetti, S. Legnaioli, A. Salvetti, E. Tognoni, V. Palleschi, “Accurate measurement of magnesium content in alpha-olefins by laser induced breakdown spectroscopy (LIBS) technique,” Optoelectron. Lett. 3, 222–226 (2007).
[CrossRef]

F. Bredice, F. Borges, H. Sobral, M. Villagran-Muniz, H. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 61, 1294–1303 (2006).
[CrossRef]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 339–353 (2002).
[CrossRef]

Crosley, D. R.

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A2Δ–X2Π system,” J. Chem. Phys. 104, 2146–2155 (1996).
[CrossRef]

Dakashev, A. D.

A. D. Dakashev, S. V. Pavlov, K. A. Stancheva, “Flame atomic absorption spectrometry based on self-absorption in the flame and using the flame as a light emission source,” Anal. Chem. 2, 37–40 (2012).

Davis, S. P.

C. O. Laux, R. J. Gessman, C. H. Kruger, F. Roux, F. Michaud, S. P. Davis, “Rotational temperature measurements in air and nitrogen plasmas using the first negative system of N2+,” J. Quant. Spectrosc. Radiat. Transfer 68, 473–482 (2001).
[CrossRef]

Di Rocco, H.

F. Bredice, F. Borges, H. Sobral, M. Villagran-Muniz, H. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 61, 1294–1303 (2006).
[CrossRef]

Ding, Y. J.

X. D. Zhai, Y. J. Ding, Z. M. Peng, R. Luo, “Concentration measurement of NO using self-absorption spectroscopy of the γ band system in a pulsed corona discharge,” Appl. Opt. 51, 4605–4611 (2012).
[CrossRef]

Z. M. Peng, Y. J. Ding, X. D. Zhai, Q. S. Yang, Z. L. Jiang, “Spectral characteristics of CN radical (B→X) and its application in determination of rotational and vibrational temperatures of plasma,” Chin. Phys. Lett. 28, 044703 (2011).
[CrossRef]

Djebaïli-Chaumeix, N.

H. Trad, P. Higelin, N. Djebaïli-Chaumeix, C. Mounaim-Rousselle, “Experimental study and calculations of nitric oxide absorption in the γ(0, 0) and γ(1, 0) bands for strong temperature conditions,” J. Quant. Spectrosc. Radiat. Transfer 90, 275–289 (2005).
[CrossRef]

Dos Santosa, A. M.

D. Carinhana, L. G. Barreta, C. A. U. J. Rocha, A. M. Dos Santosa, C. A. Bertranb, “Determination of liquefied petroleum flame temperatures using emission spectroscopy,” J. Brazilian Chem. Soc. 19, 1326–1335 (2008).
[CrossRef]

Duan, C. X.

Epstein, M. S.

N. Omenetto, S. Nikdel, J. D. Bradshaw, M. S. Epstein, R. D. Reeves, J. D. Winefordner, “Diagnostic and analytical studies of the inductively coupled plasma by atomic fluorescence spectrometry,” Anal. Chem. 51, 1521–1525 (1979).
[CrossRef]

Foltin, V.

Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, V. Foltin, V. Martišovitš, M. Morvova, “Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications,” J. Mol. Spectrosc. 243, 194–201 (2007).
[CrossRef]

Gessman, R. J.

C. O. Laux, R. J. Gessman, C. H. Kruger, F. Roux, F. Michaud, S. P. Davis, “Rotational temperature measurements in air and nitrogen plasmas using the first negative system of N2+,” J. Quant. Spectrosc. Radiat. Transfer 68, 473–482 (2001).
[CrossRef]

Guo, Y. Q.

Hensel, K.

Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, V. Foltin, V. Martišovitš, M. Morvova, “Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications,” J. Mol. Spectrosc. 243, 194–201 (2007).
[CrossRef]

Herzberg, G.

G. Herzberg, J. W. T. Spinks, Molecular Spectra and Molecular Structure (Prentice-Hall, 1966).

Higelin, P.

H. Trad, P. Higelin, N. Djebaïli-Chaumeix, C. Mounaim-Rousselle, “Experimental study and calculations of nitric oxide absorption in the γ(0, 0) and γ(1, 0) bands for strong temperature conditions,” J. Quant. Spectrosc. Radiat. Transfer 90, 275–289 (2005).
[CrossRef]

Huang, G. M.

Humphries, W. H.

