Abstract

Rubrene layers with thickness comparable to a visible light wavelength on silver thin film exhibit anomalous photoluminescence (PL) spectra that depend strongly on emission angle. The PL properties demonstrated for rubrene (500 nm)/Ag (50 nm) were modulated from yellow green to red luminescence with an increasing emission angle. The factors influencing the emission-angle-dependent PL spectra are discussed from two viewpoints: spectral modulation of rubrene PL by loss of fluorescence photon energy and additional luminescence resulting from optical interference in the rubrene layer or optical modes excited by rubrene molecules.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646 (2004).
    [CrossRef]
  2. M. Yamagishi, J. Takeya, Y. Tominari, Y. Nakazawa, T. Kuroda, S. Ikehata, T. Nishikawa, and T. Kawase, “High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators,” Appl. Phys. Lett. 90, 182117 (2007).
    [CrossRef]
  3. M. Imakawa, K. Sawabe, Y. Yomogida, Y. Iwasa, and T. Takenobu, “Extraction of the contact resistance from the saturation region of rubrene single-crystal transistors,” Appl. Phys. Lett. 99, 233301 (2011).
    [CrossRef]
  4. X. Qian, T. Wang, and D. Yan, “Transparent organic thin-film transistors based on high quality polycrystalline rubrene film as active layers,” Org. Electron. 14, 1052–1056 (2013).
    [CrossRef]
  5. C. H. Hsu, J. Deng, C. R. Staddon, and P. H. Beton, “Growth front nucleation of rubrene thin films for high mobility organic transisters,” Appl. Phys. Lett. 91, 193505 (2007).
    [CrossRef]
  6. Y. Yoon, S. Kim, H. Lee, T. Kim, A. Babajanyan, K. Lee, and B. Friedman, “Characterization of rubrene polycrystalline thin film transistors fabricated using various heat-treatment conditions,” Thin Solid Films 519, 5562–5566 (2011).
    [CrossRef]
  7. T. Taima, J. Sakai, T. Yamanari, and K. Saito, “Realization of large open-circuit photovoltage in organic thin-film solar cells by controlling measurement environment,” Jpn. J. Appl. Phys. 45, L995–L997 (2006).
    [CrossRef]
  8. A. P. Yuen, N. M. Bamsey, A.-M. Hor, J. S. Preston, R. A. Klenkler, S. M. Jovanovic, and R. O. Loutfy, “Rubrene as an additive in M-phthalocyanine/fullerene organic solar cells,” Sol. Energy Mater. Sol. Cells 95, 3137–3141 (2011).
    [CrossRef]
  9. P. D. Reusswig, D. N. Congreve, N. J. Thompson, and M. A. Baldo, “Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer,” Appl. Phys. Lett. 101, 113304 (2012).
    [CrossRef]
  10. Y. B. Yoon, D. C. Choo, T. W. Kim, H. K. Lee, J. H. Kim, and Y. K. Kim, “Efficiency enhancement mechanism in yellow organic light-emitting devices with multiple heterostructures acting as an emitting layer,” Jpn. J. Appl. Phys. 46, 654–656 (2007).
    [CrossRef]
  11. Y. Duan, M. Mazzeo, V. Maiorano, F. Mariano, D. Qin, R. Cingolani, and G. Gigli, “Extremely low voltage and high bright p-i-n fluorescent white organic light-emitting diodes,” Appl. Phys. Lett. 92, 113304 (2008).
    [CrossRef]
  12. A. Uddin, C. B. Lee, and J. Wong, “Emission properties of dopants rubrene and coumarin 6 in Alq3 films,” J. Lumin. 131, 1037–1041 (2011).
    [CrossRef]
  13. C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650–1652 (2000).
    [CrossRef]
  14. V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
    [CrossRef]
  15. G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
    [CrossRef]
  16. Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal-enhanced fluorescence: surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90, 053107 (2007).
    [CrossRef]
  17. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
    [CrossRef]
  18. W. H. Webber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4, 236–238 (1979).
    [CrossRef]
  19. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
    [CrossRef]
  20. T. Wakamatsu and K. Saito, “Interpretation of attenuated-total-reflection dips observed in surface plasmon resonance,” J. Opt. Soc. Am. B 24, 2307–2313 (2007).
    [CrossRef]
  21. T. Wakamatsu, T. Kitami, T. Maruyama, and S. Toyoshima, “Enhanced photoluminescence spectroscopy for thin films using the attenuated total reflection method,” Appl. Opt. 50, 696–700 (2011).
    [CrossRef]
  22. T. Wakamatsu, K. Watanabe, and K. Saito, “Low-refractive-index dye-aggregate films with small absorption based on anomalous dispersion,” Appl. Opt. 44, 906–911 (2005).
    [CrossRef]
  23. T. Wakamatsu, S. Toyoshima, and K. Saito, “Optical reflection response of dye-aggregate films in the absorption bands,” J. Opt. Soc. Am. B 23, 1859–1866 (2006).
    [CrossRef]

