Abstract

Helical phase distributions used for optical information transfer increase its capacity by offering a characteristic spatial intensity arrangement for the diffracted beam. Here we propose the superposition between helical phase distribution with an axicon type. They form a composed object placed in the object arm to generate holographic masks. The diffracted patterns from these masks exhibit asymmetric shapes and peaks along the optical axis, with two kinds of spots, which contain independent or combined information from both phase distribution constructive parameters. To read these parameters based only on the diffraction patterns analysis, we generate the match reading masks (RMs) to be inserted in the optical path. In this proof-of-concept experiment, we demonstrate that one can sort constructive parameter values of each phase distribution, from both kinds of spots, using specific RMs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Gruneisen, R. C. Dymale, K. E. Soltenberg, and N. Steinhoff, “Optical vortex discrimination with transmission volume hologram,” New J. Phys. 13, 083030 (2011).
    [CrossRef]
  2. M. Mihailescu, “Natural quasi-periodic binary structure with focusing property in near field diffraction pattern,” Opt. Express 18, 12526–12536 (2010).
    [CrossRef]
  3. A. V. Malinka, “Approximation of the Fraunhofer diffraction peak, reduced by particles of arbitrary shape,” Opt. Lett. 35, 3411–3413 (2010).
    [CrossRef]
  4. L. Ionel, “An alternative method for the compensation of laser beam spatial distortions based on computer generated holograms,” Rom. Rep. Phys. 65, 984–996 (2013).
  5. S. Prabhakar, A. Kumar, J. Banerji, and R. P. Singh, “Revealing the order of a vortex through its intensity record,” Opt. Lett. 36, 4398–4400 (2011).
    [CrossRef]
  6. A. Dudley, I. A. Litvin, and A. Forbes, “Quantitative measurement of the orbital angular momentum density of light,” Appl. Opt. 51, 823–833 (2012).
    [CrossRef]
  7. A. Dudley, T. Mhlanga, M. Lavery, A. McDonald, F. S. Roux, M. Padgett, and A. Forbes, “Efficient sorting of Bessel beams,” Opt. Express 21, 165–171 (2013).
    [CrossRef]
  8. M. Mihailescu and J. Costescu, “Diffraction pattern study for cell type identification,” Opt. Express 20, 1465–1474 (2012).
    [CrossRef]
  9. V. Garces-Chavez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
    [CrossRef]
  10. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6, 607–621 (2012).
    [CrossRef]
  11. S. Roychowdhury, V. K. Jaiswal, and R. P. Singh, “Implementing controlled NOT gate with optical vortex,” Opt. Commun. 236, 419–424 (2004).
    [CrossRef]
  12. C. Snoeyink, “Imaging performance of Bessel beam microscopy,” Opt. Lett. 38, 2550–2553 (2013).
    [CrossRef]
  13. J. P. Torres, “Multiplexing twisted light,” Nat. Photonics 6, 420–422 (2012).
    [CrossRef]
  14. J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
  15. A. E. Willner, J. Wang, and H. Hiuang, “A different angle on light communications,” Science 337, 655–656 (2012).
    [CrossRef]
  16. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pasko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [CrossRef]
  17. A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
    [CrossRef]
  18. D. Deng, C. Chen, X. Zhao, and H. Li, “Propagation of an Airy vortex beam in uniaxial crystals,” Appl. Phys. B 110, 433–436 (2013).
    [CrossRef]
  19. C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Helico-conical optical beams: a product of helical and conical phase fronts,” Opt. Express 13, 1749–1760 (2005).
    [CrossRef]
  20. Z. Bouchal and R. Celechovský, “Mixed vortex states of light as information carriers,” New J. Phys. 6, 131 (2004).
    [CrossRef]
  21. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33, 207–209 (2008).
    [CrossRef]
  22. Z. Bouchal, “Resistance of nondiffracting vortex beam against amplitude and phase perturbations,” Opt. Commun. 210, 155–164 (2002).
    [CrossRef]
  23. A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
    [CrossRef]
  24. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffacting beams with computer-generated holograms,” J. Opt. Soc. Am. A, 6, 1748–1752 (1989).
    [CrossRef]
  25. J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic Bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5583–5587 (2006).
  26. J. Rehacek, Z. Hradil, Z. Bouchal, and M. Jezek, “Tomographic analysis of vortex information content,” J. Mod. Opt. 53, 689–697 (2006).
    [CrossRef]