T. B. Settersten, B. D. Patterson, W. H. Humphries, “Radiative lifetimes of NO A2Σ+ (v′ = 0, 1, 2) and the electronic transition moment of the A2Σ+-X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

Janda, M.

Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, V. Foltin, V. Martišovitš, M. Morvova, “Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications,” J. Mol. Spectrosc. 243, 194–201 (2007).
[CrossRef]

Jedlovský, I.

Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, V. Foltin, V. Martišovitš, M. Morvova, “Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications,” J. Mol. Spectrosc. 243, 194–201 (2007).
[CrossRef]

Jiang, Z. L.

Z. M. Peng, Y. J. Ding, X. D. Zhai, Q. S. Yang, Z. L. Jiang, “Spectral characteristics of CN radical (B→X) and its application in determination of rotational and vibrational temperatures of plasma,” Chin. Phys. Lett. 28, 044703 (2011).
[CrossRef]

Kruger, C. H.

C. O. Laux, T. G. Spence, C. H. Kruger, R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12, 125–138 (2003).
[CrossRef]

C. O. Laux, R. J. Gessman, C. H. Kruger, F. Roux, F. Michaud, S. P. Davis, “Rotational temperature measurements in air and nitrogen plasmas using the first negative system of N2+,” J. Quant. Spectrosc. Radiat. Transfer 68, 473–482 (2001).
[CrossRef]

Laux, C. O.

C. O. Laux, T. G. Spence, C. H. Kruger, R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12, 125–138 (2003).
[CrossRef]

C. O. Laux, R. J. Gessman, C. H. Kruger, F. Roux, F. Michaud, S. P. Davis, “Rotational temperature measurements in air and nitrogen plasmas using the first negative system of N2+,” J. Quant. Spectrosc. Radiat. Transfer 68, 473–482 (2001).
[CrossRef]

Lavín, C.

A. Velasco, E. Bustos, I. Martín, C. Lavín, “Intensities of vibronic transitions for the main bands observed in the electronic spectrum of atmospherically relevant nitric oxide,” J. Phys. Chem. A 106, 6401–6405 (2002).
[CrossRef]

Legnaioli, S.

U. Visentini, G. Cristoforetti, S. Legnaioli, A. Salvetti, E. Tognoni, V. Palleschi, “Accurate measurement of magnesium content in alpha-olefins by laser induced breakdown spectroscopy (LIBS) technique,” Optoelectron. Lett. 3, 222–226 (2007).
[CrossRef]

F. Bredice, F. Borges, H. Sobral, M. Villagran-Muniz, H. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 61, 1294–1303 (2006).
[CrossRef]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 339–353 (2002).
[CrossRef]

Leštinská, L.

Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, V. Foltin, V. Martišovitš, M. Morvova, “Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications,” J. Mol. Spectrosc. 243, 194–201 (2007).
[CrossRef]

Lin, J. L.

Liu, D.

D. Liu, A. L. Pan, G. Xu, Y. Bai, X. Zhu, B. S. Zou, “Self-absorption effect in the spatial resolved spectra of CdS nano-ribbon optical waveguide observed by near-field spectroscopy,” Opt. Rev. 13, 235–238 (2006).
[CrossRef]

Liu, Y. Y.

Luo, R.

Luque, J.

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A2Δ–X2Π system,” J. Chem. Phys. 104, 2146–2155 (1996).
[CrossRef]

Machala, Z.

Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, V. Foltin, V. Martišovitš, M. Morvova, “Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications,” J. Mol. Spectrosc. 243, 194–201 (2007).
[CrossRef]

Martín, I.

A. Velasco, E. Bustos, I. Martín, C. Lavín, “Intensities of vibronic transitions for the main bands observed in the electronic spectrum of atmospherically relevant nitric oxide,” J. Phys. Chem. A 106, 6401–6405 (2002).
[CrossRef]

Martišovitš, V.

Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, V. Foltin, V. Martišovitš, M. Morvova, “Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications,” J. Mol. Spectrosc. 243, 194–201 (2007).
[CrossRef]

Michaud, F.

C. O. Laux, R. J. Gessman, C. H. Kruger, F. Roux, F. Michaud, S. P. Davis, “Rotational temperature measurements in air and nitrogen plasmas using the first negative system of N2+,” J. Quant. Spectrosc. Radiat. Transfer 68, 473–482 (2001).
[CrossRef]

Morvova, M.

Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, V. Foltin, V. Martišovitš, M. Morvova, “Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications,” J. Mol. Spectrosc. 243, 194–201 (2007).
[CrossRef]

Mounaim-Rousselle, C.

