Abstract

The effect of absorption in diffusing wave spectroscopy (DWS) was studied using an absorption-dependent diffusive equation for describing the light propagation within a turbid liquid where dielectric microspheres have been embedded. Here, we propose an expression for the time-averaged light intensity autocorrelation function that correctly describes the time fluctuations for the scattered light, in the regime where the diffusion approximation accurately describes the light propagation. This correction was suspected previously, but it was not formally derived from a light diffusive equation. As in the case of no absorption, we obtained that time fluctuations of the scattered light can be related to the mean square displacement of the embedded particles. However, if a correction for absorption is not taken into account, the colloidal dynamics can be misinterpreted. Experimental results show that this new formulation correctly describes the time fluctuations of scattered light. This new procedure extends the applicability of DWS, and it opens the possibility of doing microrheology with this optical method in systems where absorption cannot be avoided.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media: the effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
    [CrossRef]
  2. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” Phys. Rev. Lett. 60, 1134–1137 (1988).
    [CrossRef]
  3. D. A. Weitz and D. J. Pine, “Diffusing-wave spectroscopy,” in Dynamic Light Scattering, W. Brown, ed. (Oxford University, 1993), p. 652.
  4. D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris) 51, 2101–2127 (1990).
    [CrossRef]
  5. D. D. Kaplan, M. H. Kao, A. Yodh, and D. Pine, “Geometric constraints for the design of diffusing-wave spectroscopy experiments,” Appl. Opt. 32, 3828–3836 (1993).
    [CrossRef]
  6. J. L. Harden and V. Viasnoff, “Recent advances in DWS-based micro-rheology,” Curr. Opin. Colloid Interface Sci. 6, 438–445 (2001).
    [CrossRef]
  7. J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 044002 (2005).
    [CrossRef]
  8. F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Opt. Express 14, 10181–10194 (2006).
    [CrossRef]
  9. M. B. M. Ninck, G. Hering, L. Spinelli, D. C. A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt. 15, 057007 (2010).
    [CrossRef]
  10. M. Ninck, M. Untenberger, and T. Gisler, “Diffusing-wave spectroscopy with dynamic contrast variation: disentangling the effects of blood flow and extravascular tissue shearing on signals from deep tissue,” Biomed. Opt. Express 1, 1502–1513 (2010).
    [CrossRef]
  11. T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30, 2915–2917 (2005).
    [CrossRef]
  12. G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82, 1279–1284 (2006).
    [CrossRef]
  13. U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H.-W. Wang, W. M. F. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15, 15507–15516 (2007).
    [CrossRef]
  14. Y. Shang, Y. Zhao, R. Cheng, L. Dong, D. Irwin, and G. Yu, “Portable optical tissue flow oximeter based on diffuse correlation spectroscopy,” Opt. Lett. 34, 3556–3558 (2009).
    [CrossRef]
  15. Y. Shang, T. B. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurement during exercise,” Biomed. Opt. Express 1, 500–511 (2010).
    [CrossRef]
  16. G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application for blood flow detection in deep tissue,” Appl. Opt. 46, 8506–8514 (2007).
    [CrossRef]
  17. F. Jaillon, J. Li, G. Dietsche, T. Elbert, and T. Gisler, “Activity of the human visual cortex measured non-invasively by diffusing-wave spectroscopy,” Opt. Express 15, 6643–6650 (2007).
    [CrossRef]
  18. G. Maret, “Diffusing-wave spectroscopy,” Curr. Opin. Colloid Interface Sci. 2, 251–257 (1997).
    [CrossRef]
  19. T. Gisler and D. A. Weitz, “Tracer microrheology in complex fluids,” Curr. Opin. Colloid Interface Sci. 3, 586–592 (1998).
    [CrossRef]
  20. F. C. MacKintosh and C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4, 300–307 (1999).
    [CrossRef]
  21. A. Mukhhopadhyay and S. Granick, “Micro- and nanorheology,” Curr. Opin. Colloid Interface Sci. 6, 423–429 (2001).
    [CrossRef]