2013 (4)

L. Ionel, “An alternative method for the compensation of laser beam spatial distortions based on computer generated holograms,” Rom. Rep. Phys. 65, 984–996 (2013).

D. Deng, C. Chen, X. Zhao, and H. Li, “Propagation of an Airy vortex beam in uniaxial crystals,” Appl. Phys. B 110, 433–436 (2013).
[CrossRef]

A. Dudley, T. Mhlanga, M. Lavery, A. McDonald, F. S. Roux, M. Padgett, and A. Forbes, “Efficient sorting of Bessel beams,” Opt. Express 21, 165–171 (2013).
[CrossRef]

C. Snoeyink, “Imaging performance of Bessel beam microscopy,” Opt. Lett. 38, 2550–2553 (2013).
[CrossRef]

2012 (7)

M. Mihailescu and J. Costescu, “Diffraction pattern study for cell type identification,” Opt. Express 20, 1465–1474 (2012).
[CrossRef]

A. Dudley, I. A. Litvin, and A. Forbes, “Quantitative measurement of the orbital angular momentum density of light,” Appl. Opt. 51, 823–833 (2012).
[CrossRef]

A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
[CrossRef]

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6, 607–621 (2012).
[CrossRef]

J. P. Torres, “Multiplexing twisted light,” Nat. Photonics 6, 420–422 (2012).
[CrossRef]

J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).

A. E. Willner, J. Wang, and H. Hiuang, “A different angle on light communications,” Science 337, 655–656 (2012).
[CrossRef]

2011 (2)

M. Gruneisen, R. C. Dymale, K. E. Soltenberg, and N. Steinhoff, “Optical vortex discrimination with transmission volume hologram,” New J. Phys. 13, 083030 (2011).
[CrossRef]

S. Prabhakar, A. Kumar, J. Banerji, and R. P. Singh, “Revealing the order of a vortex through its intensity record,” Opt. Lett. 36, 4398–4400 (2011).
[CrossRef]

2010 (2)

2008 (2)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33, 207–209 (2008).
[CrossRef]

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[CrossRef]

2006 (2)

J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic Bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5583–5587 (2006).

J. Rehacek, Z. Hradil, Z. Bouchal, and M. Jezek, “Tomographic analysis of vortex information content,” J. Mod. Opt. 53, 689–697 (2006).
[CrossRef]

2005 (1)

2004 (3)

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pasko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[CrossRef]

Z. Bouchal and R. Celechovský, “Mixed vortex states of light as information carriers,” New J. Phys. 6, 131 (2004).
[CrossRef]

S. Roychowdhury, V. K. Jaiswal, and R. P. Singh, “Implementing controlled NOT gate with optical vortex,” Opt. Commun. 236, 419–424 (2004).
[CrossRef]

2003 (1)

V. Garces-Chavez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef]

2002 (1)

Z. Bouchal, “Resistance of nondiffracting vortex beam against amplitude and phase perturbations,” Opt. Commun. 210, 155–164 (2002).
[CrossRef]

1989 (1)

Ahmed, N.

J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).

Alonzo, C. A.

Arnold, C. B.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6, 607–621 (2012).
[CrossRef]

Banerji, J.

Barnett, S. M.

Bouchal, Z.

J. Rehacek, Z. Hradil, Z. Bouchal, and M. Jezek, “Tomographic analysis of vortex information content,” J. Mod. Opt. 53, 689–697 (2006).
[CrossRef]

Z. Bouchal and R. Celechovský, “Mixed vortex states of light as information carriers,” New J. Phys. 6, 131 (2004).
[CrossRef]

Z. Bouchal, “Resistance of nondiffracting vortex beam against amplitude and phase perturbations,” Opt. Commun. 210, 155–164 (2002).
[CrossRef]

Broky, J.

