Abstract

In this work, the optical properties of potassium titanyl phosphate (KTP) waveguides in the visible and near-infrared region are reported. The KTP waveguides were fabricated using 550 keV proton implantation at room temperature, and the refractive index profiles of the implanted region in the visible and near-infrared region were reconstructed. The profiles of the guided modes were measured through the end-face coupling method with both 632.8 and 1539 nm laser sources and then compared with the simulation results using the beam propagation method. Optical transmission and Raman spectra in the original substrate and waveguide active region were measured to study microstructural changes. The propagation loss of the TM0-mode at 632.8 nm was also measured.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47, 4980–4985 (1976).
    [CrossRef]
  2. J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
    [CrossRef]
  3. T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” J. Quantum Elect. 30, 800–804 (1994).
  4. M. L. Sundheimer, C. Bosshard, E. W. Van Stryland, G. I. Stegeman, and J. D. Bierlein, “Large nonlinear phase modulation in quasi-phase-matched KTP waveguides as a result of cascaded second-order processes,” Opt. Lett. 18, 1397–1399 (1993).
    [CrossRef]
  5. E. A. Werner, J. P. Ruske, B. Zeitner, W. Biehlig, and A. Tünnermann, “Integrated-optical amplitude modulator for high-power applications,” Opt. Commun. 221, 9–12 (2003).
    [CrossRef]
  6. K. S. Buritskii, E. M. Dianov, V. A. Maslov, V. A. Chernykh, and E. A. Scherbakov, “Nonlinear directional coupler based on Rb:KTP waveguides,” Appl. Phys. B 54, 167–169 (1992).
    [CrossRef]
  7. L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
    [CrossRef]
  8. P. N. Kean and G. J. Dixon, “Efficient sum–frequency upconversion in a resonantly pumped Nd:YAG laser,” Opt. Lett. 17, 127–129 (1992).
    [CrossRef]
  9. C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
    [CrossRef]
  10. J. H. Zhao, T. Liu, S. S. Guo, J. Guan, and X. L. Wang, “Optical properties of planar waveguides on ZnWO4 formed by carbon and helium ion implantation and effects of annealing,” Opt. Express 18, 18989–18996 (2010).
    [CrossRef]
  11. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
    [CrossRef]
  12. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low-dose high-energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
    [CrossRef]
  13. W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy-ion-irradiated amorphous Ge layers,” J. Phys. D 42, 115402 (2009).
    [CrossRef]
  14. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165–182 (2008).
    [CrossRef]
  15. Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol. 26, 1304–1308 (2008).
    [CrossRef]
  16. K. M. Wang, H. Hu, F. Chen, F. Lu, J. H. Zhang, J. T. Liu, B. R. Shi, and Y. G. Liu, “Low-energy proton-irradiated waveguides in KTiOPO4,” Phys. Status Solidi A 184, 453–457 (2001).
    [CrossRef]
  17. P. Binder, A. Boudrioua, J. C. Loulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79, 2558–2560 (2001).
    [CrossRef]
  18. J. J. Yin, F. Lu, X. B. Ming, Z. H. Qin, and Y. J. Ma, “Theoretical modeling and experiment of refractive index change in He+ ion-implanted KTP waveguide,” Appl. Opt. 51, 2400–2406 (2012).
    [CrossRef]
  19. X. Ming, F. Lu, X. Wang, M. Chen, and X. Liu, “The formation of optical waveguide in KTP crystal by combining ion implantation with ion exchange,” Proc. SPIE 7631, 76312 (2009).
    [CrossRef]
  20. J. F. Ziegler, computer code, SRIM http://www.srim.org .
  21. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986).
    [CrossRef]
  22. D. Ycvick and W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett. 17, 329–330 (1992).
    [CrossRef]
  23. R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1120 (2002).
    [CrossRef]

2012

C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
[CrossRef]

J. J. Yin, F. Lu, X. B. Ming, Z. H. Qin, and Y. J. Ma, “Theoretical modeling and experiment of refractive index change in He+ ion-implanted KTP waveguide,” Appl. Opt. 51, 2400–2406 (2012).
[CrossRef]