  22. F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenbeger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).
  23. N. Willenbacher and C. Oelschlaeger, “Dynamics and structure of complex fluids from high frequency mechanical and optical rheometry,” Curr. Opin. Colloid Interface Sci. 12, 43–49 (2007).
    [CrossRef]
  24. T. D. Squires and T. G. Mason, “Fluid mechanics of microrheology,” Annu. Rev. Fluid Mech. 42, 413–438 (2010).
    [CrossRef]
  25. D. Lopez-Diaz and R. Castillo, “Microrheology of solutions embedded with thread-like supramolecular structures,” Soft Matter 7, 5926–5937 (2011).
    [CrossRef]
  26. A. P. Y. Wong and P. Wiltzius, “Dynamic light scattering with a CCD camera,” Rev. Sci. Instrum. 64, 2547–2549 (1993).
    [CrossRef]
  27. L. Cipelleti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum. 70, 3214–3221 (1999).
    [CrossRef]
  28. S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys. 104, 1758–1761 (1996).
    [CrossRef]
  29. M. Oda, Y. Yamashita, G. Nishimura, and M. Tamura, “Quantitation of absolute concentration change in scattering media by the time-resolved microscopic Beer–Lambert law,” Adv. Exp. Med. Biol. 345, 861–870 (1992).
    [CrossRef]
  30. P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random media: an experimental study,” J. Phys. 49, 63–75 (1988).
    [CrossRef]
  31. L. T. Perelman, J. Wu, I. Itzkan, and M. S. Feld, “Photon migration in turbid media using path integrals,” Phys. Rev. Lett. 72, 1341–1344 (1994).
    [CrossRef]
  32. S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
    [CrossRef]
  33. S. L. Jacques, “Time resolved propagation of ultrashort laser pulses with turbid tissues,” Appl. Opt. 28, 2223–2229 (1989).
    [CrossRef]
  34. Y. Hasegawa, Y. Yamada, M. Tamura, and Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4515–4520 (1991).
    [CrossRef]
  35. G. Nishimura, K. Katayama, M. Kinjo, and M. Tamura, “Diffusing-wave absorption spectroscopy in homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).
    [CrossRef]
  36. K. Katayama, G. Nishimura, M. Kinjo, and M. Tamura, “Absorbance measurements in turbid media by the photon correlation method,” Appl. Opt. 34, 7419–7427 (1995).
    [CrossRef]
  37. K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
    [CrossRef]
  38. T. Durduran, A. G. Yodh, B. Chance, and D. A. Boas, “Does the photon-diffusion coefficient depend of absorption?” J. Opt. Soc. Am. A 14, 3358–3365 (1997).
    [CrossRef]
  39. M. Bassani, F. Martelli, G. Zaccanti, and D. Contini, “Independence of the diffusion coefficient from absorption: experimental and numerical evidence,” Opt. Lett. 22, 853–855 (1997).
    [CrossRef]
  40. T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541–2549 (1997).
    [CrossRef]
  41. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  42. R. Aronson and N. Corngold, “Photon diffusion coefficient in an absorbing medium,” J. Opt. Soc. Am. A 16, 1066–1071 (1999).
    [CrossRef]
  43. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  44. S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–89 (1943).
    [CrossRef]
  45. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef]
  46. L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002).
    [CrossRef]
  47. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993).
    [CrossRef]
  48. S. A. Prahl, Inverse Adding Doubling, http://omlc.ogi.edu/software/iad/index.html .
  49. H. C. van de Hulst, Multiple Light Scattering (Academic, 1980), Vol. 1.
  50. H. C. van de Hulst, Multiple Light Scattering (Academic, 1980), Vol. 2.
  51. B. M. Cruzado, S. V. y Montiel, and J. A. D. Atencio, “Genetic algorithms and MCML program for recovery of optical properties of homogeneous turbid media,” Biomed. Opt. Express 4, 433–446 (2013).
    [CrossRef]
  52. J. Galvan-Miyoshi and R. Castillo, “Absolute values of transport mean free path of light in non-absorbing media using transmission and reflectance measurements,” Rev. Mex. Fis. 54, 257–264 (2008).
  53. J. Galvan-Miyoshi, J. Delgado, and R. Castillo, “Diffusing wave spectroscopy in Maxwellian fluids,” Eur. Phys. J. E 26, 369–377 (2008).
    [CrossRef]
  54. G. M. Hale and M. R. Querry, “Optical constants of water in the 200  nm to 200  m wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef]