2013

X. Qian, T. Wang, and D. Yan, “Transparent organic thin-film transistors based on high quality polycrystalline rubrene film as active layers,” Org. Electron. 14, 1052–1056 (2013).
[CrossRef]

2012

P. D. Reusswig, D. N. Congreve, N. J. Thompson, and M. A. Baldo, “Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer,” Appl. Phys. Lett. 101, 113304 (2012).
[CrossRef]

2011

A. Uddin, C. B. Lee, and J. Wong, “Emission properties of dopants rubrene and coumarin 6 in Alq3 films,” J. Lumin. 131, 1037–1041 (2011).
[CrossRef]

Y. Yoon, S. Kim, H. Lee, T. Kim, A. Babajanyan, K. Lee, and B. Friedman, “Characterization of rubrene polycrystalline thin film transistors fabricated using various heat-treatment conditions,” Thin Solid Films 519, 5562–5566 (2011).
[CrossRef]

M. Imakawa, K. Sawabe, Y. Yomogida, Y. Iwasa, and T. Takenobu, “Extraction of the contact resistance from the saturation region of rubrene single-crystal transistors,” Appl. Phys. Lett. 99, 233301 (2011).
[CrossRef]

A. P. Yuen, N. M. Bamsey, A.-M. Hor, J. S. Preston, R. A. Klenkler, S. M. Jovanovic, and R. O. Loutfy, “Rubrene as an additive in M-phthalocyanine/fullerene organic solar cells,” Sol. Energy Mater. Sol. Cells 95, 3137–3141 (2011).
[CrossRef]

T. Wakamatsu, T. Kitami, T. Maruyama, and S. Toyoshima, “Enhanced photoluminescence spectroscopy for thin films using the attenuated total reflection method,” Appl. Opt. 50, 696–700 (2011).
[CrossRef]

2008

Y. Duan, M. Mazzeo, V. Maiorano, F. Mariano, D. Qin, R. Cingolani, and G. Gigli, “Extremely low voltage and high bright p-i-n fluorescent white organic light-emitting diodes,” Appl. Phys. Lett. 92, 113304 (2008).
[CrossRef]

2007

T. Wakamatsu and K. Saito, “Interpretation of attenuated-total-reflection dips observed in surface plasmon resonance,” J. Opt. Soc. Am. B 24, 2307–2313 (2007).
[CrossRef]

C. H. Hsu, J. Deng, C. R. Staddon, and P. H. Beton, “Growth front nucleation of rubrene thin films for high mobility organic transisters,” Appl. Phys. Lett. 91, 193505 (2007).
[CrossRef]

M. Yamagishi, J. Takeya, Y. Tominari, Y. Nakazawa, T. Kuroda, S. Ikehata, T. Nishikawa, and T. Kawase, “High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators,” Appl. Phys. Lett. 90, 182117 (2007).
[CrossRef]

Y. B. Yoon, D. C. Choo, T. W. Kim, H. K. Lee, J. H. Kim, and Y. K. Kim, “Efficiency enhancement mechanism in yellow organic light-emitting devices with multiple heterostructures acting as an emitting layer,” Jpn. J. Appl. Phys. 46, 654–656 (2007).
[CrossRef]