2010

2009

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy-ion-irradiated amorphous Ge layers,” J. Phys. D 42, 115402 (2009).
[CrossRef]

X. Ming, F. Lu, X. Wang, M. Chen, and X. Liu, “The formation of optical waveguide in KTP crystal by combining ion implantation with ion exchange,” Proc. SPIE 7631, 76312 (2009).
[CrossRef]

2008

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165–182 (2008).
[CrossRef]

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol. 26, 1304–1308 (2008).
[CrossRef]

2007

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

2003

E. A. Werner, J. P. Ruske, B. Zeitner, W. Biehlig, and A. Tünnermann, “Integrated-optical amplitude modulator for high-power applications,” Opt. Commun. 221, 9–12 (2003).
[CrossRef]

2002

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low-dose high-energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1120 (2002).
[CrossRef]

2001

K. M. Wang, H. Hu, F. Chen, F. Lu, J. H. Zhang, J. T. Liu, B. R. Shi, and Y. G. Liu, “Low-energy proton-irradiated waveguides in KTiOPO4,” Phys. Status Solidi A 184, 453–457 (2001).
[CrossRef]

P. Binder, A. Boudrioua, J. C. Loulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79, 2558–2560 (2001).
[CrossRef]

1994

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” J. Quantum Elect. 30, 800–804 (1994).

1993

L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
[CrossRef]

M. L. Sundheimer, C. Bosshard, E. W. Van Stryland, G. I. Stegeman, and J. D. Bierlein, “Large nonlinear phase modulation in quasi-phase-matched KTP waveguides as a result of cascaded second-order processes,” Opt. Lett. 18, 1397–1399 (1993).
[CrossRef]

1992

1986

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986).
[CrossRef]

J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

1976

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

Alwahabi, Z. T.

L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
[CrossRef]

Araujo, L. L.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy-ion-irradiated amorphous Ge layers,” J. Phys. D 42, 115402 (2009).
[CrossRef]

Argiolas, N.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low-dose high-energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Arweiler, C. B.

J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

Bardyszewski, W.

Bazzan, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low-dose high-energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Bentini, G. G.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low-dose high-energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Bianconi, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low-dose high-energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Biehlig, W.

E. A. Werner, J. P. Ruske, B. Zeitner, W. Biehlig, and A. Tünnermann, “Integrated-optical amplitude modulator for high-power applications,” Opt. Commun. 221, 9–12 (2003).
[CrossRef]

Bierlein, J. D.

M. L. Sundheimer, C. Bosshard, E. W. Van Stryland, G. I. Stegeman, and J. D. Bierlein, “Large nonlinear phase modulation in quasi-phase-matched KTP waveguides as a result of cascaded second-order processes,” Opt. Lett. 18, 1397–1399 (1993).
[CrossRef]

J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

Binder, P.

P. Binder, A. Boudrioua, J. C. Loulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79, 2558–2560 (2001).
[CrossRef]

Bosshard, C.

Böttger, T.

C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
[CrossRef]

Boudrioua, A.

P. Binder, A. Boudrioua, J. C. Loulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79, 2558–2560 (2001).
[CrossRef]

Buritskii, K. S.

K. S. Buritskii, E. M. Dianov, V. A. Maslov, V. A. Chernykh, and E. A. Scherbakov, “Nonlinear directional coupler based on Rb:KTP waveguides,” Appl. Phys. B 54, 167–169 (1992).
[CrossRef]

Byrne, A. P.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy-ion-irradiated amorphous Ge layers,” J. Phys. D 42, 115402 (2009).
[CrossRef]

Chandler, P. J.

L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
[CrossRef]

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986).
[CrossRef]

Chen, F.

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165–182 (2008).
[CrossRef]

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol. 26, 1304–1308 (2008).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

K. M. Wang, H. Hu, F. Chen, F. Lu, J. H. Zhang, J. T. Liu, B. R. Shi, and Y. G. Liu, “Low-energy proton-irradiated waveguides in KTiOPO4,” Phys. Status Solidi A 184, 453–457 (2001).
[CrossRef]

Chen, M.