H. Trad, P. Higelin, N. Djebaïli-Chaumeix, C. Mounaim-Rousselle, “Experimental study and calculations of nitric oxide absorption in the γ(0, 0) and γ(1, 0) bands for strong temperature conditions,” J. Quant. Spectrosc. Radiat. Transfer 90, 275–289 (2005).
[CrossRef]

Nikdel, S.

N. Omenetto, S. Nikdel, J. D. Bradshaw, M. S. Epstein, R. D. Reeves, J. D. Winefordner, “Diagnostic and analytical studies of the inductively coupled plasma by atomic fluorescence spectrometry,” Anal. Chem. 51, 1521–1525 (1979).
[CrossRef]

Omenetto, N.

N. Omenetto, S. Nikdel, J. D. Bradshaw, M. S. Epstein, R. D. Reeves, J. D. Winefordner, “Diagnostic and analytical studies of the inductively coupled plasma by atomic fluorescence spectrometry,” Anal. Chem. 51, 1521–1525 (1979).
[CrossRef]

Palleschi, V.

U. Visentini, G. Cristoforetti, S. Legnaioli, A. Salvetti, E. Tognoni, V. Palleschi, “Accurate measurement of magnesium content in alpha-olefins by laser induced breakdown spectroscopy (LIBS) technique,” Optoelectron. Lett. 3, 222–226 (2007).
[CrossRef]

F. Bredice, F. Borges, H. Sobral, M. Villagran-Muniz, H. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 61, 1294–1303 (2006).
[CrossRef]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 339–353 (2002).
[CrossRef]

Pan, A. L.

D. Liu, A. L. Pan, G. Xu, Y. Bai, X. Zhu, B. S. Zou, “Self-absorption effect in the spatial resolved spectra of CdS nano-ribbon optical waveguide observed by near-field spectroscopy,” Opt. Rev. 13, 235–238 (2006).
[CrossRef]

Pardini, L.

F. Bredice, F. Borges, H. Sobral, M. Villagran-Muniz, H. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 61, 1294–1303 (2006).
[CrossRef]

Patterson, B. D.

T. B. Settersten, B. D. Patterson, W. H. Humphries, “Radiative lifetimes of NO A2Σ+ (v′ = 0, 1, 2) and the electronic transition moment of the A2Σ+-X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

Paul, P. H.

P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 57, 581–589 (1997).
[CrossRef]

Pavlov, S. V.

A. D. Dakashev, S. V. Pavlov, K. A. Stancheva, “Flame atomic absorption spectrometry based on self-absorption in the flame and using the flame as a light emission source,” Anal. Chem. 2, 37–40 (2012).

Peng, Z. M.

X. D. Zhai, Y. J. Ding, Z. M. Peng, R. Luo, “Concentration measurement of NO using self-absorption spectroscopy of the γ band system in a pulsed corona discharge,” Appl. Opt. 51, 4605–4611 (2012).
[CrossRef]

Z. M. Peng, Y. J. Ding, X. D. Zhai, Q. S. Yang, Z. L. Jiang, “Spectral characteristics of CN radical (B→X) and its application in determination of rotational and vibrational temperatures of plasma,” Chin. Phys. Lett. 28, 044703 (2011).
[CrossRef]

Reeves, R. D.

N. Omenetto, S. Nikdel, J. D. Bradshaw, M. S. Epstein, R. D. Reeves, J. D. Winefordner, “Diagnostic and analytical studies of the inductively coupled plasma by atomic fluorescence spectrometry,” Anal. Chem. 51, 1521–1525 (1979).
[CrossRef]

Rocha, C. A. U. J.

D. Carinhana, L. G. Barreta, C. A. U. J. Rocha, A. M. Dos Santosa, C. A. Bertranb, “Determination of liquefied petroleum flame temperatures using emission spectroscopy,” J. Brazilian Chem. Soc. 19, 1326–1335 (2008).
[CrossRef]

Roux, F.

C. O. Laux, R. J. Gessman, C. H. Kruger, F. Roux, F. Michaud, S. P. Davis, “Rotational temperature measurements in air and nitrogen plasmas using the first negative system of N2+,” J. Quant. Spectrosc. Radiat. Transfer 68, 473–482 (2001).
[CrossRef]

Salvetti, A.