Calatayud, A.

A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
[CrossRef]

Carpentier, A. V.

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[CrossRef]

Celechovský, R.

Z. Bouchal and R. Celechovský, “Mixed vortex states of light as information carriers,” New J. Phys. 6, 131 (2004).
[CrossRef]

Chen, C.

D. Deng, C. Chen, X. Zhao, and H. Li, “Propagation of an Airy vortex beam in uniaxial crystals,” Appl. Phys. B 110, 433–436 (2013).
[CrossRef]

Christodoulides, D. N.

Costescu, J.

Courtial, J.

Cristóbal, G.

A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
[CrossRef]

Deng, D.

D. Deng, C. Chen, X. Zhao, and H. Li, “Propagation of an Airy vortex beam in uniaxial crystals,” Appl. Phys. B 110, 433–436 (2013).
[CrossRef]

Dholakia, K.

V. Garces-Chavez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef]

Dogariu, A.

Dolinar, S.

J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).

Dudley, A.

Dultz, W.

V. Garces-Chavez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef]

Duocastella, M.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6, 607–621 (2012).
[CrossRef]

Dymale, R. C.

M. Gruneisen, R. C. Dymale, K. E. Soltenberg, and N. Steinhoff, “Optical vortex discrimination with transmission volume hologram,” New J. Phys. 13, 083030 (2011).
[CrossRef]

Esposito, E.

J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic Bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5583–5587 (2006).

Fazal, I.

J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).

Forbes, A.

Franke-Arnold, S.

Friberg, A. T.

Furlan, W. D.

A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
[CrossRef]

Garces-Chavez, V.

V. Garces-Chavez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef]

Gibson, G.

Gibson, G. M.

J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic Bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5583–5587 (2006).

Girkin, J. M.

J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic Bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5583–5587 (2006).

Glückstad, J.

Gruneisen, M.

M. Gruneisen, R. C. Dymale, K. E. Soltenberg, and N. Steinhoff, “Optical vortex discrimination with transmission volume hologram,” New J. Phys. 13, 083030 (2011).
[CrossRef]

Hiuang, H.

A. E. Willner, J. Wang, and H. Hiuang, “A different angle on light communications,” Science 337, 655–656 (2012).
[CrossRef]

Hradil, Z.

J. Rehacek, Z. Hradil, Z. Bouchal, and M. Jezek, “Tomographic analysis of vortex information content,” J. Mod. Opt. 53, 689–697 (2006).
[CrossRef]

Huang, H.

J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).

Ionel, L.

L. Ionel, “An alternative method for the compensation of laser beam spatial distortions based on computer generated holograms,” Rom. Rep. Phys. 65, 984–996 (2013).

Jaiswal, V. K.

S. Roychowdhury, V. K. Jaiswal, and R. P. Singh, “Implementing controlled NOT gate with optical vortex,” Opt. Commun. 236, 419–424 (2004).
[CrossRef]

Jezek, M.

J. Rehacek, Z. Hradil, Z. Bouchal, and M. Jezek, “Tomographic analysis of vortex information content,” J. Mod. Opt. 53, 689–697 (2006).
[CrossRef]

Kumar, A.

Lavery, M.

Leach, J.

J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic Bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5583–5587 (2006).

Li, H.

D. Deng, C. Chen, X. Zhao, and H. Li, “Propagation of an Airy vortex beam in uniaxial crystals,” Appl. Phys. B 110, 433–436 (2013).
[CrossRef]

Litvin, I. A.

Malinka, A. V.

McConnell, G.

J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic Bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5583–5587 (2006).

McDonald, A.

McGloin, D.

V. Garces-Chavez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef]

Mhlanga, T.

Michinel, H.

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[CrossRef]

Mihailescu, M.