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal-enhanced fluorescence: surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90, 053107 (2007).
[CrossRef]

2006

T. Taima, J. Sakai, T. Yamanari, and K. Saito, “Realization of large open-circuit photovoltage in organic thin-film solar cells by controlling measurement environment,” Jpn. J. Appl. Phys. 45, L995–L997 (2006).
[CrossRef]

T. Wakamatsu, S. Toyoshima, and K. Saito, “Optical reflection response of dye-aggregate films in the absorption bands,” J. Opt. Soc. Am. B 23, 1859–1866 (2006).
[CrossRef]

2005

2004

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646 (2004).
[CrossRef]

2000

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650–1652 (2000).
[CrossRef]

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[CrossRef]

1998

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

1997

1979

Aslan, K.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal-enhanced fluorescence: surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90, 053107 (2007).
[CrossRef]

Babajanyan, A.

Y. Yoon, S. Kim, H. Lee, T. Kim, A. Babajanyan, K. Lee, and B. Friedman, “Characterization of rubrene polycrystalline thin film transistors fabricated using various heat-treatment conditions,” Thin Solid Films 519, 5562–5566 (2011).
[CrossRef]

Baldo, M. A.

P. D. Reusswig, D. N. Congreve, N. J. Thompson, and M. A. Baldo, “Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer,” Appl. Phys. Lett. 101, 113304 (2012).
[CrossRef]

Bamsey, N. M.

A. P. Yuen, N. M. Bamsey, A.-M. Hor, J. S. Preston, R. A. Klenkler, S. M. Jovanovic, and R. O. Loutfy, “Rubrene as an additive in M-phthalocyanine/fullerene organic solar cells,” Sol. Energy Mater. Sol. Cells 95, 3137–3141 (2011).
[CrossRef]

Barnes, W. L.

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

Beton, P. H.

C. H. Hsu, J. Deng, C. R. Staddon, and P. H. Beton, “Growth front nucleation of rubrene thin films for high mobility organic transisters,” Appl. Phys. Lett. 91, 193505 (2007).
[CrossRef]

Bulovic, V.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

Burrows, P. E.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
[CrossRef]

Choo, D. C.

Y. B. Yoon, D. C. Choo, T. W. Kim, H. K. Lee, J. H. Kim, and Y. K. Kim, “Efficiency enhancement mechanism in yellow organic light-emitting devices with multiple heterostructures acting as an emitting layer,” Jpn. J. Appl. Phys. 46, 654–656 (2007).
[CrossRef]

Cingolani, R.

Y. Duan, M. Mazzeo, V. Maiorano, F. Mariano, D. Qin, R. Cingolani, and G. Gigli, “Extremely low voltage and high bright p-i-n fluorescent white organic light-emitting diodes,” Appl. Phys. Lett. 92, 113304 (2008).
[CrossRef]

Congreve, D. N.

P. D. Reusswig, D. N. Congreve, N. J. Thompson, and M. A. Baldo, “Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer,” Appl. Phys. Lett. 101, 113304 (2012).
[CrossRef]

Deng, J.

C. H. Hsu, J. Deng, C. R. Staddon, and P. H. Beton, “Growth front nucleation of rubrene thin films for high mobility organic transisters,” Appl. Phys. Lett. 91, 193505 (2007).
[CrossRef]

Duan, Y.

Y. Duan, M. Mazzeo, V. Maiorano, F. Mariano, D. Qin, R. Cingolani, and G. Gigli, “Extremely low voltage and high bright p-i-n fluorescent white organic light-emitting diodes,” Appl. Phys. Lett. 92, 113304 (2008).
[CrossRef]

Eagen, C. F.

Forrest, S. R.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
[CrossRef]

Friedman, B.