2013 (1)

2011 (1)

D. Lopez-Diaz and R. Castillo, “Microrheology of solutions embedded with thread-like supramolecular structures,” Soft Matter 7, 5926–5937 (2011).
[CrossRef]

2010 (4)

T. D. Squires and T. G. Mason, “Fluid mechanics of microrheology,” Annu. Rev. Fluid Mech. 42, 413–438 (2010).
[CrossRef]

M. B. M. Ninck, G. Hering, L. Spinelli, D. C. A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt. 15, 057007 (2010).
[CrossRef]

Y. Shang, T. B. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurement during exercise,” Biomed. Opt. Express 1, 500–511 (2010).
[CrossRef]

M. Ninck, M. Untenberger, and T. Gisler, “Diffusing-wave spectroscopy with dynamic contrast variation: disentangling the effects of blood flow and extravascular tissue shearing on signals from deep tissue,” Biomed. Opt. Express 1, 1502–1513 (2010).
[CrossRef]

2009 (1)

2008 (2)

J. Galvan-Miyoshi and R. Castillo, “Absolute values of transport mean free path of light in non-absorbing media using transmission and reflectance measurements,” Rev. Mex. Fis. 54, 257–264 (2008).

J. Galvan-Miyoshi, J. Delgado, and R. Castillo, “Diffusing wave spectroscopy in Maxwellian fluids,” Eur. Phys. J. E 26, 369–377 (2008).
[CrossRef]

2007 (4)

2006 (2)

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Opt. Express 14, 10181–10194 (2006).
[CrossRef]

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82, 1279–1284 (2006).
[CrossRef]

2005 (2)

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 044002 (2005).
[CrossRef]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30, 2915–2917 (2005).
[CrossRef]

2004 (1)

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenbeger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).

2002 (1)

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002).
[CrossRef]

2001 (2)

J. L. Harden and V. Viasnoff, “Recent advances in DWS-based micro-rheology,” Curr. Opin. Colloid Interface Sci. 6, 438–445 (2001).
[CrossRef]

A. Mukhhopadhyay and S. Granick, “Micro- and nanorheology,” Curr. Opin. Colloid Interface Sci. 6, 423–429 (2001).
[CrossRef]

1999 (3)

F. C. MacKintosh and C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4, 300–307 (1999).
[CrossRef]

L. Cipelleti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum. 70, 3214–3221 (1999).
[CrossRef]

R. Aronson and N. Corngold, “Photon diffusion coefficient in an absorbing medium,” J. Opt. Soc. Am. A 16, 1066–1071 (1999).
[CrossRef]

1998 (1)

T. Gisler and D. A. Weitz, “Tracer microrheology in complex fluids,” Curr. Opin. Colloid Interface Sci. 3, 586–592 (1998).
[CrossRef]

1997 (4)

G. Maret, “Diffusing-wave spectroscopy,” Curr. Opin. Colloid Interface Sci. 2, 251–257 (1997).
[CrossRef]

T. Durduran, A. G. Yodh, B. Chance, and D. A. Boas, “Does the photon-diffusion coefficient depend of absorption?” J. Opt. Soc. Am. A 14, 3358–3365 (1997).
[CrossRef]

T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541–2549 (1997).
[CrossRef]

M. Bassani, F. Martelli, G. Zaccanti, and D. Contini, “Independence of the diffusion coefficient from absorption: experimental and numerical evidence,” Opt. Lett. 22, 853–855 (1997).
[CrossRef]

1996 (2)

G. Nishimura, K. Katayama, M. Kinjo, and M. Tamura, “Diffusing-wave absorption spectroscopy in homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).
[CrossRef]

S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys. 104, 1758–1761 (1996).
[CrossRef]

1995 (1)

1994 (2)

L. T. Perelman, J. Wu, I. Itzkan, and M. S. Feld, “Photon migration in turbid media using path integrals,” Phys. Rev. Lett. 72, 1341–1344 (1994).
[CrossRef]

K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

1993 (3)

1992 (1)

M. Oda, Y. Yamashita, G. Nishimura, and M. Tamura, “Quantitation of absolute concentration change in scattering media by the time-resolved microscopic Beer–Lambert law,” Adv. Exp. Med. Biol. 345, 861–870 (1992).
[CrossRef]

1991 (1)

1990 (1)

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris) 51, 2101–2127 (1990).
[CrossRef]

1989 (3)

1988 (2)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[CrossRef]

P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random media: an experimental study,” J. Phys. 49, 63–75 (1988).
[CrossRef]

1987 (1)

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media: the effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
[CrossRef]

1973 (1)

1943 (1)

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–89 (1943).
[CrossRef]

Akkermans, E.

P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random media: an experimental study,” J. Phys. 49, 63–75 (1988).
[CrossRef]

Aronson, R.

Atencio, J. A. D.

Bartsch, E.

S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys. 104, 1758–1761 (1996).
[CrossRef]

Bassani, M.

Bissig, H.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenbeger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).

Boas, D. A.

Busch, T. M.

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82, 1279–1284 (2006).
[CrossRef]

Cardinaux, F.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenbeger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).

Castillo, R.