Monsoriu, J. A.

A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
[CrossRef]

Olivieri, D.

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[CrossRef]

Padgett, M.

Padgett, M. J.

J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic Bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5583–5587 (2006).

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pasko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[CrossRef]

V. Garces-Chavez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef]

Pasko, V.

Prabhakar, S.

Rehacek, J.

J. Rehacek, Z. Hradil, Z. Bouchal, and M. Jezek, “Tomographic analysis of vortex information content,” J. Mod. Opt. 53, 689–697 (2006).
[CrossRef]

Remón, L.

A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
[CrossRef]

Ren, Y.

J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).

Rodrigo, J. A.

A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
[CrossRef]

Rodrigo, P. J.

Roux, F. S.

Roychowdhury, S.

S. Roychowdhury, V. K. Jaiswal, and R. P. Singh, “Implementing controlled NOT gate with optical vortex,” Opt. Commun. 236, 419–424 (2004).
[CrossRef]

Salgueiro, J. R.

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[CrossRef]

Schmitzer, H.

V. Garces-Chavez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef]

Singh, R. P.

S. Prabhakar, A. Kumar, J. Banerji, and R. P. Singh, “Revealing the order of a vortex through its intensity record,” Opt. Lett. 36, 4398–4400 (2011).
[CrossRef]

S. Roychowdhury, V. K. Jaiswal, and R. P. Singh, “Implementing controlled NOT gate with optical vortex,” Opt. Commun. 236, 419–424 (2004).
[CrossRef]

Siviloglou, G. A.

Snoeyink, C.

Soltenberg, K. E.

M. Gruneisen, R. C. Dymale, K. E. Soltenberg, and N. Steinhoff, “Optical vortex discrimination with transmission volume hologram,” New J. Phys. 13, 083030 (2011).
[CrossRef]

Steinhoff, N.

M. Gruneisen, R. C. Dymale, K. E. Soltenberg, and N. Steinhoff, “Optical vortex discrimination with transmission volume hologram,” New J. Phys. 13, 083030 (2011).
[CrossRef]

Torres, J. P.

J. P. Torres, “Multiplexing twisted light,” Nat. Photonics 6, 420–422 (2012).
[CrossRef]

Tur, M.

J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).

Turunen, J.

Vasara, A.

Vasnetsov, M.

Wang, J.

J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).

A. E. Willner, J. Wang, and H. Hiuang, “A different angle on light communications,” Science 337, 655–656 (2012).
[CrossRef]

Willner, A.

J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).

Willner, A. E.

A. E. Willner, J. Wang, and H. Hiuang, “A different angle on light communications,” Science 337, 655–656 (2012).
[CrossRef]

Wright, A. J.

J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic Bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5583–5587 (2006).

Yan, Y.

J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).

Yue, Y.

J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).

Zhao, X.

D. Deng, C. Chen, X. Zhao, and H. Li, “Propagation of an Airy vortex beam in uniaxial crystals,” Appl. Phys. B 110, 433–436 (2013).
[CrossRef]

Am. J. Phys. (1)

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
[CrossRef]

D. Deng, C. Chen, X. Zhao, and H. Li, “Propagation of an Airy vortex beam in uniaxial crystals,” Appl. Phys. B 110, 433–436 (2013).
[CrossRef]

J. Mod. Opt. (1)

J. Rehacek, Z. Hradil, Z. Bouchal, and M. Jezek, “Tomographic analysis of vortex information content,” J. Mod. Opt. 53, 689–697 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6, 607–621 (2012).
[CrossRef]

Nat. Photonics (2)

J. P. Torres, “Multiplexing twisted light,” Nat. Photonics 6, 420–422 (2012).
[CrossRef]

J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).

