Abstract

A Y/Mo multilayer coating, optimized for top reflectivity at λ=12nm, has been nano-inspected after long-term operation at the in-house soft x-ray laser. The surface and optical inspections were complemented by electron microscopy on cross sections, prepared with focused ion beam technology. A factor of 2.5 loss of reflectivity in the exposed area (ca. 30% relative loss every 100 shots), with concomitant nanoscale photodamage and particle fallout, was found. The x-ray-laser-induced damage extended as deep as 250 nm beneath the surface and as wide as the millimeter spot size.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Montcalm, B. T. Sullivan, M. Ranger, J. M. Slaughter, P. A. Kearney, Ch. M. Falco, and M. Chaker, “Mo/Y multilayer mirrors for the 8-12-nm wavelength region,” Opt. Lett. 19, 1173–1175 (1994).
    [CrossRef]
  2. C. Montcalm, P. A. Kearney, J. M. Slaughter, B. T. Sullivan, M. Chaker, H. Pepin, and Ch. M. Falco, “Survey of Ti-, B-, and Y-based soft x-ray extreme ultraviolet multilayer mirrors for the 2- to 12-nm wavelength region,” Appl. Opt. 35, 5134–5147 (1996).
    [CrossRef]
  3. B. Kjornrattanawanich and S. Bajt, “Structural characterization and lifetime stability of MoY extreme-ultraviolet multilayer mirrors,” Appl. Opt. 43, 5955–5962 (2004).
    [CrossRef]
  4. J. Nilsen, S. Bajt, H. N. Chapman, F. Staub, and J. Balmer, “Mo:Y multilayer mirror technology utilized to image the near-field output of a Ni-like Sn laser at 11.9  nm,” Opt. Lett. 28, 2249–2251 (2003).
    [CrossRef]
  5. A. R. Khorsand, R. Sobierajski, E. Louis, S. Bruijn, E. D. van Hattum, R. W. E. van de Kruijs, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, T. Burian, J. Chalupsky, J. Cihelka, V. Hajkova, L. Vysin, U. Jastrow, N. Stojanovic, S. Toleikis, H. Wabnitz, K. Tiedtke, K. Sokolowski-Tinten, U. Shymanovich, J. Krzywinski, S. Hau-Riege, R. London, A. Gleeson, E. M. Gullikson, and F. Bijkerk, “Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure,” Opt. Express 18, 700–712 (2010).
    [CrossRef]
  6. V. Bakshi, ed., EUV Sources for Lithography (SPIE, 2005).
  7. R. Sobierajski, S. Bruijn, A. R. Khorsand, E. Louis, R. W. E. van de Kruijs, T. Burian, J. Chalupsky, J. Cihelka, A. Gleeson, J. Grzonka, E. M. Gullikson, V. Hajkova, S. Hau-Riege, L. Juha, M. Jurek, D. Klinger, J. Krzywinski, R. London, J. B. Pelka, T. Płociński, M. Rasiński, K. Tiedtke, S. Toleikis, L. Vysin, H. Wabnitz, and F. Bijkerk, “Damage mechanisms of MoN/SiN multilayer optics for next-generation pulsed XUV light sources,” Opt. Express 19, 193–205 (2011).
    [CrossRef]
  8. M. Mueller, F. Barkusky, T. Feigl, and K. Mann, “EUV damage threshold measurements of Mo/Si multilayer mirrors,” Appl. Phys. A 108, 263–267 (2012).
    [CrossRef]
  9. D. Bleiner, F. Staub, V. Guzenko, Y. Ekinci, and J. Balmer, “Evaluation of lab-scale EUV microscopy using a table-top laser source,” Opt. Commun. 284, 4577–4583 (2011).
    [CrossRef]
  10. F. Staub, C. Imesch, D. Bleiner, and J. E. Balmer, “Soft-x-ray lasing in nickel-like barium at 9.2  nm using the grazing-incidence scheme,” Opt. Commun. 285, 2118–2121 (2012).
    [CrossRef]
  11. B. D. Patterson, R. Abela, H. H. Braun, R. Ganter, B. Pedrini, M. Pedrozzi, S. Reiche, and M. van Daalen, “Ultrafast phenomena at the nanoscale: novel science opportunities at the SwissFEL x-ray laser,” Proc. SPIE 8678, 867802 (2012).
    [CrossRef]
  12. J. E. Balmer, D. Bleiner, and F. Staub, “Extreme ultraviolet lasers: principles and potential for next-generation lithography,” J. Micro/Nanolithogr., MEMS, MOEMS 11, 021119 (2012).
  13. D. Bleiner, “The Bern advanced glass laser for experiment (BEAGLE) x-ray laser facility,” in Short-Wavelength Laboratory Sources, A. Michette, ed. (Royal Society of Chemistry, 2014).
  14. D. Bleiner, J. E. Balmer, and F. Staub, “Line focusing for soft x-ray laser-plasma lasing,” Appl. Opt. 50, 6689–6696 (2011).
    [CrossRef]
  15. M. Ruiz-Lopez and D. Bleiner, “Implementing the plasma-lasing potential for tabletop nano-imaging,” Appl. Phys. B 115, 311–324 (2014).
    [CrossRef]
  16. D. Bleiner and Ph. Gasser, “Structural features of laser ablation particulate from Si target, as revealed by focused ion beam technology,” Appl. Phys. A 79, 1019–1022 (2004).
    [CrossRef]
  17. http://henke.lbl.gov/opticalconstants/ .
  18. D. Bleiner, “Mathematical modelling of particulate formation during laser ablation for spatially-resolved microanalysis,” Spectrochim. Acta, Part B 60, 49–64 (2005).
    [CrossRef]
  19. D. R. Lide, ed., CRC Handbook of Chemistry and Physics (CRC Press, 2008).
  20. http://www.engineeringtoolbox.com/specific-heat-metals-d_152.html .
  21. S. Tanuma, C. J. Powell, and O. R. Penn, “Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range,” Surf. Interface Anal. 21, 165–176 (1994).
    [CrossRef]
  22. J. J. Yeh, Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters (Gordon and Breach, 1993).