Y. Yoon, S. Kim, H. Lee, T. Kim, A. Babajanyan, K. Lee, and B. Friedman, “Characterization of rubrene polycrystalline thin film transistors fabricated using various heat-treatment conditions,” Thin Solid Films 519, 5562–5566 (2011).
[CrossRef]

Garbuzov, D. Z.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
[CrossRef]

Geddes, C. D.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal-enhanced fluorescence: surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90, 053107 (2007).
[CrossRef]

Gershenson, M. E.

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646 (2004).
[CrossRef]

Gigli, G.

Y. Duan, M. Mazzeo, V. Maiorano, F. Mariano, D. Qin, R. Cingolani, and G. Gigli, “Extremely low voltage and high bright p-i-n fluorescent white organic light-emitting diodes,” Appl. Phys. Lett. 92, 113304 (2008).
[CrossRef]

Gu, G.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
[CrossRef]

Hor, A.-M.

A. P. Yuen, N. M. Bamsey, A.-M. Hor, J. S. Preston, R. A. Klenkler, S. M. Jovanovic, and R. O. Loutfy, “Rubrene as an additive in M-phthalocyanine/fullerene organic solar cells,” Sol. Energy Mater. Sol. Cells 95, 3137–3141 (2011).
[CrossRef]

Hsu, C. H.

C. H. Hsu, J. Deng, C. R. Staddon, and P. H. Beton, “Growth front nucleation of rubrene thin films for high mobility organic transisters,” Appl. Phys. Lett. 91, 193505 (2007).
[CrossRef]

Ikehata, S.

M. Yamagishi, J. Takeya, Y. Tominari, Y. Nakazawa, T. Kuroda, S. Ikehata, T. Nishikawa, and T. Kawase, “High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators,” Appl. Phys. Lett. 90, 182117 (2007).
[CrossRef]

Imakawa, M.

M. Imakawa, K. Sawabe, Y. Yomogida, Y. Iwasa, and T. Takenobu, “Extraction of the contact resistance from the saturation region of rubrene single-crystal transistors,” Appl. Phys. Lett. 99, 233301 (2011).
[CrossRef]

Iwasa, Y.

M. Imakawa, K. Sawabe, Y. Yomogida, Y. Iwasa, and T. Takenobu, “Extraction of the contact resistance from the saturation region of rubrene single-crystal transistors,” Appl. Phys. Lett. 99, 233301 (2011).
[CrossRef]

Jovanovic, S. M.

A. P. Yuen, N. M. Bamsey, A.-M. Hor, J. S. Preston, R. A. Klenkler, S. M. Jovanovic, and R. O. Loutfy, “Rubrene as an additive in M-phthalocyanine/fullerene organic solar cells,” Sol. Energy Mater. Sol. Cells 95, 3137–3141 (2011).
[CrossRef]

Kawase, T.

M. Yamagishi, J. Takeya, Y. Tominari, Y. Nakazawa, T. Kuroda, S. Ikehata, T. Nishikawa, and T. Kawase, “High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators,” Appl. Phys. Lett. 90, 182117 (2007).
[CrossRef]

Khalfin, V. B.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

Kim, J. H.

Y. B. Yoon, D. C. Choo, T. W. Kim, H. K. Lee, J. H. Kim, and Y. K. Kim, “Efficiency enhancement mechanism in yellow organic light-emitting devices with multiple heterostructures acting as an emitting layer,” Jpn. J. Appl. Phys. 46, 654–656 (2007).
[CrossRef]

Kim, S.

Y. Yoon, S. Kim, H. Lee, T. Kim, A. Babajanyan, K. Lee, and B. Friedman, “Characterization of rubrene polycrystalline thin film transistors fabricated using various heat-treatment conditions,” Thin Solid Films 519, 5562–5566 (2011).
[CrossRef]

Kim, T.

Y. Yoon, S. Kim, H. Lee, T. Kim, A. Babajanyan, K. Lee, and B. Friedman, “Characterization of rubrene polycrystalline thin film transistors fabricated using various heat-treatment conditions,” Thin Solid Films 519, 5562–5566 (2011).
[CrossRef]

Kim, T. W.