D. Lopez-Diaz and R. Castillo, “Microrheology of solutions embedded with thread-like supramolecular structures,” Soft Matter 7, 5926–5937 (2011).
[CrossRef]

J. Galvan-Miyoshi, J. Delgado, and R. Castillo, “Diffusing wave spectroscopy in Maxwellian fluids,” Eur. Phys. J. E 26, 369–377 (2008).
[CrossRef]

J. Galvan-Miyoshi and R. Castillo, “Absolute values of transport mean free path of light in non-absorbing media using transmission and reflectance measurements,” Rev. Mex. Fis. 54, 257–264 (2008).

Chaikin, P. M.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[CrossRef]

Chance, B.

Chandrasekhar, S.

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–89 (1943).
[CrossRef]

Cheng, R.

Choe, R.

Cipelleti, L.

L. Cipelleti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum. 70, 3214–3221 (1999).
[CrossRef]

Cipelletti, L.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenbeger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).

Contini, D.

Corngold, N.

Cruzado, B. M.

Czerniecki, B. J.

Delgado, J.

J. Galvan-Miyoshi, J. Delgado, and R. Castillo, “Diffusing wave spectroscopy in Maxwellian fluids,” Eur. Phys. J. E 26, 369–377 (2008).
[CrossRef]

Dietsche, G.

Dong, L.

Durduran, T.

Elbert, T.

Feld, M. S.

L. T. Perelman, J. Wu, I. Itzkan, and M. S. Feld, “Photon migration in turbid media using path integrals,” Phys. Rev. Lett. 72, 1341–1344 (1994).
[CrossRef]

Finlay, J. C.

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82, 1279–1284 (2006).
[CrossRef]

Frenz, V.

S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys. 104, 1758–1761 (1996).
[CrossRef]

Furutsu, K.

K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

Galvan-Miyoshi, J.

J. Galvan-Miyoshi and R. Castillo, “Absolute values of transport mean free path of light in non-absorbing media using transmission and reflectance measurements,” Rev. Mex. Fis. 54, 257–264 (2008).

J. Galvan-Miyoshi, J. Delgado, and R. Castillo, “Diffusing wave spectroscopy in Maxwellian fluids,” Eur. Phys. J. E 26, 369–377 (2008).
[CrossRef]

Gisler, T.

M. B. M. Ninck, G. Hering, L. Spinelli, D. C. A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt. 15, 057007 (2010).
[CrossRef]

M. Ninck, M. Untenberger, and T. Gisler, “Diffusing-wave spectroscopy with dynamic contrast variation: disentangling the effects of blood flow and extravascular tissue shearing on signals from deep tissue,” Biomed. Opt. Express 1, 1502–1513 (2010).
[CrossRef]

F. Jaillon, J. Li, G. Dietsche, T. Elbert, and T. Gisler, “Activity of the human visual cortex measured non-invasively by diffusing-wave spectroscopy,” Opt. Express 15, 6643–6650 (2007).
[CrossRef]

G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application for blood flow detection in deep tissue,” Appl. Opt. 46, 8506–8514 (2007).
[CrossRef]

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Opt. Express 14, 10181–10194 (2006).
[CrossRef]

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 044002 (2005).
[CrossRef]

T. Gisler and D. A. Weitz, “Tracer microrheology in complex fluids,” Curr. Opin. Colloid Interface Sci. 3, 586–592 (1998).
[CrossRef]

Granick, S.

A. Mukhhopadhyay and S. Granick, “Micro- and nanorheology,” Curr. Opin. Colloid Interface Sci. 6, 423–429 (2001).
[CrossRef]

Hahn, S. M.

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82, 1279–1284 (2006).
[CrossRef]

Hale, G. M.

Harden, J. L.

J. L. Harden and V. Viasnoff, “Recent advances in DWS-based micro-rheology,” Curr. Opin. Colloid Interface Sci. 6, 438–445 (2001).
[CrossRef]

Hasegawa, Y.

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris) 51, 2101–2127 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[CrossRef]

Hering, G.

M. B. M. Ninck, G. Hering, L. Spinelli, D. C. A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt. 15, 057007 (2010).
[CrossRef]

Iftime, D.

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 044002 (2005).
[CrossRef]

Irwin, D.

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

Itzkan, I.

L. T. Perelman, J. Wu, I. Itzkan, and M. S. Feld, “Photon migration in turbid media using path integrals,” Phys. Rev. Lett. 72, 1341–1344 (1994).
[CrossRef]

Jacques, S. L.

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
[CrossRef]

S. L. Jacques, “Time resolved propagation of ultrashort laser pulses with turbid tissues,” Appl. Opt. 28, 2223–2229 (1989).
[CrossRef]

Jaillon, F.