2014

M. Ruiz-Lopez and D. Bleiner, “Implementing the plasma-lasing potential for tabletop nano-imaging,” Appl. Phys. B 115, 311–324 (2014).
[CrossRef]

2012

M. Mueller, F. Barkusky, T. Feigl, and K. Mann, “EUV damage threshold measurements of Mo/Si multilayer mirrors,” Appl. Phys. A 108, 263–267 (2012).
[CrossRef]

F. Staub, C. Imesch, D. Bleiner, and J. E. Balmer, “Soft-x-ray lasing in nickel-like barium at 9.2  nm using the grazing-incidence scheme,” Opt. Commun. 285, 2118–2121 (2012).
[CrossRef]

B. D. Patterson, R. Abela, H. H. Braun, R. Ganter, B. Pedrini, M. Pedrozzi, S. Reiche, and M. van Daalen, “Ultrafast phenomena at the nanoscale: novel science opportunities at the SwissFEL x-ray laser,” Proc. SPIE 8678, 867802 (2012).
[CrossRef]

J. E. Balmer, D. Bleiner, and F. Staub, “Extreme ultraviolet lasers: principles and potential for next-generation lithography,” J. Micro/Nanolithogr., MEMS, MOEMS 11, 021119 (2012).

2011

2010

2005

D. Bleiner, “Mathematical modelling of particulate formation during laser ablation for spatially-resolved microanalysis,” Spectrochim. Acta, Part B 60, 49–64 (2005).
[CrossRef]

2004

D. Bleiner and Ph. Gasser, “Structural features of laser ablation particulate from Si target, as revealed by focused ion beam technology,” Appl. Phys. A 79, 1019–1022 (2004).
[CrossRef]

B. Kjornrattanawanich and S. Bajt, “Structural characterization and lifetime stability of MoY extreme-ultraviolet multilayer mirrors,” Appl. Opt. 43, 5955–5962 (2004).
[CrossRef]

2003

1996

1994

S. Tanuma, C. J. Powell, and O. R. Penn, “Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range,” Surf. Interface Anal. 21, 165–176 (1994).
[CrossRef]

C. Montcalm, B. T. Sullivan, M. Ranger, J. M. Slaughter, P. A. Kearney, Ch. M. Falco, and M. Chaker, “Mo/Y multilayer mirrors for the 8-12-nm wavelength region,” Opt. Lett. 19, 1173–1175 (1994).
[CrossRef]

Abela, R.