Y. B. Yoon, D. C. Choo, T. W. Kim, H. K. Lee, J. H. Kim, and Y. K. Kim, “Efficiency enhancement mechanism in yellow organic light-emitting devices with multiple heterostructures acting as an emitting layer,” Jpn. J. Appl. Phys. 46, 654–656 (2007).
[CrossRef]

Kim, Y. K.

Y. B. Yoon, D. C. Choo, T. W. Kim, H. K. Lee, J. H. Kim, and Y. K. Kim, “Efficiency enhancement mechanism in yellow organic light-emitting devices with multiple heterostructures acting as an emitting layer,” Jpn. J. Appl. Phys. 46, 654–656 (2007).
[CrossRef]

Kitami, T.

Klenkler, R. A.

A. P. Yuen, N. M. Bamsey, A.-M. Hor, J. S. Preston, R. A. Klenkler, S. M. Jovanovic, and R. O. Loutfy, “Rubrene as an additive in M-phthalocyanine/fullerene organic solar cells,” Sol. Energy Mater. Sol. Cells 95, 3137–3141 (2011).
[CrossRef]

Knoll, W.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[CrossRef]

Kuroda, T.

M. Yamagishi, J. Takeya, Y. Tominari, Y. Nakazawa, T. Kuroda, S. Ikehata, T. Nishikawa, and T. Kawase, “High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators,” Appl. Phys. Lett. 90, 182117 (2007).
[CrossRef]

Lee, C. B.

A. Uddin, C. B. Lee, and J. Wong, “Emission properties of dopants rubrene and coumarin 6 in Alq3 films,” J. Lumin. 131, 1037–1041 (2011).
[CrossRef]

Lee, H.

Y. Yoon, S. Kim, H. Lee, T. Kim, A. Babajanyan, K. Lee, and B. Friedman, “Characterization of rubrene polycrystalline thin film transistors fabricated using various heat-treatment conditions,” Thin Solid Films 519, 5562–5566 (2011).
[CrossRef]

Lee, H. K.

Y. B. Yoon, D. C. Choo, T. W. Kim, H. K. Lee, J. H. Kim, and Y. K. Kim, “Efficiency enhancement mechanism in yellow organic light-emitting devices with multiple heterostructures acting as an emitting layer,” Jpn. J. Appl. Phys. 46, 654–656 (2007).
[CrossRef]

Lee, K.

Y. Yoon, S. Kim, H. Lee, T. Kim, A. Babajanyan, K. Lee, and B. Friedman, “Characterization of rubrene polycrystalline thin film transistors fabricated using various heat-treatment conditions,” Thin Solid Films 519, 5562–5566 (2011).
[CrossRef]

Liebermann, T.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[CrossRef]

Loutfy, R. O.

A. P. Yuen, N. M. Bamsey, A.-M. Hor, J. S. Preston, R. A. Klenkler, S. M. Jovanovic, and R. O. Loutfy, “Rubrene as an additive in M-phthalocyanine/fullerene organic solar cells,” Sol. Energy Mater. Sol. Cells 95, 3137–3141 (2011).
[CrossRef]

Lu, M.-H.

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650–1652 (2000).
[CrossRef]

Madigan, C. F.

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650–1652 (2000).
[CrossRef]

Maiorano, V.

Y. Duan, M. Mazzeo, V. Maiorano, F. Mariano, D. Qin, R. Cingolani, and G. Gigli, “Extremely low voltage and high bright p-i-n fluorescent white organic light-emitting diodes,” Appl. Phys. Lett. 92, 113304 (2008).
[CrossRef]

Mariano, F.

Y. Duan, M. Mazzeo, V. Maiorano, F. Mariano, D. Qin, R. Cingolani, and G. Gigli, “Extremely low voltage and high bright p-i-n fluorescent white organic light-emitting diodes,” Appl. Phys. Lett. 92, 113304 (2008).
[CrossRef]

Maruyama, T.

Mazzeo, M.