U. Visentini, G. Cristoforetti, S. Legnaioli, A. Salvetti, E. Tognoni, V. Palleschi, “Accurate measurement of magnesium content in alpha-olefins by laser induced breakdown spectroscopy (LIBS) technique,” Optoelectron. Lett. 3, 222–226 (2007).
[CrossRef]

F. Bredice, F. Borges, H. Sobral, M. Villagran-Muniz, H. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 61, 1294–1303 (2006).
[CrossRef]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 339–353 (2002).
[CrossRef]

Settersten, T. B.

T. B. Settersten, B. D. Patterson, W. H. Humphries, “Radiative lifetimes of NO A2Σ+ (v′ = 0, 1, 2) and the electronic transition moment of the A2Σ+-X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

Sobral, H.

F. Bredice, F. Borges, H. Sobral, M. Villagran-Muniz, H. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 61, 1294–1303 (2006).
[CrossRef]

Spence, T. G.

C. O. Laux, T. G. Spence, C. H. Kruger, R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12, 125–138 (2003).
[CrossRef]

Spinks, J. W. T.

G. Herzberg, J. W. T. Spinks, Molecular Spectra and Molecular Structure (Prentice-Hall, 1966).

Stancheva, K. A.

A. D. Dakashev, S. V. Pavlov, K. A. Stancheva, “Flame atomic absorption spectrometry based on self-absorption in the flame and using the flame as a light emission source,” Anal. Chem. 2, 37–40 (2012).

Sun, J. H.

Q. S. Yang, J. H. Sun, N. Y. Zhu, “Determination of temperatures using CH radical emission spectroscopy,” Chin. Phys. Lett. 29, 104707 (2012).
[CrossRef]

Tognoni, E.

U. Visentini, G. Cristoforetti, S. Legnaioli, A. Salvetti, E. Tognoni, V. Palleschi, “Accurate measurement of magnesium content in alpha-olefins by laser induced breakdown spectroscopy (LIBS) technique,” Optoelectron. Lett. 3, 222–226 (2007).
[CrossRef]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 339–353 (2002).
[CrossRef]

Trad, H.

H. Trad, P. Higelin, N. Djebaïli-Chaumeix, C. Mounaim-Rousselle, “Experimental study and calculations of nitric oxide absorption in the γ(0, 0) and γ(1, 0) bands for strong temperature conditions,” J. Quant. Spectrosc. Radiat. Transfer 90, 275–289 (2005).
[CrossRef]

Velasco, A.

A. Velasco, E. Bustos, I. Martín, C. Lavín, “Intensities of vibronic transitions for the main bands observed in the electronic spectrum of atmospherically relevant nitric oxide,” J. Phys. Chem. A 106, 6401–6405 (2002).
[CrossRef]

Villagran-Muniz, M.

F. Bredice, F. Borges, H. Sobral, M. Villagran-Muniz, H. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 61, 1294–1303 (2006).
[CrossRef]

Visentini, U.

U. Visentini, G. Cristoforetti, S. Legnaioli, A. Salvetti, E. Tognoni, V. Palleschi, “Accurate measurement of magnesium content in alpha-olefins by laser induced breakdown spectroscopy (LIBS) technique,” Optoelectron. Lett. 3, 222–226 (2007).
[CrossRef]

Winefordner, J. D.

N. Omenetto, S. Nikdel, J. D. Bradshaw, M. S. Epstein, R. D. Reeves, J. D. Winefordner, “Diagnostic and analytical studies of the inductively coupled plasma by atomic fluorescence spectrometry,” Anal. Chem. 51, 1521–1525 (1979).
[CrossRef]

Xu, G.

D. Liu, A. L. Pan, G. Xu, Y. Bai, X. Zhu, B. S. Zou, “Self-absorption effect in the spatial resolved spectra of CdS nano-ribbon optical waveguide observed by near-field spectroscopy,” Opt. Rev. 13, 235–238 (2006).
[CrossRef]

Yang, Q. S.

Q. S. Yang, J. H. Sun, N. Y. Zhu, “Determination of temperatures using CH radical emission spectroscopy,” Chin. Phys. Lett. 29, 104707 (2012).
[CrossRef]

Z. M. Peng, Y. J. Ding, X. D. Zhai, Q. S. Yang, Z. L. Jiang, “Spectral characteristics of CN radical (B→X) and its application in determination of rotational and vibrational temperatures of plasma,” Chin. Phys. Lett. 28, 044703 (2011).
[CrossRef]

Zare, R. N.