X. Ming, F. Lu, X. Wang, M. Chen, and X. Liu, “The formation of optical waveguide in KTP crystal by combining ion implantation with ion exchange,” Proc. SPIE 7631, 76312 (2009).
[CrossRef]

Chernykh, V. A.

K. S. Buritskii, E. M. Dianov, V. A. Maslov, V. A. Chernykh, and E. A. Scherbakov, “Nonlinear directional coupler based on Rb:KTP waveguides,” Appl. Phys. B 54, 167–169 (1992).
[CrossRef]

Chiarini, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low-dose high-energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Cone, R. L.

C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
[CrossRef]

Correra, L.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low-dose high-energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Dianov, E. M.

K. S. Buritskii, E. M. Dianov, V. A. Maslov, V. A. Chernykh, and E. A. Scherbakov, “Nonlinear directional coupler based on Rb:KTP waveguides,” Appl. Phys. B 54, 167–169 (1992).
[CrossRef]

Dixon, G. J.

Gier, T. E.

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

Giulian, R.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy-ion-irradiated amorphous Ge layers,” J. Phys. D 42, 115402 (2009).
[CrossRef]

Guan, J.

Guo, S. S.

Guzzi, R.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low-dose high-energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Hu, H.

K. M. Wang, H. Hu, F. Chen, F. Lu, J. H. Zhang, J. T. Liu, B. R. Shi, and Y. G. Liu, “Low-energy proton-irradiated waveguides in KTiOPO4,” Phys. Status Solidi A 184, 453–457 (2001).
[CrossRef]

Hussain, Z. S.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy-ion-irradiated amorphous Ge layers,” J. Phys. D 42, 115402 (2009).
[CrossRef]

Kean, P. N.

Kluth, P.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy-ion-irradiated amorphous Ge layers,” J. Phys. D 42, 115402 (2009).
[CrossRef]

Kobayashi, T.

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” J. Quantum Elect. 30, 800–804 (1994).

Lama, F. L.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986).
[CrossRef]

Liu, J. T.

K. M. Wang, H. Hu, F. Chen, F. Lu, J. H. Zhang, J. T. Liu, B. R. Shi, and Y. G. Liu, “Low-energy proton-irradiated waveguides in KTiOPO4,” Phys. Status Solidi A 184, 453–457 (2001).
[CrossRef]

Liu, T.

Liu, X.

X. Ming, F. Lu, X. Wang, M. Chen, and X. Liu, “The formation of optical waveguide in KTP crystal by combining ion implantation with ion exchange,” Proc. SPIE 7631, 76312 (2009).
[CrossRef]

Liu, Y. G.

K. M. Wang, H. Hu, F. Chen, F. Lu, J. H. Zhang, J. T. Liu, B. R. Shi, and Y. G. Liu, “Low-energy proton-irradiated waveguides in KTiOPO4,” Phys. Status Solidi A 184, 453–457 (2001).
[CrossRef]

Loulergue, J. C.

P. Binder, A. Boudrioua, J. C. Loulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79, 2558–2560 (2001).
[CrossRef]

Lu, F.

J. J. Yin, F. Lu, X. B. Ming, Z. H. Qin, and Y. J. Ma, “Theoretical modeling and experiment of refractive index change in He+ ion-implanted KTP waveguide,” Appl. Opt. 51, 2400–2406 (2012).
[CrossRef]

X. Ming, F. Lu, X. Wang, M. Chen, and X. Liu, “The formation of optical waveguide in KTP crystal by combining ion implantation with ion exchange,” Proc. SPIE 7631, 76312 (2009).
[CrossRef]

K. M. Wang, H. Hu, F. Chen, F. Lu, J. H. Zhang, J. T. Liu, B. R. Shi, and Y. G. Liu, “Low-energy proton-irradiated waveguides in KTiOPO4,” Phys. Status Solidi A 184, 453–457 (2001).
[CrossRef]

Lu, Q. M.

Ma, Y. J.

Macfarlane, R. M.

C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
[CrossRef]

Marangoni, M.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1120 (2002).
[CrossRef]

Maslov, V. A.