B. D. Patterson, R. Abela, H. H. Braun, R. Ganter, B. Pedrini, M. Pedrozzi, S. Reiche, and M. van Daalen, “Ultrafast phenomena at the nanoscale: novel science opportunities at the SwissFEL x-ray laser,” Proc. SPIE 8678, 867802 (2012).
[CrossRef]

Bajt, S.

Balmer, J.

D. Bleiner, F. Staub, V. Guzenko, Y. Ekinci, and J. Balmer, “Evaluation of lab-scale EUV microscopy using a table-top laser source,” Opt. Commun. 284, 4577–4583 (2011).
[CrossRef]

J. Nilsen, S. Bajt, H. N. Chapman, F. Staub, and J. Balmer, “Mo:Y multilayer mirror technology utilized to image the near-field output of a Ni-like Sn laser at 11.9  nm,” Opt. Lett. 28, 2249–2251 (2003).
[CrossRef]

Balmer, J. E.

J. E. Balmer, D. Bleiner, and F. Staub, “Extreme ultraviolet lasers: principles and potential for next-generation lithography,” J. Micro/Nanolithogr., MEMS, MOEMS 11, 021119 (2012).

F. Staub, C. Imesch, D. Bleiner, and J. E. Balmer, “Soft-x-ray lasing in nickel-like barium at 9.2  nm using the grazing-incidence scheme,” Opt. Commun. 285, 2118–2121 (2012).
[CrossRef]

D. Bleiner, J. E. Balmer, and F. Staub, “Line focusing for soft x-ray laser-plasma lasing,” Appl. Opt. 50, 6689–6696 (2011).
[CrossRef]

Barkusky, F.

M. Mueller, F. Barkusky, T. Feigl, and K. Mann, “EUV damage threshold measurements of Mo/Si multilayer mirrors,” Appl. Phys. A 108, 263–267 (2012).
[CrossRef]

Bijkerk, F.

Bleiner, D.

M. Ruiz-Lopez and D. Bleiner, “Implementing the plasma-lasing potential for tabletop nano-imaging,” Appl. Phys. B 115, 311–324 (2014).
[CrossRef]

J. E. Balmer, D. Bleiner, and F. Staub, “Extreme ultraviolet lasers: principles and potential for next-generation lithography,” J. Micro/Nanolithogr., MEMS, MOEMS 11, 021119 (2012).

F. Staub, C. Imesch, D. Bleiner, and J. E. Balmer, “Soft-x-ray lasing in nickel-like barium at 9.2  nm using the grazing-incidence scheme,” Opt. Commun. 285, 2118–2121 (2012).
[CrossRef]

D. Bleiner, J. E. Balmer, and F. Staub, “Line focusing for soft x-ray laser-plasma lasing,” Appl. Opt. 50, 6689–6696 (2011).
[CrossRef]

D. Bleiner, F. Staub, V. Guzenko, Y. Ekinci, and J. Balmer, “Evaluation of lab-scale EUV microscopy using a table-top laser source,” Opt. Commun. 284, 4577–4583 (2011).
[CrossRef]

D. Bleiner, “Mathematical modelling of particulate formation during laser ablation for spatially-resolved microanalysis,” Spectrochim. Acta, Part B 60, 49–64 (2005).
[CrossRef]

D. Bleiner and Ph. Gasser, “Structural features of laser ablation particulate from Si target, as revealed by focused ion beam technology,” Appl. Phys. A 79, 1019–1022 (2004).
[CrossRef]

D. Bleiner, “The Bern advanced glass laser for experiment (BEAGLE) x-ray laser facility,” in Short-Wavelength Laboratory Sources, A. Michette, ed. (Royal Society of Chemistry, 2014).

Braun, H. H.

B. D. Patterson, R. Abela, H. H. Braun, R. Ganter, B. Pedrini, M. Pedrozzi, S. Reiche, and M. van Daalen, “Ultrafast phenomena at the nanoscale: novel science opportunities at the SwissFEL x-ray laser,” Proc. SPIE 8678, 867802 (2012).
[CrossRef]

Bruijn, S.