Kao, M. H.

Kaplan, D. D.

Katayama, K.

G. Nishimura, K. Katayama, M. Kinjo, and M. Tamura, “Diffusing-wave absorption spectroscopy in homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).
[CrossRef]

K. Katayama, G. Nishimura, M. Kinjo, and M. Tamura, “Absorbance measurements in turbid media by the photon correlation method,” Appl. Opt. 34, 7419–7427 (1995).
[CrossRef]

Kinjo, M.

G. Nishimura, K. Katayama, M. Kinjo, and M. Tamura, “Diffusing-wave absorption spectroscopy in homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).
[CrossRef]

K. Katayama, G. Nishimura, M. Kinjo, and M. Tamura, “Absorbance measurements in turbid media by the photon correlation method,” Appl. Opt. 34, 7419–7427 (1995).
[CrossRef]

Kirsch, S.

S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys. 104, 1758–1761 (1996).
[CrossRef]

Lee, W. M. F.

Li, J.

Lopez-Diaz, D.

D. Lopez-Diaz and R. Castillo, “Microrheology of solutions embedded with thread-like supramolecular structures,” Soft Matter 7, 5926–5937 (2011).
[CrossRef]

MacKintosh, F. C.

F. C. MacKintosh and C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4, 300–307 (1999).
[CrossRef]

Makonnen, S.

Malkowicz, S. B.

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82, 1279–1284 (2006).
[CrossRef]

Maret, G.

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Opt. Express 14, 10181–10194 (2006).
[CrossRef]

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 044002 (2005).
[CrossRef]

G. Maret, “Diffusing-wave spectroscopy,” Curr. Opin. Colloid Interface Sci. 2, 251–257 (1997).
[CrossRef]

P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random media: an experimental study,” J. Phys. 49, 63–75 (1988).
[CrossRef]

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media: the effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
[CrossRef]

Martelli, F.

Mason, T. G.

T. D. Squires and T. G. Mason, “Fluid mechanics of microrheology,” Annu. Rev. Fluid Mech. 42, 413–438 (2010).
[CrossRef]

Maynard, R.

P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random media: an experimental study,” J. Phys. 49, 63–75 (1988).
[CrossRef]

Mukhhopadhyay, A.

A. Mukhhopadhyay and S. Granick, “Micro- and nanorheology,” Curr. Opin. Colloid Interface Sci. 6, 423–429 (2001).
[CrossRef]

Nakai, T.

T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541–2549 (1997).
[CrossRef]

Ninck, M.

Ninck, M. B. M.

M. B. M. Ninck, G. Hering, L. Spinelli, D. C. A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt. 15, 057007 (2010).
[CrossRef]

Nishimura, G.

T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541–2549 (1997).
[CrossRef]

G. Nishimura, K. Katayama, M. Kinjo, and M. Tamura, “Diffusing-wave absorption spectroscopy in homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).
[CrossRef]

K. Katayama, G. Nishimura, M. Kinjo, and M. Tamura, “Absorbance measurements in turbid media by the photon correlation method,” Appl. Opt. 34, 7419–7427 (1995).
[CrossRef]

M. Oda, Y. Yamashita, G. Nishimura, and M. Tamura, “Quantitation of absolute concentration change in scattering media by the time-resolved microscopic Beer–Lambert law,” Adv. Exp. Med. Biol. 345, 861–870 (1992).
[CrossRef]

Nomura, Y.

Oda, M.

M. Oda, Y. Yamashita, G. Nishimura, and M. Tamura, “Quantitation of absolute concentration change in scattering media by the time-resolved microscopic Beer–Lambert law,” Adv. Exp. Med. Biol. 345, 861–870 (1992).
[CrossRef]

Oelschlaeger, C.

N. Willenbacher and C. Oelschlaeger, “Dynamics and structure of complex fluids from high frequency mechanical and optical rheometry,” Curr. Opin. Colloid Interface Sci. 12, 43–49 (2007).
[CrossRef]

Ortolf, C.

Patterson, M. S.

Perelman, L. T.

L. T. Perelman, J. Wu, I. Itzkan, and M. S. Feld, “Photon migration in turbid media using path integrals,” Phys. Rev. Lett. 72, 1341–1344 (1994).
[CrossRef]

Pine, D.

Pine, D. J.

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris) 51, 2101–2127 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[CrossRef]

D. A. Weitz and D. J. Pine, “Diffusing-wave spectroscopy,” in Dynamic Light Scattering, W. Brown, ed. (Oxford University, 1993), p. 652.

Prahl, S. A.

Querry, M. R.

Rockstroh, T.