K. S. Buritskii, E. M. Dianov, V. A. Maslov, V. A. Chernykh, and E. A. Scherbakov, “Nonlinear directional coupler based on Rb:KTP waveguides,” Appl. Phys. B 54, 167–169 (1992).
[CrossRef]

Mazzoldi, P.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low-dose high-energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

McCaffery, A. J.

L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
[CrossRef]

Ming, X.

X. Ming, F. Lu, X. Wang, M. Chen, and X. Liu, “The formation of optical waveguide in KTP crystal by combining ion implantation with ion exchange,” Proc. SPIE 7631, 76312 (2009).
[CrossRef]

Ming, X. B.

Moretti, P.

P. Binder, A. Boudrioua, J. C. Loulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79, 2558–2560 (2001).
[CrossRef]

Osellame, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1120 (2002).
[CrossRef]

Pityana, S. L.

L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
[CrossRef]

Qin, Z. H.

Ramponi, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1120 (2002).
[CrossRef]

Ridgway, M. C.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy-ion-irradiated amorphous Ge layers,” J. Phys. D 42, 115402 (2009).
[CrossRef]

Ruske, J. P.

E. A. Werner, J. P. Ruske, B. Zeitner, W. Biehlig, and A. Tünnermann, “Integrated-optical amplitude modulator for high-power applications,” Opt. Commun. 221, 9–12 (2003).
[CrossRef]

Sada, C.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low-dose high-energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

Scherbakov, E. A.

K. S. Buritskii, E. M. Dianov, V. A. Maslov, V. A. Chernykh, and E. A. Scherbakov, “Nonlinear directional coupler based on Rb:KTP waveguides,” Appl. Phys. B 54, 167–169 (1992).
[CrossRef]

Schnohr, C. S.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy-ion-irradiated amorphous Ge layers,” J. Phys. D 42, 115402 (2009).
[CrossRef]

Shi, B. R.

K. M. Wang, H. Hu, F. Chen, F. Lu, J. H. Zhang, J. T. Liu, B. R. Shi, and Y. G. Liu, “Low-energy proton-irradiated waveguides in KTiOPO4,” Phys. Status Solidi A 184, 453–457 (2001).
[CrossRef]

Sprouster, D. J.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy-ion-irradiated amorphous Ge layers,” J. Phys. D 42, 115402 (2009).
[CrossRef]

Stegeman, G. I.

Sun, Y.

C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
[CrossRef]

Sundheimer, M. L.

Taira, T.

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” J. Quantum Elect. 30, 800–804 (1994).

Tan, Y.

Thiel, C. W.

C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
[CrossRef]

Townsend, P. D.

L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
[CrossRef]

Tünnermann, A.

E. A. Werner, J. P. Ruske, B. Zeitner, W. Biehlig, and A. Tünnermann, “Integrated-optical amplitude modulator for high-power applications,” Opt. Commun. 221, 9–12 (2003).
[CrossRef]

Van Stryland, E. W.

Wang, K. M.

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol. 26, 1304–1308 (2008).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

K. M. Wang, H. Hu, F. Chen, F. Lu, J. H. Zhang, J. T. Liu, B. R. Shi, and Y. G. Liu, “Low-energy proton-irradiated waveguides in KTiOPO4,” Phys. Status Solidi A 184, 453–457 (2001).
[CrossRef]

Wang, L.

Wang, X.

X. Ming, F. Lu, X. Wang, M. Chen, and X. Liu, “The formation of optical waveguide in KTP crystal by combining ion implantation with ion exchange,” Proc. SPIE 7631, 76312 (2009).
[CrossRef]

Wang, X. L.

Werner, E. A.

E. A. Werner, J. P. Ruske, B. Zeitner, W. Biehlig, and A. Tünnermann, “Integrated-optical amplitude modulator for high-power applications,” Opt. Commun. 221, 9–12 (2003).
[CrossRef]

Wesch, W.

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy-ion-irradiated amorphous Ge layers,” J. Phys. D 42, 115402 (2009).
[CrossRef]

Ycvick, D.