Burian, T.

Chaker, M.

Chalupsky, J.

Chapman, H. N.

Cihelka, J.

Ekinci, Y.

D. Bleiner, F. Staub, V. Guzenko, Y. Ekinci, and J. Balmer, “Evaluation of lab-scale EUV microscopy using a table-top laser source,” Opt. Commun. 284, 4577–4583 (2011).
[CrossRef]

Falco, Ch. M.

Feigl, T.

M. Mueller, F. Barkusky, T. Feigl, and K. Mann, “EUV damage threshold measurements of Mo/Si multilayer mirrors,” Appl. Phys. A 108, 263–267 (2012).
[CrossRef]

Ganter, R.

B. D. Patterson, R. Abela, H. H. Braun, R. Ganter, B. Pedrini, M. Pedrozzi, S. Reiche, and M. van Daalen, “Ultrafast phenomena at the nanoscale: novel science opportunities at the SwissFEL x-ray laser,” Proc. SPIE 8678, 867802 (2012).
[CrossRef]

Gasser, Ph.

D. Bleiner and Ph. Gasser, “Structural features of laser ablation particulate from Si target, as revealed by focused ion beam technology,” Appl. Phys. A 79, 1019–1022 (2004).
[CrossRef]

Gleeson, A.

Grzonka, J.

Gullikson, E. M.

Guzenko, V.

D. Bleiner, F. Staub, V. Guzenko, Y. Ekinci, and J. Balmer, “Evaluation of lab-scale EUV microscopy using a table-top laser source,” Opt. Commun. 284, 4577–4583 (2011).
[CrossRef]

Hajkova, V.

Hau-Riege, S.

Imesch, C.

F. Staub, C. Imesch, D. Bleiner, and J. E. Balmer, “Soft-x-ray lasing in nickel-like barium at 9.2  nm using the grazing-incidence scheme,” Opt. Commun. 285, 2118–2121 (2012).
[CrossRef]

Jastrow, U.

Juha, L.

Jurek, M.

Kearney, P. A.

Khorsand, A. R.

Kjornrattanawanich, B.

Klinger, D.

Krzywinski, J.

London, R.

Louis, E.

Mann, K.

M. Mueller, F. Barkusky, T. Feigl, and K. Mann, “EUV damage threshold measurements of Mo/Si multilayer mirrors,” Appl. Phys. A 108, 263–267 (2012).
[CrossRef]

Montcalm, C.

Mueller, M.

M. Mueller, F. Barkusky, T. Feigl, and K. Mann, “EUV damage threshold measurements of Mo/Si multilayer mirrors,” Appl. Phys. A 108, 263–267 (2012).
[CrossRef]

Nilsen, J.

Patterson, B. D.

B. D. Patterson, R. Abela, H. H. Braun, R. Ganter, B. Pedrini, M. Pedrozzi, S. Reiche, and M. van Daalen, “Ultrafast phenomena at the nanoscale: novel science opportunities at the SwissFEL x-ray laser,” Proc. SPIE 8678, 867802 (2012).
[CrossRef]

Pedrini, B.

B. D. Patterson, R. Abela, H. H. Braun, R. Ganter, B. Pedrini, M. Pedrozzi, S. Reiche, and M. van Daalen, “Ultrafast phenomena at the nanoscale: novel science opportunities at the SwissFEL x-ray laser,” Proc. SPIE 8678, 867802 (2012).
[CrossRef]

Pedrozzi, M.

B. D. Patterson, R. Abela, H. H. Braun, R. Ganter, B. Pedrini, M. Pedrozzi, S. Reiche, and M. van Daalen, “Ultrafast phenomena at the nanoscale: novel science opportunities at the SwissFEL x-ray laser,” Proc. SPIE 8678, 867802 (2012).
[CrossRef]

Pelka, J. B.

Penn, O. R.

S. Tanuma, C. J. Powell, and O. R. Penn, “Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range,” Surf. Interface Anal. 21, 165–176 (1994).
[CrossRef]

Pepin, H.

Plocinski, T.

Powell, C. J.