Y. Duan, M. Mazzeo, V. Maiorano, F. Mariano, D. Qin, R. Cingolani, and G. Gigli, “Extremely low voltage and high bright p-i-n fluorescent white organic light-emitting diodes,” Appl. Phys. Lett. 92, 113304 (2008).
[CrossRef]

Menard, E.

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646 (2004).
[CrossRef]

Nakazawa, Y.

M. Yamagishi, J. Takeya, Y. Tominari, Y. Nakazawa, T. Kuroda, S. Ikehata, T. Nishikawa, and T. Kawase, “High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators,” Appl. Phys. Lett. 90, 182117 (2007).
[CrossRef]

Nishikawa, T.

M. Yamagishi, J. Takeya, Y. Tominari, Y. Nakazawa, T. Kuroda, S. Ikehata, T. Nishikawa, and T. Kawase, “High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators,” Appl. Phys. Lett. 90, 182117 (2007).
[CrossRef]

Podzorov, V.

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646 (2004).
[CrossRef]

Preston, J. S.

A. P. Yuen, N. M. Bamsey, A.-M. Hor, J. S. Preston, R. A. Klenkler, S. M. Jovanovic, and R. O. Loutfy, “Rubrene as an additive in M-phthalocyanine/fullerene organic solar cells,” Sol. Energy Mater. Sol. Cells 95, 3137–3141 (2011).
[CrossRef]

Previte, M. J. R.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal-enhanced fluorescence: surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90, 053107 (2007).
[CrossRef]

Qian, X.

X. Qian, T. Wang, and D. Yan, “Transparent organic thin-film transistors based on high quality polycrystalline rubrene film as active layers,” Org. Electron. 14, 1052–1056 (2013).
[CrossRef]

Qin, D.

Y. Duan, M. Mazzeo, V. Maiorano, F. Mariano, D. Qin, R. Cingolani, and G. Gigli, “Extremely low voltage and high bright p-i-n fluorescent white organic light-emitting diodes,” Appl. Phys. Lett. 92, 113304 (2008).
[CrossRef]

Reusswig, P. D.

P. D. Reusswig, D. N. Congreve, N. J. Thompson, and M. A. Baldo, “Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer,” Appl. Phys. Lett. 101, 113304 (2012).
[CrossRef]

Rogers, J. A.

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646 (2004).
[CrossRef]

Saito, K.

Sakai, J.

T. Taima, J. Sakai, T. Yamanari, and K. Saito, “Realization of large open-circuit photovoltage in organic thin-film solar cells by controlling measurement environment,” Jpn. J. Appl. Phys. 45, L995–L997 (2006).
[CrossRef]

Sawabe, K.

M. Imakawa, K. Sawabe, Y. Yomogida, Y. Iwasa, and T. Takenobu, “Extraction of the contact resistance from the saturation region of rubrene single-crystal transistors,” Appl. Phys. Lett. 99, 233301 (2011).
[CrossRef]

Someya, T.

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646 (2004).
[CrossRef]

Staddon, C. R.

C. H. Hsu, J. Deng, C. R. Staddon, and P. H. Beton, “Growth front nucleation of rubrene thin films for high mobility organic transisters,” Appl. Phys. Lett. 91, 193505 (2007).
[CrossRef]

Sturm, J. C.

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650–1652 (2000).
[CrossRef]

Sundar, V. C.

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646 (2004).
[CrossRef]

Taima, T.

T. Taima, J. Sakai, T. Yamanari, and K. Saito, “Realization of large open-circuit photovoltage in organic thin-film solar cells by controlling measurement environment,” Jpn. J. Appl. Phys. 45, L995–L997 (2006).
[CrossRef]

Takenobu, T.

M. Imakawa, K. Sawabe, Y. Yomogida, Y. Iwasa, and T. Takenobu, “Extraction of the contact resistance from the saturation region of rubrene single-crystal transistors,” Appl. Phys. Lett. 99, 233301 (2011).
[CrossRef]

Takeya, J.

M. Yamagishi, J. Takeya, Y. Tominari, Y. Nakazawa, T. Kuroda, S. Ikehata, T. Nishikawa, and T. Kawase, “High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators,” Appl. Phys. Lett. 90, 182117 (2007).
[CrossRef]

Thompson, M. E.

