Abstract

In order to solve the problem that CCDs cannot measure the full spectral range in a single measurement, we propose a new wavelength-fitting algorithm that combines the polynomial algorithm applied to the fixed grating with grating equation without CCD or spectrum assembling. Both the grating rotating angle and pixel coordinate of the CCD are written in our wavelength-fitting function. With the calibration of the 576.96 and 579.07 nm mercury spectral line, we can determine that wavelength error of 576.96 nm is between 0.002 and 0.1 nm and wavelength error of 579.07 nm is between 0.006 and 0.06 nm. The calculation results show that the new algorithm can gain more precise wavelength accuracy without a complex assembling operation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Min, B. Yao, and P. Gao, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
    [CrossRef]
  2. B. T. Bowie and P. R. Griffiths, “Determination of the resolution of a multichannel Raman spectrometer using Fourier-transform Raman spectra,” Appl. Spectrosc. 57, 190–196 (2003).
    [CrossRef]
  3. D. M. Haaland, W. B. Chambers, M. R. Keenan, and D. K. Melgaard, “Multi-window classical least squares multivariate calibration methods for quantitative ICP-AES analyses,” Appl. Spectrosc. 54, 1291–1302 (2000).
    [CrossRef]
  4. W. S. Hurst, S. J. Choquette, and E. S. Etz, “Requirements for relative intensity correction of Raman spectra obtained by column-summing charge-coupled device data,” Appl. Spectrosc. 61, 694–700 (2007).
    [CrossRef]
  5. Y. Liu, Y. Tang, J. Cui, and Bayanheshig, “Small imaging spectrometer for the inspection of fruit quality,” Spectrosc. Spect. Anal. 32, 283–286 (2012).
  6. K. Kim, N. Neretti, and N. Intrator, “Mosaicing of acoustic camera images,” IEE P-Radar Son. Nav. 152, 263–270 (2005).
  7. Q. Wang, Y. Ma, R. Cai, and S.-B. Zhang, “Study on the CCD high-speed spectrometer,” J. Optoelectronics Laser 14, 1025–1028 (2003).
  8. T. Sako, T. Sekiguchi, M. Sasaki, and K. Okajima, “MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand,” Exp. Astron. 22, 51–66 (2008).
    [CrossRef]
  9. C. Baltay, “The QUEST large area CCD camera,” Publ. Astron. Soc. Pac. 119, 1278–1294 (2007).
    [CrossRef]
  10. D. Qiao, Y. Gu, and X.-L. Xu, “Wavelength calibration algorithm in grating spectrometer,” Acta Photonica Sinica 38, 2283–2287 (2009).

2012 (2)

Y. Liu, Y. Tang, J. Cui, and Bayanheshig, “Small imaging spectrometer for the inspection of fruit quality,” Spectrosc. Spect. Anal. 32, 283–286 (2012).

J. Min, B. Yao, and P. Gao, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[CrossRef]

2009 (1)

D. Qiao, Y. Gu, and X.-L. Xu, “Wavelength calibration algorithm in grating spectrometer,” Acta Photonica Sinica 38, 2283–2287 (2009).

2008 (1)

T. Sako, T. Sekiguchi, M. Sasaki, and K. Okajima, “MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand,” Exp. Astron. 22, 51–66 (2008).
[CrossRef]

2007 (2)

2005 (1)

K. Kim, N. Neretti, and N. Intrator, “Mosaicing of acoustic camera images,” IEE P-Radar Son. Nav. 152, 263–270 (2005).

2003 (2)

Q. Wang, Y. Ma, R. Cai, and S.-B. Zhang, “Study on the CCD high-speed spectrometer,” J. Optoelectronics Laser 14, 1025–1028 (2003).

B. T. Bowie and P. R. Griffiths, “Determination of the resolution of a multichannel Raman spectrometer using Fourier-transform Raman spectra,” Appl. Spectrosc. 57, 190–196 (2003).
[CrossRef]

2000 (1)

Baltay, C.

C. Baltay, “The QUEST large area CCD camera,” Publ. Astron. Soc. Pac. 119, 1278–1294 (2007).
[CrossRef]

Bayanheshig,

Y. Liu, Y. Tang, J. Cui, and Bayanheshig, “Small imaging spectrometer for the inspection of fruit quality,” Spectrosc. Spect. Anal. 32, 283–286 (2012).

Bowie, B. T.

Cai, R.

Q. Wang, Y. Ma, R. Cai, and S.-B. Zhang, “Study on the CCD high-speed spectrometer,” J. Optoelectronics Laser 14, 1025–1028 (2003).

Chambers, W. B.

Choquette, S. J.

Cui, J.

Y. Liu, Y. Tang, J. Cui, and Bayanheshig, “Small imaging spectrometer for the inspection of fruit quality,” Spectrosc. Spect. Anal. 32, 283–286 (2012).

Etz, E. S.

Gao, P.

Griffiths, P. R.

Gu, Y.

D. Qiao, Y. Gu, and X.-L. Xu, “Wavelength calibration algorithm in grating spectrometer,” Acta Photonica Sinica 38, 2283–2287 (2009).

Haaland, D. M.

Hurst, W. S.

Intrator, N.

K. Kim, N. Neretti, and N. Intrator, “Mosaicing of acoustic camera images,” IEE P-Radar Son. Nav. 152, 263–270 (2005).

Keenan, M. R.

Kim, K.