S. Tanuma, C. J. Powell, and O. R. Penn, “Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range,” Surf. Interface Anal. 21, 165–176 (1994).
[CrossRef]

Ranger, M.

Rasinski, M.

Reiche, S.

B. D. Patterson, R. Abela, H. H. Braun, R. Ganter, B. Pedrini, M. Pedrozzi, S. Reiche, and M. van Daalen, “Ultrafast phenomena at the nanoscale: novel science opportunities at the SwissFEL x-ray laser,” Proc. SPIE 8678, 867802 (2012).
[CrossRef]

Ruiz-Lopez, M.

M. Ruiz-Lopez and D. Bleiner, “Implementing the plasma-lasing potential for tabletop nano-imaging,” Appl. Phys. B 115, 311–324 (2014).
[CrossRef]

Shymanovich, U.

Slaughter, J. M.

Sobierajski, R.

Sokolowski-Tinten, K.

Staub, F.

F. Staub, C. Imesch, D. Bleiner, and J. E. Balmer, “Soft-x-ray lasing in nickel-like barium at 9.2  nm using the grazing-incidence scheme,” Opt. Commun. 285, 2118–2121 (2012).
[CrossRef]

J. E. Balmer, D. Bleiner, and F. Staub, “Extreme ultraviolet lasers: principles and potential for next-generation lithography,” J. Micro/Nanolithogr., MEMS, MOEMS 11, 021119 (2012).

D. Bleiner, J. E. Balmer, and F. Staub, “Line focusing for soft x-ray laser-plasma lasing,” Appl. Opt. 50, 6689–6696 (2011).
[CrossRef]

D. Bleiner, F. Staub, V. Guzenko, Y. Ekinci, and J. Balmer, “Evaluation of lab-scale EUV microscopy using a table-top laser source,” Opt. Commun. 284, 4577–4583 (2011).
[CrossRef]

J. Nilsen, S. Bajt, H. N. Chapman, F. Staub, and J. Balmer, “Mo:Y multilayer mirror technology utilized to image the near-field output of a Ni-like Sn laser at 11.9  nm,” Opt. Lett. 28, 2249–2251 (2003).
[CrossRef]

Stojanovic, N.

Sullivan, B. T.

Tanuma, S.

S. Tanuma, C. J. Powell, and O. R. Penn, “Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range,” Surf. Interface Anal. 21, 165–176 (1994).
[CrossRef]

Tiedtke, K.

Toleikis, S.

van Daalen, M.

B. D. Patterson, R. Abela, H. H. Braun, R. Ganter, B. Pedrini, M. Pedrozzi, S. Reiche, and M. van Daalen, “Ultrafast phenomena at the nanoscale: novel science opportunities at the SwissFEL x-ray laser,” Proc. SPIE 8678, 867802 (2012).
[CrossRef]

van de Kruijs, R. W. E.

van Hattum, E. D.

Vysin, L.

Wabnitz, H.

Yeh, J. J.

J. J. Yeh, Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters (Gordon and Breach, 1993).

Appl. Opt.

Appl. Phys. A

M. Mueller, F. Barkusky, T. Feigl, and K. Mann, “EUV damage threshold measurements of Mo/Si multilayer mirrors,” Appl. Phys. A 108, 263–267 (2012).
[CrossRef]

D. Bleiner and Ph. Gasser, “Structural features of laser ablation particulate from Si target, as revealed by focused ion beam technology,” Appl. Phys. A 79, 1019–1022 (2004).
[CrossRef]

Appl. Phys. B

M. Ruiz-Lopez and D. Bleiner, “Implementing the plasma-lasing potential for tabletop nano-imaging,” Appl. Phys. B 115, 311–324 (2014).
[CrossRef]

J. Micro/Nanolithogr., MEMS, MOEMS

J. E. Balmer, D. Bleiner, and F. Staub, “Extreme ultraviolet lasers: principles and potential for next-generation lithography,” J. Micro/Nanolithogr., MEMS, MOEMS 11, 021119 (2012).

Opt. Commun.