Thompson, N. J.

P. D. Reusswig, D. N. Congreve, N. J. Thompson, and M. A. Baldo, “Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer,” Appl. Phys. Lett. 101, 113304 (2012).
[CrossRef]

Tominari, Y.

M. Yamagishi, J. Takeya, Y. Tominari, Y. Nakazawa, T. Kuroda, S. Ikehata, T. Nishikawa, and T. Kawase, “High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators,” Appl. Phys. Lett. 90, 182117 (2007).
[CrossRef]

Toyoshima, S.

Uddin, A.

A. Uddin, C. B. Lee, and J. Wong, “Emission properties of dopants rubrene and coumarin 6 in Alq3 films,” J. Lumin. 131, 1037–1041 (2011).
[CrossRef]

Venkatesh, S.

Wakamatsu, T.

Wang, T.

X. Qian, T. Wang, and D. Yan, “Transparent organic thin-film transistors based on high quality polycrystalline rubrene film as active layers,” Org. Electron. 14, 1052–1056 (2013).
[CrossRef]

Watanabe, K.

Webber, W. H.

Willett, R. L.

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646 (2004).
[CrossRef]

Wong, J.

A. Uddin, C. B. Lee, and J. Wong, “Emission properties of dopants rubrene and coumarin 6 in Alq3 films,” J. Lumin. 131, 1037–1041 (2011).
[CrossRef]

Yamagishi, M.

M. Yamagishi, J. Takeya, Y. Tominari, Y. Nakazawa, T. Kuroda, S. Ikehata, T. Nishikawa, and T. Kawase, “High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators,” Appl. Phys. Lett. 90, 182117 (2007).
[CrossRef]

Yamanari, T.

T. Taima, J. Sakai, T. Yamanari, and K. Saito, “Realization of large open-circuit photovoltage in organic thin-film solar cells by controlling measurement environment,” Jpn. J. Appl. Phys. 45, L995–L997 (2006).
[CrossRef]

Yan, D.

X. Qian, T. Wang, and D. Yan, “Transparent organic thin-film transistors based on high quality polycrystalline rubrene film as active layers,” Org. Electron. 14, 1052–1056 (2013).
[CrossRef]

Yomogida, Y.

M. Imakawa, K. Sawabe, Y. Yomogida, Y. Iwasa, and T. Takenobu, “Extraction of the contact resistance from the saturation region of rubrene single-crystal transistors,” Appl. Phys. Lett. 99, 233301 (2011).
[CrossRef]

Yoon, Y.

Y. Yoon, S. Kim, H. Lee, T. Kim, A. Babajanyan, K. Lee, and B. Friedman, “Characterization of rubrene polycrystalline thin film transistors fabricated using various heat-treatment conditions,” Thin Solid Films 519, 5562–5566 (2011).
[CrossRef]

Yoon, Y. B.

Y. B. Yoon, D. C. Choo, T. W. Kim, H. K. Lee, J. H. Kim, and Y. K. Kim, “Efficiency enhancement mechanism in yellow organic light-emitting devices with multiple heterostructures acting as an emitting layer,” Jpn. J. Appl. Phys. 46, 654–656 (2007).
[CrossRef]

Yuen, A. P.

A. P. Yuen, N. M. Bamsey, A.-M. Hor, J. S. Preston, R. A. Klenkler, S. M. Jovanovic, and R. O. Loutfy, “Rubrene as an additive in M-phthalocyanine/fullerene organic solar cells,” Sol. Energy Mater. Sol. Cells 95, 3137–3141 (2011).
[CrossRef]

Zaumseil, J.

