Abstract

We present a three-visible-light wave combiner based on two-dimensional photonic crystal waveguides whose widths are not integral multiples of the lattice period. The proposed device consists of two cascaded directional couplers. It combines three visible light waves with different wavelengths from three input ports into a single output port. As an example, a combiner for combining light waves of 635, 532, and 488 nm, which are commonly used as the three primary colors in laser display systems, is designed and demonstrated through the finite-difference time-domain method. The results show that the proposed device can perform efficient synthesis for three visible light waves with transmittance exceeding 89% for each wavelength and high ability in preventing the backward coupling of waves from different waveguides. The method for designing the combiner is useful for designing other waveguide couplers based on photonic crystals made of dispersion materials.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Zaccaria, P. Verma, and S. Kawaguchi, “Manipulating full photonic band gap in two dimensional birefringent photonic crystal,” Opt. Express 16, 14812–14820 (2008).
    [CrossRef]
  2. F. Wen, S. David, X. Checoury, M. E. Kurdi, and P. Boucaud, “Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations,” Opt. Express 16, 12278–12289 (2008).
    [CrossRef]
  3. X. Cheng and J. Yang, “Maximizing band gaps in two-dimensional photonic crystals in square lattices,” J. Opt. Soc. Am. A 30, 2314–2319 (2013).
    [CrossRef]
  4. S. Kuchinsky, V. Golyatin, A. Kutikov, T. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 1349–1352 (2002).
    [CrossRef]
  5. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. 19, 1970–1975 (2001).
    [CrossRef]
  6. S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
    [CrossRef]
  7. Y. Wu, K. Hsu, and T. Shih, “Thirty-two-channel dense-wavelength-division multiplexer based on cascade two dimensional photonic crystal waveguide structure,” J. Opt. Soc. Am. B 24, 2075–2080 (2007).
    [CrossRef]
  8. Y. Wu, K. Hsu, and T. Shih, “New design of four-channel add–drop filters based on double-resonant cavity photonic crystals,” J. Opt. Soc. Am. B 26, 640–644 (2009).
    [CrossRef]
  9. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV,” Phys. Rev. B 27, 985–1009 (1983).
    [CrossRef]
  10. F. S.-S. Chien, Y.-J. Hsu, W.-F. Hsieh, and S.-C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119–1125 (2004).
    [CrossRef]
  11. N. Yamamoto, T. Ogawa, and K. Komori, “Photonic crystal directional coupler switch with small switching length and wide bandwidth,” Opt. Express 14, 1223–1229 (2006).
    [CrossRef]

2013 (1)

2009 (1)

2008 (2)

2007 (1)

2006 (1)

2004 (1)

2002 (2)

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

S. Kuchinsky, V. Golyatin, A. Kutikov, T. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 1349–1352 (2002).
[CrossRef]

2001 (1)

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Boscolo, S.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

Boucaud, P.

Checoury, X.

Cheng, S.-C.

Cheng, X.

Chien, F. S.-S.

David, S.

Golyatin, V.

S. Kuchinsky, V. Golyatin, A. Kutikov, T. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 1349–1352 (2002).
[CrossRef]

Hsieh, W.-F.

Hsu, K.

Hsu, Y.-J.

Kawaguchi, S.

Komori, K.

Koshiba, M.

Kuchinsky, S.

S. Kuchinsky, V. Golyatin, A. Kutikov, T. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 1349–1352 (2002).
[CrossRef]

Kurdi, M. E.

Kutikov, A.

S. Kuchinsky, V. Golyatin, A. Kutikov, T. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 1349–1352 (2002).
[CrossRef]

Midrio, M.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

Nedeljkovic, D.

S. Kuchinsky, V. Golyatin, A. Kutikov, T. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 1349–1352 (2002).
[CrossRef]

Ogawa, T.

Pearsall, T.

S. Kuchinsky, V. Golyatin, A. Kutikov, T. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 1349–1352 (2002).
[CrossRef]

Shih, T.

Someda, C. G.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Verma, P.

Wen, F.

Wu, Y.

Yamamoto, N.

Yang, J.

Zaccaria, R. P.

IEEE J. Quantum Electron. (2)

S. Kuchinsky, V. Golyatin, A. Kutikov, T. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 1349–1352 (2002).
[CrossRef]

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Opt. Express (4)

Phys. Rev. B (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the PCW directional couplers. (a) Structure with regular waveguide width and (b) structure with irregular waveguide width.

Fig. 2.
Fig. 2.

Dispersion curve for the structure indicated in Fig. 1(a) with the refractive index n=3.63613 (a), in Fig. 1(a) with the refractive index n=3.31119 (b), and in Fig. 1(b) with the refractive index n=3.31119 (c).

Fig. 3.
Fig. 3.

Configuration of the three-wavelength combiner.

Fig. 4.
Fig. 4.

Field distribution in the combiner shown in Fig. 3.

Fig. 5.
Fig. 5.

Insertion loss as a function of Δλ.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Lc=a2(k1k2),

Metrics