D. Bleiner, F. Staub, V. Guzenko, Y. Ekinci, and J. Balmer, “Evaluation of lab-scale EUV microscopy using a table-top laser source,” Opt. Commun. 284, 4577–4583 (2011).
[CrossRef]

F. Staub, C. Imesch, D. Bleiner, and J. E. Balmer, “Soft-x-ray lasing in nickel-like barium at 9.2  nm using the grazing-incidence scheme,” Opt. Commun. 285, 2118–2121 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

B. D. Patterson, R. Abela, H. H. Braun, R. Ganter, B. Pedrini, M. Pedrozzi, S. Reiche, and M. van Daalen, “Ultrafast phenomena at the nanoscale: novel science opportunities at the SwissFEL x-ray laser,” Proc. SPIE 8678, 867802 (2012).
[CrossRef]

Spectrochim. Acta, Part B

D. Bleiner, “Mathematical modelling of particulate formation during laser ablation for spatially-resolved microanalysis,” Spectrochim. Acta, Part B 60, 49–64 (2005).
[CrossRef]

Surf. Interface Anal.

S. Tanuma, C. J. Powell, and O. R. Penn, “Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range,” Surf. Interface Anal. 21, 165–176 (1994).
[CrossRef]

Other

J. J. Yeh, Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters (Gordon and Breach, 1993).

V. Bakshi, ed., EUV Sources for Lithography (SPIE, 2005).

D. R. Lide, ed., CRC Handbook of Chemistry and Physics (CRC Press, 2008).

http://www.engineeringtoolbox.com/specific-heat-metals-d_152.html .

D. Bleiner, “The Bern advanced glass laser for experiment (BEAGLE) x-ray laser facility,” in Short-Wavelength Laboratory Sources, A. Michette, ed. (Royal Society of Chemistry, 2014).

http://henke.lbl.gov/opticalconstants/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Calculated complex refractive index in the form n=1δiβ, for Mo, Y, and Y2O3 layers. (a) Values for the δ term and (b) values for the β term.

Fig. 2.
Fig. 2.

Small-angle x-ray reflectometry of the Y/Mo multilayer and computationally reconstructed pattern. The optimization algorithm suggests a change of period in the shallow and deep regions, as indicated.

Fig. 3.
Fig. 3.

Measured wavelength-resolved reflectivity of the multilayer stack.

Fig. 4.
Fig. 4.

(a) Soft x-ray reflectometry (SXRR) mapping the reflectivity (R) at λ=11.9nm over the optics. The dashed arrows show the extent of proximity effects. (b) A profile is shown across the 1-in. (25.4 mm) optics, indicated by a dashed line in (a). The RHS has not max reflectivity because for experimental check this “fresh area” was exposed to n=15 control shots.

Fig. 5.
Fig. 5.

Atomic force microscopy of (a) the unexposed (center of mirror) and (b) the exposed (10 mm from center) regions to the EUV laser. Statistics of the surface morphology is given (see text).

Fig. 6.
Fig. 6.

(a) Electron microscopy image of a spherical particle on the mirror surface (dust on the background). The large sphere is attributed to laser-induced surface mobilization. (b) STEM image of blister structure at the coating surface (multilayer on the RHS).

Fig. 7.
Fig. 7.

Scanning transmission electron microscope (STEM) image in high angle annular dark field (HAADF) mode of the entire multilayer coating stack up to the amorphous substrate.

Fig. 8.
Fig. 8.

Calculated penetration profile of the laser power (in W/m2) into the multilayer. The irradiated surface is at the bottom. (a) Case with an intact Y layer and (b) case with a fully oxidized Y layer. Note the stronger shallow absorption in the latter. Lateral transition from intact to oxidized portions can generate power deposition gradients.

Fig. 9.
Fig. 9.

Transmission electron microscopy of the multilayer cross section.

Fig. 10.
Fig. 10.

FFT patter of the (a) shallow, (b) intermediate, and (c) deep coating zones, and comparison with the full stack’s FFT (black). See text for discussion on peak coincidences.

Fig. 11.
Fig. 11.

HAADF STEM images of (a) the subsurface and (b) the middle region of the multilayer coating with the elemental mappings with respect to oxygen [O-K edge, (c) and (d)], yttrium [Y-K edge, (e) and (f)], and molybdenum [Mo-L edge, (g) and (h)]. Resolution is about 1 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E(z)=Eoexp[N(z)(hYαY+hMoαMo)],

Metrics