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 044002 (2005).
[CrossRef]

Rojas-Ochoa, L. F.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenbeger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002).
[CrossRef]

Romer, S.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenbeger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002).
[CrossRef]

Schartl, W.

S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys. 104, 1758–1761 (1996).
[CrossRef]

Scheffold, F.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenbeger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002).
[CrossRef]

Schmidt, C. F.

F. C. MacKintosh and C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4, 300–307 (1999).
[CrossRef]

Schurtenbeger, P.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenbeger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).

Schurtenberger, P.

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002).
[CrossRef]

Shang, Y.

Sillescu, H.

S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys. 104, 1758–1761 (1996).
[CrossRef]

Skipetrov, S. E.

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Opt. Express 14, 10181–10194 (2006).
[CrossRef]

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 044002 (2005).
[CrossRef]

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenbeger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).

Spinelli, L.

M. B. M. Ninck, G. Hering, L. Spinelli, D. C. A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt. 15, 057007 (2010).
[CrossRef]

Squires, T. D.

T. D. Squires and T. G. Mason, “Fluid mechanics of microrheology,” Annu. Rev. Fluid Mech. 42, 413–438 (2010).
[CrossRef]

Stradner, A.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenbeger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).

Sunar, U.

Symons, T. B.

Tamura, M.

T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541–2549 (1997).
[CrossRef]

G. Nishimura, K. Katayama, M. Kinjo, and M. Tamura, “Diffusing-wave absorption spectroscopy in homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).
[CrossRef]

K. Katayama, G. Nishimura, M. Kinjo, and M. Tamura, “Absorbance measurements in turbid media by the photon correlation method,” Appl. Opt. 34, 7419–7427 (1995).
[CrossRef]

M. Oda, Y. Yamashita, G. Nishimura, and M. Tamura, “Quantitation of absolute concentration change in scattering media by the time-resolved microscopic Beer–Lambert law,” Adv. Exp. Med. Biol. 345, 861–870 (1992).
[CrossRef]

Y. Hasegawa, Y. Yamada, M. Tamura, and Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4515–4520 (1991).
[CrossRef]

Tchou, J. C.

Torricelli, D. C. A.

M. B. M. Ninck, G. Hering, L. Spinelli, D. C. A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt. 15, 057007 (2010).
[CrossRef]

Trappe, V.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenbeger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).

Untenberger, M.

Urban, C.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenbeger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).

van de Hulst, H. C.

H. C. van de Hulst, Multiple Light Scattering (Academic, 1980), Vol. 1.

H. C. van de Hulst, Multiple Light Scattering (Academic, 1980), Vol. 2.

van Gemert, M. J. C.

Viasnoff, V.

J. L. Harden and V. Viasnoff, “Recent advances in DWS-based micro-rheology,” Curr. Opin. Colloid Interface Sci. 6, 438–445 (2001).
[CrossRef]

Wang, H.-W.

Wang, L. V.

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Weitz, D. A.

L. Cipelleti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum. 70, 3214–3221 (1999).
[CrossRef]

T. Gisler and D. A. Weitz, “Tracer microrheology in complex fluids,” Curr. Opin. Colloid Interface Sci. 3, 586–592 (1998).
[CrossRef]

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris) 51, 2101–2127 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[CrossRef]

D. A. Weitz and D. J. Pine, “Diffusing-wave spectroscopy,” in Dynamic Light Scattering, W. Brown, ed. (Oxford University, 1993), p. 652.

Welch, A. J.

Willenbacher, N.

N. Willenbacher and C. Oelschlaeger, “Dynamics and structure of complex fluids from high frequency mechanical and optical rheometry,” Curr. Opin. Colloid Interface Sci. 12, 43–49 (2007).
[CrossRef]

Wilson, B. C.

Wiltzius, P.

A. P. Y. Wong and P. Wiltzius, “Dynamic light scattering with a CCD camera,” Rev. Sci. Instrum. 64, 2547–2549 (1993).
[CrossRef]

Wolf, P. E.

P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random media: an experimental study,” J. Phys. 49, 63–75 (1988).
[CrossRef]

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media: the effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
[CrossRef]

Wong, A. P. Y.

A. P. Y. Wong and P. Wiltzius, “Dynamic light scattering with a CCD camera,” Rev. Sci. Instrum. 64, 2547–2549 (1993).
[CrossRef]

Wu, H.

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Wu, J.

L. T. Perelman, J. Wu, I. Itzkan, and M. S. Feld, “Photon migration in turbid media using path integrals,” Phys. Rev. Lett. 72, 1341–1344 (1994).
[CrossRef]

y Montiel, S. V.