C. O. Laux, T. G. Spence, C. H. Kruger, R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12, 125–138 (2003).
[CrossRef]

Zhai, X. D.

X. D. Zhai, Y. J. Ding, Z. M. Peng, R. Luo, “Concentration measurement of NO using self-absorption spectroscopy of the γ band system in a pulsed corona discharge,” Appl. Opt. 51, 4605–4611 (2012).
[CrossRef]

Z. M. Peng, Y. J. Ding, X. D. Zhai, Q. S. Yang, Z. L. Jiang, “Spectral characteristics of CN radical (B→X) and its application in determination of rotational and vibrational temperatures of plasma,” Chin. Phys. Lett. 28, 044703 (2011).
[CrossRef]

Zhu, N. Y.

Q. S. Yang, J. H. Sun, N. Y. Zhu, “Determination of temperatures using CH radical emission spectroscopy,” Chin. Phys. Lett. 29, 104707 (2012).
[CrossRef]

Zhu, X.

D. Liu, A. L. Pan, G. Xu, Y. Bai, X. Zhu, B. S. Zou, “Self-absorption effect in the spatial resolved spectra of CdS nano-ribbon optical waveguide observed by near-field spectroscopy,” Opt. Rev. 13, 235–238 (2006).
[CrossRef]

Zou, B. S.

D. Liu, A. L. Pan, G. Xu, Y. Bai, X. Zhu, B. S. Zou, “Self-absorption effect in the spatial resolved spectra of CdS nano-ribbon optical waveguide observed by near-field spectroscopy,” Opt. Rev. 13, 235–238 (2006).
[CrossRef]

Anal. Chem. (2)

N. Omenetto, S. Nikdel, J. D. Bradshaw, M. S. Epstein, R. D. Reeves, J. D. Winefordner, “Diagnostic and analytical studies of the inductively coupled plasma by atomic fluorescence spectrometry,” Anal. Chem. 51, 1521–1525 (1979).
[CrossRef]

A. D. Dakashev, S. V. Pavlov, K. A. Stancheva, “Flame atomic absorption spectrometry based on self-absorption in the flame and using the flame as a light emission source,” Anal. Chem. 2, 37–40 (2012).

Appl. Opt. (1)

Chin. Phys. Lett. (2)

Q. S. Yang, J. H. Sun, N. Y. Zhu, “Determination of temperatures using CH radical emission spectroscopy,” Chin. Phys. Lett. 29, 104707 (2012).
[CrossRef]

Z. M. Peng, Y. J. Ding, X. D. Zhai, Q. S. Yang, Z. L. Jiang, “Spectral characteristics of CN radical (B→X) and its application in determination of rotational and vibrational temperatures of plasma,” Chin. Phys. Lett. 28, 044703 (2011).
[CrossRef]

J. Brazilian Chem. Soc. (1)

D. Carinhana, L. G. Barreta, C. A. U. J. Rocha, A. M. Dos Santosa, C. A. Bertranb, “Determination of liquefied petroleum flame temperatures using emission spectroscopy,” J. Brazilian Chem. Soc. 19, 1326–1335 (2008).
[CrossRef]

J. Chem. Phys. (2)

T. B. Settersten, B. D. Patterson, W. H. Humphries, “Radiative lifetimes of NO A2Σ+ (v′ = 0, 1, 2) and the electronic transition moment of the A2Σ+-X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A2Δ–X2Π system,” J. Chem. Phys. 104, 2146–2155 (1996).
[CrossRef]

J. Mol. Spectrosc. (1)

Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, V. Foltin, V. Martišovitš, M. Morvova, “Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications,” J. Mol. Spectrosc. 243, 194–201 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

A. Velasco, E. Bustos, I. Martín, C. Lavín, “Intensities of vibronic transitions for the main bands observed in the electronic spectrum of atmospherically relevant nitric oxide,” J. Phys. Chem. A 106, 6401–6405 (2002).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 57, 581–589 (1997).
[CrossRef]

C. O. Laux, R. J. Gessman, C. H. Kruger, F. Roux, F. Michaud, S. P. Davis, “Rotational temperature measurements in air and nitrogen plasmas using the first negative system of N2+,” J. Quant. Spectrosc. Radiat. Transfer 68, 473–482 (2001).
[CrossRef]

H. Trad, P. Higelin, N. Djebaïli-Chaumeix, C. Mounaim-Rousselle, “Experimental study and calculations of nitric oxide absorption in the γ(0, 0) and γ(1, 0) bands for strong temperature conditions,” J. Quant. Spectrosc. Radiat. Transfer 90, 275–289 (2005).
[CrossRef]