K. Kim, N. Neretti, and N. Intrator, “Mosaicing of acoustic camera images,” IEE P-Radar Son. Nav. 152, 263–270 (2005).

Liu, Y.

Y. Liu, Y. Tang, J. Cui, and Bayanheshig, “Small imaging spectrometer for the inspection of fruit quality,” Spectrosc. Spect. Anal. 32, 283–286 (2012).

Ma, Y.

Q. Wang, Y. Ma, R. Cai, and S.-B. Zhang, “Study on the CCD high-speed spectrometer,” J. Optoelectronics Laser 14, 1025–1028 (2003).

Melgaard, D. K.

Min, J.

Neretti, N.

K. Kim, N. Neretti, and N. Intrator, “Mosaicing of acoustic camera images,” IEE P-Radar Son. Nav. 152, 263–270 (2005).

Okajima, K.

T. Sako, T. Sekiguchi, M. Sasaki, and K. Okajima, “MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand,” Exp. Astron. 22, 51–66 (2008).
[CrossRef]

Qiao, D.

D. Qiao, Y. Gu, and X.-L. Xu, “Wavelength calibration algorithm in grating spectrometer,” Acta Photonica Sinica 38, 2283–2287 (2009).

Sako, T.

T. Sako, T. Sekiguchi, M. Sasaki, and K. Okajima, “MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand,” Exp. Astron. 22, 51–66 (2008).
[CrossRef]

Sasaki, M.

T. Sako, T. Sekiguchi, M. Sasaki, and K. Okajima, “MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand,” Exp. Astron. 22, 51–66 (2008).
[CrossRef]

Sekiguchi, T.

T. Sako, T. Sekiguchi, M. Sasaki, and K. Okajima, “MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand,” Exp. Astron. 22, 51–66 (2008).
[CrossRef]

Tang, Y.

Y. Liu, Y. Tang, J. Cui, and Bayanheshig, “Small imaging spectrometer for the inspection of fruit quality,” Spectrosc. Spect. Anal. 32, 283–286 (2012).

Wang, Q.

Q. Wang, Y. Ma, R. Cai, and S.-B. Zhang, “Study on the CCD high-speed spectrometer,” J. Optoelectronics Laser 14, 1025–1028 (2003).

Xu, X.-L.

D. Qiao, Y. Gu, and X.-L. Xu, “Wavelength calibration algorithm in grating spectrometer,” Acta Photonica Sinica 38, 2283–2287 (2009).

Yao, B.

Zhang, S.-B.

Q. Wang, Y. Ma, R. Cai, and S.-B. Zhang, “Study on the CCD high-speed spectrometer,” J. Optoelectronics Laser 14, 1025–1028 (2003).

Acta Photonica Sinica (1)

D. Qiao, Y. Gu, and X.-L. Xu, “Wavelength calibration algorithm in grating spectrometer,” Acta Photonica Sinica 38, 2283–2287 (2009).

Appl. Opt. (1)

Appl. Spectrosc. (3)

Exp. Astron. (1)

T. Sako, T. Sekiguchi, M. Sasaki, and K. Okajima, “MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand,” Exp. Astron. 22, 51–66 (2008).
[CrossRef]

IEE P-Radar Son. Nav. (1)

K. Kim, N. Neretti, and N. Intrator, “Mosaicing of acoustic camera images,” IEE P-Radar Son. Nav. 152, 263–270 (2005).

J. Optoelectronics Laser (1)

Q. Wang, Y. Ma, R. Cai, and S.-B. Zhang, “Study on the CCD high-speed spectrometer,” J. Optoelectronics Laser 14, 1025–1028 (2003).

Publ. Astron. Soc. Pac. (1)

C. Baltay, “The QUEST large area CCD camera,” Publ. Astron. Soc. Pac. 119, 1278–1294 (2007).
[CrossRef]

Spectrosc. Spect. Anal. (1)

Y. Liu, Y. Tang, J. Cui, and Bayanheshig, “Small imaging spectrometer for the inspection of fruit quality,” Spectrosc. Spect. Anal. 32, 283–286 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Optical system for data acquisition, 1. mercury lamb, 2 and 8. tunable slit, 3 and 7. planar mirror, 4 and 6. concave mirror, 5. grating, 9. CCD.

Fig. 2.
Fig. 2.

Spectra of mercury lamp measured at different angles of grating rotation.

Fig. 3.
Fig. 3.

Relation of spectral intensity of 576.96 nm and the step of the servo motor.

Tables (2)

Tables Icon

Table 1. Spectral Intensity and Pixel Coordinate Measured at Different Servo Motor Steps

Tables Icon

Table 2. Fitting Results of Spectrum at 576.96 and 579.07 nm

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

λ=k1·sin(tc1+c0)+k0,
λ(x)=a0+a1x++aN1xN1,
λ*(x)=a0+a1x++aN1xN1.
λ(x)=a0+a1x++aN1xN1.
λ(x)=a0+a1x++aN1xN1.
λ(x)=a0+a1x++aN2xN2.
λ(θ,x)=a0sin(θc1+c0)+a1x++aN1xN1.
λ(θ,x0)=a0sin(θc1+c0)+a1x0++aN1x0N1,
λ(θ0,x)=a0sin(θ0c1+c0)+a1x++aN1xN1,
S=(λijλij*)2,whereλijis the standard wavelength.
λ(θ,x)=a0sin(θc1+c0)+a1x+a2x2.
λ(t,x)=801.2227sin(t28195+2.3439)+0.0359x+(3.9277×107)x2.

Metrics