Yamada, Y.

K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

Y. Hasegawa, Y. Yamada, M. Tamura, and Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4515–4520 (1991).
[CrossRef]

Yamamoto, K.

T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541–2549 (1997).
[CrossRef]

Yamashita, Y.

M. Oda, Y. Yamashita, G. Nishimura, and M. Tamura, “Quantitation of absolute concentration change in scattering media by the time-resolved microscopic Beer–Lambert law,” Adv. Exp. Med. Biol. 345, 861–870 (1992).
[CrossRef]

Yodh, A.

Yodh, A. G.

Yu, G.

Zaccanti, G.

Zhao, Y.

Zhou, C.

Zhu, J. X.

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris) 51, 2101–2127 (1990).
[CrossRef]

Zhu, T. C.

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82, 1279–1284 (2006).
[CrossRef]

Adv. Exp. Med. Biol. (1)

M. Oda, Y. Yamashita, G. Nishimura, and M. Tamura, “Quantitation of absolute concentration change in scattering media by the time-resolved microscopic Beer–Lambert law,” Adv. Exp. Med. Biol. 345, 861–870 (1992).
[CrossRef]

Annu. Rev. Fluid Mech. (1)

T. D. Squires and T. G. Mason, “Fluid mechanics of microrheology,” Annu. Rev. Fluid Mech. 42, 413–438 (2010).
[CrossRef]

Appl. Opt. (8)

G. M. Hale and M. R. Querry, “Optical constants of water in the 200  nm to 200  m wavelength region,” Appl. Opt. 12, 555–563 (1973).
[CrossRef]

S. L. Jacques, “Time resolved propagation of ultrashort laser pulses with turbid tissues,” Appl. Opt. 28, 2223–2229 (1989).
[CrossRef]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef]

Y. Hasegawa, Y. Yamada, M. Tamura, and Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4515–4520 (1991).
[CrossRef]

D. D. Kaplan, M. H. Kao, A. Yodh, and D. Pine, “Geometric constraints for the design of diffusing-wave spectroscopy experiments,” Appl. Opt. 32, 3828–3836 (1993).
[CrossRef]

S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993).
[CrossRef]

K. Katayama, G. Nishimura, M. Kinjo, and M. Tamura, “Absorbance measurements in turbid media by the photon correlation method,” Appl. Opt. 34, 7419–7427 (1995).
[CrossRef]

G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application for blood flow detection in deep tissue,” Appl. Opt. 46, 8506–8514 (2007).
[CrossRef]

Biomed. Opt. Express (3)

Curr. Opin. Colloid Interface Sci. (6)

G. Maret, “Diffusing-wave spectroscopy,” Curr. Opin. Colloid Interface Sci. 2, 251–257 (1997).
[CrossRef]

T. Gisler and D. A. Weitz, “Tracer microrheology in complex fluids,” Curr. Opin. Colloid Interface Sci. 3, 586–592 (1998).
[CrossRef]

F. C. MacKintosh and C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4, 300–307 (1999).
[CrossRef]

A. Mukhhopadhyay and S. Granick, “Micro- and nanorheology,” Curr. Opin. Colloid Interface Sci. 6, 423–429 (2001).
[CrossRef]

N. Willenbacher and C. Oelschlaeger, “Dynamics and structure of complex fluids from high frequency mechanical and optical rheometry,” Curr. Opin. Colloid Interface Sci. 12, 43–49 (2007).
[CrossRef]

J. L. Harden and V. Viasnoff, “Recent advances in DWS-based micro-rheology,” Curr. Opin. Colloid Interface Sci. 6, 438–445 (2001).
[CrossRef]

Eur. Phys. J. E (1)

J. Galvan-Miyoshi, J. Delgado, and R. Castillo, “Diffusing wave spectroscopy in Maxwellian fluids,” Eur. Phys. J. E 26, 369–377 (2008).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
[CrossRef]

J. Biomed. Opt. (2)

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 044002 (2005).
[CrossRef]

M. B. M. Ninck, G. Hering, L. Spinelli, D. C. A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” J. Biomed. Opt. 15, 057007 (2010).
[CrossRef]

J. Chem. Phys. (1)

S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys. 104, 1758–1761 (1996).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. (1)

P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random media: an experimental study,” J. Phys. 49, 63–75 (1988).
[CrossRef]

J. Phys. (Paris) (1)

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris) 51, 2101–2127 (1990).
[CrossRef]

Opt. Commun. (1)

G. Nishimura, K. Katayama, M. Kinjo, and M. Tamura, “Diffusing-wave absorption spectroscopy in homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Photochem. Photobiol. (1)

G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82, 1279–1284 (2006).
[CrossRef]

Phys. Med. Biol. (1)

T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541–2549 (1997).
[CrossRef]

Phys. Rev. E (2)

K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

L. T. Perelman, J. Wu, I. Itzkan, and M. S. Feld, “Photon migration in turbid media using path integrals,” Phys. Rev. Lett. 72, 1341–1344 (1994).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[CrossRef]

Prog. Colloid Polym. Sci. (1)

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenbeger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).