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646 (2004).
[CrossRef]

Zhang, Y.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal-enhanced fluorescence: surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90, 053107 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Yamagishi, J. Takeya, Y. Tominari, Y. Nakazawa, T. Kuroda, S. Ikehata, T. Nishikawa, and T. Kawase, “High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators,” Appl. Phys. Lett. 90, 182117 (2007).
[CrossRef]

M. Imakawa, K. Sawabe, Y. Yomogida, Y. Iwasa, and T. Takenobu, “Extraction of the contact resistance from the saturation region of rubrene single-crystal transistors,” Appl. Phys. Lett. 99, 233301 (2011).
[CrossRef]

C. H. Hsu, J. Deng, C. R. Staddon, and P. H. Beton, “Growth front nucleation of rubrene thin films for high mobility organic transisters,” Appl. Phys. Lett. 91, 193505 (2007).
[CrossRef]

P. D. Reusswig, D. N. Congreve, N. J. Thompson, and M. A. Baldo, “Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer,” Appl. Phys. Lett. 101, 113304 (2012).
[CrossRef]

Y. Duan, M. Mazzeo, V. Maiorano, F. Mariano, D. Qin, R. Cingolani, and G. Gigli, “Extremely low voltage and high bright p-i-n fluorescent white organic light-emitting diodes,” Appl. Phys. Lett. 92, 113304 (2008).
[CrossRef]

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650–1652 (2000).
[CrossRef]

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal-enhanced fluorescence: surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90, 053107 (2007).
[CrossRef]

Colloids Surf. A

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[CrossRef]

J. Lumin.

A. Uddin, C. B. Lee, and J. Wong, “Emission properties of dopants rubrene and coumarin 6 in Alq3 films,” J. Lumin. 131, 1037–1041 (2011).
[CrossRef]

J. Mod. Opt.

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

Y. B. Yoon, D. C. Choo, T. W. Kim, H. K. Lee, J. H. Kim, and Y. K. Kim, “Efficiency enhancement mechanism in yellow organic light-emitting devices with multiple heterostructures acting as an emitting layer,” Jpn. J. Appl. Phys. 46, 654–656 (2007).
[CrossRef]

T. Taima, J. Sakai, T. Yamanari, and K. Saito, “Realization of large open-circuit photovoltage in organic thin-film solar cells by controlling measurement environment,” Jpn. J. Appl. Phys. 45, L995–L997 (2006).
[CrossRef]

Opt. Lett.

Org. Electron.

X. Qian, T. Wang, and D. Yan, “Transparent organic thin-film transistors based on high quality polycrystalline rubrene film as active layers,” Org. Electron. 14, 1052–1056 (2013).
[CrossRef]

Phys. Rev. B

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

Science

V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals,” Science 303, 1644–1646 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells

A. P. Yuen, N. M. Bamsey, A.-M. Hor, J. S. Preston, R. A. Klenkler, S. M. Jovanovic, and R. O. Loutfy, “Rubrene as an additive in M-phthalocyanine/fullerene organic solar cells,” Sol. Energy Mater. Sol. Cells 95, 3137–3141 (2011).
[CrossRef]

Thin Solid Films

Y. Yoon, S. Kim, H. Lee, T. Kim, A. Babajanyan, K. Lee, and B. Friedman, “Characterization of rubrene polycrystalline thin film transistors fabricated using various heat-treatment conditions,” Thin Solid Films 519, 5562–5566 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Sample geometry for PL measurements.

Fig. 2.
Fig. 2.

(a) Absorption spectrum determined from transmittance measurements. (b) PL spectra of a rubrene thin film (500 nm thick) on glass measured at different emission angles. Inset in (a): molecular structure of rubrene.

Fig. 3.
Fig. 3.

PL spectra of a rubrene layer (500 nm thick) on Ag thin film measured at different emission angles.

Fig. 4.
Fig. 4.

Polarized PL spectra of a rubrene layer (500 nm thick) on an Ag thin film at emission angles: (a) θout=60° and (b) θout=75°.

Fig. 5.
Fig. 5.

PL spectra of a thinner rubrene layer (100 nm thick) on an Ag thin film measured at different emission angles.

Tables (1)

Tables Icon

Table 1. PL Peak Positions of Rubrene (500 nm Thick)/Ag Films Estimated Using Gaussian Function Fitting

Metrics