New J. Phys. (2)

Z. Bouchal and R. Celechovský, “Mixed vortex states of light as information carriers,” New J. Phys. 6, 131 (2004).
[CrossRef]

M. Gruneisen, R. C. Dymale, K. E. Soltenberg, and N. Steinhoff, “Optical vortex discrimination with transmission volume hologram,” New J. Phys. 13, 083030 (2011).
[CrossRef]

Opt. Commun. (2)

Z. Bouchal, “Resistance of nondiffracting vortex beam against amplitude and phase perturbations,” Opt. Commun. 210, 155–164 (2002).
[CrossRef]

S. Roychowdhury, V. K. Jaiswal, and R. P. Singh, “Implementing controlled NOT gate with optical vortex,” Opt. Commun. 236, 419–424 (2004).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

V. Garces-Chavez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef]

Rom. Rep. Phys. (1)

L. Ionel, “An alternative method for the compensation of laser beam spatial distortions based on computer generated holograms,” Rom. Rep. Phys. 65, 984–996 (2013).

Science (1)

A. E. Willner, J. Wang, and H. Hiuang, “A different angle on light communications,” Science 337, 655–656 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

HMs generated with (a) helical (m=20), (b) axicon (r0=5) phase distributions, (c) composed object in the object arm (m=8 r0=30). (d)–(f) Type II HMs generated with (d) m=5 r0=35, (e) m=25 r0=35, (f) m=15 r0=55.

Fig. 2.
Fig. 2.

DPs from HMs of type I obtained for m=20, r0=60, recorded with CCD (a), (b) behind, (c) in, and (d), (e) in front of the focal plane, respectively. The distances are (a) d2behind=0.39, (b) d1behind=0.24, (d) d1front=0.22, (e) d2front=0.40.

Fig. 3.
Fig. 3.

DPs from HMs formed with helical phase distribution m=20 in the object arm. The CCD sensor is placed (a) behind, (b) in, and (c) in front of the focal plane.

Fig. 4.
Fig. 4.

DPs in the focal plane from HMs obtained for the composed object with a given r0=35 and different m: (a) m=10, (b) m=15, (c) m=20, (d) m=25. (All images are recorded in the focal plane.)

Fig. 5.
Fig. 5.

DPs in the focal plane from HMs obtained for the composed object with a given m=10 and different r0: (a) r0=20, (b) r0=30, (c) r0=40, (d) r0=50. (All images are recorded in the focal plane.)

Fig. 6.
Fig. 6.

Diameters dependence (a) on m (in the case of R1), whatever r0 value; (b) with r0 (in the case of R2), whatever m value; and (c) with m (in the case of R3), at different values of r0.

Fig. 7.
Fig. 7.

DPs from type II HM with r0=60, m=20 recorded (a) behind, (b) in, and (c) in front of the focal plane.

Fig. 8.
Fig. 8.

DPs after two HMs of type II with r0HM=r0RM=60: (a) mHM=20 and mRM=5, (b) mHM=20 and mRM=10, (c) mHM=20 and mRM=15, (d) mHM=20 and mRM=20, (e) mHM=20 and mRM=20, (f) mHM=25 and mRM=25. (All images are recorded in the focal plane.)

Fig. 9.
Fig. 9.

DPs after two computer generated HMs of type II with mHM=mRM=15: (a) r0HM=35 and r0RM=45, (b) r0HM=35 and r0RM=55, (c) r0HM=35 and r0RM=35, (d) r0HM=45 and r0RM=45. (All images are recorded in the focal plane.)

Fig. 10.
Fig. 10.

DPs from two HMs of type II with mHM=20 and mRM=20, (a) behind, (b) in, and (c) in front of the focal plane.

Fig. 11.
Fig. 11.

DPs obtained when for reading we use simple phase distribution with opposite signs for (a) r0 or for (b) m. The constructive parameters are (a) mHM=15, r0HM=30, r0RM=30, (b) mHM=15, r0HM=30, mRM=15. (Both images are recorded in the focal plane.)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H=|f1+f2|2=|eikx+eimθ|2,
H=|f1+f3|2=|eikx+ei2π·r/r0|2.
HI=|f1+f4|2.
HII=|f5+f4|2.

Metrics