Rev. Mex. Fis. (1)

J. Galvan-Miyoshi and R. Castillo, “Absolute values of transport mean free path of light in non-absorbing media using transmission and reflectance measurements,” Rev. Mex. Fis. 54, 257–264 (2008).

Rev. Mod. Phys. (1)

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–89 (1943).
[CrossRef]

Rev. Sci. Instrum. (2)

A. P. Y. Wong and P. Wiltzius, “Dynamic light scattering with a CCD camera,” Rev. Sci. Instrum. 64, 2547–2549 (1993).
[CrossRef]

L. Cipelleti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum. 70, 3214–3221 (1999).
[CrossRef]

Soft Matter (1)

D. Lopez-Diaz and R. Castillo, “Microrheology of solutions embedded with thread-like supramolecular structures,” Soft Matter 7, 5926–5937 (2011).
[CrossRef]

Z. Phys. B (1)

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media: the effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
[CrossRef]

Other (6)

D. A. Weitz and D. J. Pine, “Diffusing-wave spectroscopy,” in Dynamic Light Scattering, W. Brown, ed. (Oxford University, 1993), p. 652.

S. A. Prahl, Inverse Adding Doubling, http://omlc.ogi.edu/software/iad/index.html .

H. C. van de Hulst, Multiple Light Scattering (Academic, 1980), Vol. 1.

H. C. van de Hulst, Multiple Light Scattering (Academic, 1980), Vol. 2.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup: 1, Ar+ laser; 2 and 3, beam expander; 4, movable mirror; 5, attenuator; 6, integrating sphere; 7, detector; 8, voltmeter; 9, polarizer; 10, thermal bath; 11, sample; 12, lens; 13, optical fiber; 14 and 15, photomultiplier tube; 16, computer with correlator.

Fig. 2.
Fig. 2.

Reflectance, transmittance, lateral escape, and absorption as functions of la, where 5μl of a dilute 1% solution of India ink was added successively to all the samples starting from right to left. Ink was not added to the first point of each curve.

Fig. 3.
Fig. 3.

l* recovered using IAD with reflectance and transmittance measurements, and predictions of Mie’s theory.

Fig. 4.
Fig. 4.

Intensity ACFs and MSDs. (a) Normalized intensity autocorrelation as the absorbing agent concentration increases for l*=250μm. The increase of absorbing agent displaces the correlation function to the right. (b) MSDs obtained from the intensity correlations functions presented in (a) [using Eq. (4)]. Labels are the same as in (a). The increase of absorbing agent displaces the MSD curves to the right.

Fig. 5.
Fig. 5.

Time delay of the ACF at g(2)(t)=0.2 with respect to the case of no absorption for different values of la.

Fig. 6.
Fig. 6.

Corrected MSDs of particles in Brownian motion embedded in an absorbing medium characterized by l*=140 and 250 μm. The corrected MSDs were obtained from the correlation functions given in Fig. 4 and employing Eq. (11).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

g(1)(t)=E(0)E*(t)|E(0)|2=0P(s)exp[k02Δr2(t)s3l*]ds=0P(s)exp[2tτsl*]ds,
Ut=D12U,
(U+23l*n^·U)|z=0,L=0.
g(1)(t)=L/l*+4/3α*+2/3[sinh(α*x)+23xcosh(α*x)](1+49x2)sinh(Ll*x)+43xcosh(Ll*x),
g(1)(t)=0P(s)exp[(2tτ+l*la)sl*]ds.
Ut=D12UμacU.
g(1)(t)=[U˜(r,p)U˜(r,0)]z=L.
υ=12πD1texp[(zz0)24D1t]exp[μact]
υ˜(q)=exp(q|zz0|)2D1q,
ν˜(q)=Asinh(qz)+Bcosh(qz),
g(1)(t)=(1+49η2)sinh(Ll*η)+43ηcosh(Ll*η)sinh(α*η)+23ηcosh(α*η)[sinh(α*χ)+23χcosh(α*χ)](1+49χ2)sinh(Ll*χ)+43χcosh(Ll*χ),

Metrics