Yin, J. J.

Zeitner, B.

E. A. Werner, J. P. Ruske, B. Zeitner, W. Biehlig, and A. Tünnermann, “Integrated-optical amplitude modulator for high-power applications,” Opt. Commun. 221, 9–12 (2003).
[CrossRef]

Zhang, J. H.

K. M. Wang, H. Hu, F. Chen, F. Lu, J. H. Zhang, J. T. Liu, B. R. Shi, and Y. G. Liu, “Low-energy proton-irradiated waveguides in KTiOPO4,” Phys. Status Solidi A 184, 453–457 (2001).
[CrossRef]

Zhang, L.

L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
[CrossRef]

Zhao, J. H.

Zumsteg, F. C.

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

Appl. Opt.

Appl. Phys. B

K. S. Buritskii, E. M. Dianov, V. A. Maslov, V. A. Chernykh, and E. A. Scherbakov, “Nonlinear directional coupler based on Rb:KTP waveguides,” Appl. Phys. B 54, 167–169 (1992).
[CrossRef]

Appl. Phys. Lett.

J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

P. Binder, A. Boudrioua, J. C. Loulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79, 2558–2560 (2001).
[CrossRef]

Crit. Rev. Solid State Mater. Sci.

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165–182 (2008).
[CrossRef]

J. Appl. Phys.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low-dose high-energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
[CrossRef]

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

J. Lightwave Technol.

J. Phys. B

C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
[CrossRef]

J. Phys. D

W. Wesch, C. S. Schnohr, P. Kluth, Z. S. Hussain, L. L. Araujo, R. Giulian, D. J. Sprouster, A. P. Byrne, and M. C. Ridgway, “Structural modification of swift heavy-ion-irradiated amorphous Ge layers,” J. Phys. D 42, 115402 (2009).
[CrossRef]

J. Quantum Elect.

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” J. Quantum Elect. 30, 800–804 (1994).

Opt. Acta

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986).
[CrossRef]

Opt. Commun.

E. A. Werner, J. P. Ruske, B. Zeitner, W. Biehlig, and A. Tünnermann, “Integrated-optical amplitude modulator for high-power applications,” Opt. Commun. 221, 9–12 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

Phys. Status Solidi A

K. M. Wang, H. Hu, F. Chen, F. Lu, J. H. Zhang, J. T. Liu, B. R. Shi, and Y. G. Liu, “Low-energy proton-irradiated waveguides in KTiOPO4,” Phys. Status Solidi A 184, 453–457 (2001).
[CrossRef]

Proc. SPIE

X. Ming, F. Lu, X. Wang, M. Chen, and X. Liu, “The formation of optical waveguide in KTP crystal by combining ion implantation with ion exchange,” Proc. SPIE 7631, 76312 (2009).
[CrossRef]

Rev. Sci. Instrum.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1120 (2002).
[CrossRef]

Other

J. F. Ziegler, computer code, SRIM http://www.srim.org .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Measured relative intensity of the light (TM-polarized) in the nz direction reflected from a prism versus the effective index profile at wavelengths of (a) 632.8 nm and (b) 1539 nm, respectively. The red dashed line shows the refractive index measured prior to ion implantation.

Fig. 2.
Fig. 2.

Reconstructed refractive index profiles in the nz-direction of the waveguide at wavelengths of 632.8 nm (solid blue line) and 1539 nm (dashed red line). The inset shows the DPA distribution of the implanted region.

Fig. 3.
Fig. 3.

Optical transmission photographs recorded using a metallographic microscope.

Fig. 4.
Fig. 4.

Near-field light intensity profiles of the TM0-mode collected using the CCD camera at (a) 632.8 nm and (c) 1539 nm, and simulated using the FD-BPM method at (b) 632.8 nm and (d) 1539 nm, according to the reconstructed refractive index profiles.

Fig. 5.
Fig. 5.

Micro-Raman spectra of the bulk and the waveguide layer in the KTP crystal.

Fig. 6.
Fig. 6.

Transmission spectra of the KTP sample before and after proton implantation (inset shows detail).

Metrics