Opt. Rev. (1)

D. Liu, A. L. Pan, G. Xu, Y. Bai, X. Zhu, B. S. Zou, “Self-absorption effect in the spatial resolved spectra of CdS nano-ribbon optical waveguide observed by near-field spectroscopy,” Opt. Rev. 13, 235–238 (2006).
[CrossRef]

Optoelectron. Lett. (1)

U. Visentini, G. Cristoforetti, S. Legnaioli, A. Salvetti, E. Tognoni, V. Palleschi, “Accurate measurement of magnesium content in alpha-olefins by laser induced breakdown spectroscopy (LIBS) technique,” Optoelectron. Lett. 3, 222–226 (2007).
[CrossRef]

Plasma Sources Sci. Technol. (1)

C. O. Laux, T. G. Spence, C. H. Kruger, R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol. 12, 125–138 (2003).
[CrossRef]

Spectrochim. Acta, Part B (2)

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57, 339–353 (2002).
[CrossRef]

F. Bredice, F. Borges, H. Sobral, M. Villagran-Muniz, H. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 61, 1294–1303 (2006).
[CrossRef]

Other (2)

J. Luque, D. R. Crosley, “LIFBASE: database and spectral simulation for diatomic molecules,” http://www.sri.com/psd/lifbase/ .

G. Herzberg, J. W. T. Spinks, Molecular Spectra and Molecular Structure (Prentice-Hall, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Schematic of the self-absorption process.

Fig. 2.
Fig. 2.

Comparison of experimental spectra for different NO concentrations.

Fig. 3.
Fig. 3.

Comparison between the calculated emission spectra and self-absorption for five different NO concentrations. The parameters are set as follows: T v = 1900 K , T r = 400 K , l = 12.7 cm , and instrumental broadening = 0.06 nm .

Fig. 4.
Fig. 4.

(a) Relationships between the ratios (peak ratios and integral ratios) of B to A and the NO concentrations, with T v = 1900 K , T r = 400 K , and l = 12.7 cm . (b) Sensitivities of the peak ratio and integral ratio methods, where sensitivity is defined as 1000 × d ( B / A ) / d c .

Fig. 5.
Fig. 5.

Flow diagram for concentration determination.

Fig. 6.
Fig. 6.

Relationships between the peak ratios of B to A and the collision coefficient ( γ NO N 2 ) for different rotational temperatures, namely, 380 K (green), 400 K (red), and 420 K (black).

Fig. 7.
Fig. 7.

Peak ratios of B to A and the absolute error of NO concentration for different γ NO N 2 . The RT is set to 400 K.

Fig. 8.
Fig. 8.

Peak ratios of B to A and the absolute error of NO concentration for different rotational temperatures, namely, 380 K (blue), 400 K (red), and 420 K (black).

Fig. 9.
Fig. 9.

Schematic diagram of the experimental setup.

Fig. 10.
Fig. 10.

Comparison of the experimental spectra for different NO concentrations.

Fig. 11.
Fig. 11.

Relationship (solid line) between the peak ratios of B to A and the NO concentration for l = 12.7 cm and Tr = 400 K . Experimental data (red dots), the abscissa of which is the theoretical concentration, and the ordinate is the peak ratio from the spectra in Fig. 10.

Fig. 12.
Fig. 12.

Thirty recorded spectra with the new spectrometer AvaSpec-2048.

Fig. 13.
Fig. 13.

Predicted concentration results for the sample values of (a)  250 ± 10 ppm and (b)  500 ± 10 ppm .

Fig. 14.
Fig. 14.

Continuous change of the recorded spectra in 300 s for an initial NO concentration of approximately 1000 ppm.

Fig. 15.
Fig. 15.

Continuous changes of peak ratios B to A and the NO concentrations derived from the model.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I v J ( v ) = ε ( v ) · exp ( σ ( v ) · n v J · l ) ,
ε ( v ) = ( I v J , 0 ( v ) · L v J ( v ) ) ,
{ δ G = 3.581 * 10 7 v 0 T / M δ L = i = 1 q γ N O i X i P ,
σ ( v ) = ( c 1 h · v v J v J · B v J v J · L v J ( v ) ) ,
n v J l = N l · exp ( E v k T v ) · exp ( E r k T r ) · ( 2 J + 1 ) Q v Q r ,

Metrics