Abstract

It is known that optical fiber long period gratings (LPGs) exhibit their highest sensitivity to environmental perturbation when the period is such that the phase matching condition is satisfied at its turning point. The reproducible fabrication of LPGs with parameters satisfying this condition requires high resolution control over the properties of the grating. The performance of an LPG fabrication system based on the point-by-point UV exposure approach is analyzed in this paper, and the control of factors influencing reproducibility, including period, duty cycle, and the environment in which the device is fabricated, is explored.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Prudenzano, L. Messcia, T. Palmisano, M. Surico, M. De Sario, and G. C. Righini, “Optimization of pump absorption in MOF lasers via multi-long-period gratings: design strategies,” Appl. Opt. 51, 1420–1430 (2012).
    [CrossRef]
  2. S. Baek, S. Roh, Y. Jeong, and B. Lee, “Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump coupling long-period gratings,” IEEE Photon. Technol. Lett. 18, 700–702 (2006).
    [CrossRef]
  3. L. Mescia, “Design of long-period gratings in cladding-pumped microstructured optical fiber,” J. Opt. Soc. Am. B 25, 1833–1839 (2008).
    [CrossRef]
  4. H. Sakata and K. Yamahata, “Variable long-period fiber gratings controlled by ND-FE-B permanent magnet for erbium-doped fiber sources,” Microwave Opt. Technol. Lett. 56, 864–867 (2014).
  5. S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
    [CrossRef]
  6. T. Wang, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators. B 185, 117–124 (2013).
    [CrossRef]
  7. S. Korposh, T. Wang, S. W. James, R. P. Tatam, and S.-W. Lee, “Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fiber long period grating,” Sens. Actuators B 173, 300–309 (2012).
    [CrossRef]
  8. S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fiber long period grating based selective vapor sensing of volatile organic compounds,” Sens. Actuators B 143, 629–634 (2010).
    [CrossRef]
  9. C. S. Cheung, S. M. Topliss, S. W. James, and R. P. Tatam, “Response of fiber optic long period gratings operating near the phase matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Am. B 25, 897–902 (2008).
    [CrossRef]
  10. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [CrossRef]
  11. J. Blows and D. Y. Tang, “Gratings written with tripled output of Q-switched Nd:YAG laser,” Electron. Lett. 36, 1837–1839 (2000).
    [CrossRef]
  12. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302–303 (1998).
    [CrossRef]
  13. X. Lan, Q. Han, T. Wei, J. Huang, and H. Xiao, “Turn-around-point long-period fiber gratings fabricated by CO2 laser point-by-point irradiations,” IEEE Photon. Technol. Lett. 23, 1664–1666 (2011).
    [CrossRef]
  14. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infra-red femtosecond laser pulses,” Opt. Lett. 24, 646–648 (1999).
    [CrossRef]
  15. A. I. Kalachev, D. N. Nikogosyan, and G. Brambilla, “Long-period fiber grating fabrication by high-intensity femtosecond pulses at 211  nm,” J. Lightwave Technol. 23, 2568–2578 (2005).
    [CrossRef]
  16. M. Fujumaki, Y. Ohki, J. L. Brebner, and S. Roorda, “Fabrication of long-period optical fiber gratings by use of ion implantation,” Opt. Lett. 25, 88–90 (2000).
    [CrossRef]
  17. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Opt. Lett. 25, 710–712 (2000).
    [CrossRef]
  18. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. S. J. Russell, “Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers,” Opt. Lett. 26, 1137–1139 (2001).
    [CrossRef]
  19. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings using an electric arc,” J. Lightwave Technol. 29, 1137–1139 (2001).
  20. L. Zhang, W. Zhang, and I. Bennion, “In-fiber grating optic sensors,” in Fiber Optic Sensors, S. Yin, P. B. Ruffin, and F. T. S. Yu, eds., 2nd ed. (CRC Press, 2008), pp. 109–162.
  21. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Lightwave Technol. 21, 218–227 (2003).
    [CrossRef]
  22. S. W. James, S. Korposh, S.-W. Lee, and R. P. Tatam, “A long period grating-based chemical sensor insensitive to the influence of interfering parameters,” Opt. Express 22, 8012–8023 (2014).
    [CrossRef]
  23. S. W. James, S. M. Topliss, and R. P. Tatam, “Properties of length-apodized LPGs operating at the phase matching turning point,” J. Lightwave Technol. 30, 2203–2209 (2012).
    [CrossRef]
  24. Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164, 27–31 (1999).
    [CrossRef]
  25. Y. Li, T. Wei, J. A. Montoya, S. V. Saini, X. Lan, X. Tang, J. Dong, and H. Xiao, “Measurement of CO2-laser-irradiation-induced refractive index modulation in single-mode fiber toward long-period fiber grating design and fabrication,” Appl. Opt. 47, 5296–5304 (2008).
    [CrossRef]
  26. E. M. Dianov, S. A. Vasilev, O. I. Medvedkov, and A. A. Frolov, “Dynamics of the refractive index induced in germanosilicate optical fibres by different types of UV irradiation,” Quantum Electron. 27, 785–788 (1997).
    [CrossRef]
  27. B. H. Kim, T.-J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U.-C. Paek, and W.-T. Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Appl. Opt. 41, 3809–3815 (2002).
    [CrossRef]

2014 (2)

H. Sakata and K. Yamahata, “Variable long-period fiber gratings controlled by ND-FE-B permanent magnet for erbium-doped fiber sources,” Microwave Opt. Technol. Lett. 56, 864–867 (2014).

S. W. James, S. Korposh, S.-W. Lee, and R. P. Tatam, “A long period grating-based chemical sensor insensitive to the influence of interfering parameters,” Opt. Express 22, 8012–8023 (2014).
[CrossRef]

2013 (1)

T. Wang, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators. B 185, 117–124 (2013).
[CrossRef]

2012 (3)

2011 (1)

X. Lan, Q. Han, T. Wei, J. Huang, and H. Xiao, “Turn-around-point long-period fiber gratings fabricated by CO2 laser point-by-point irradiations,” IEEE Photon. Technol. Lett. 23, 1664–1666 (2011).
[CrossRef]

2010 (1)

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fiber long period grating based selective vapor sensing of volatile organic compounds,” Sens. Actuators B 143, 629–634 (2010).
[CrossRef]

2008 (3)

2006 (1)

S. Baek, S. Roh, Y. Jeong, and B. Lee, “Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump coupling long-period gratings,” IEEE Photon. Technol. Lett. 18, 700–702 (2006).
[CrossRef]

2005 (1)

2003 (2)

2002 (1)

2001 (2)

G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. S. J. Russell, “Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers,” Opt. Lett. 26, 1137–1139 (2001).
[CrossRef]

G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings using an electric arc,” J. Lightwave Technol. 29, 1137–1139 (2001).

2000 (3)

1999 (2)

1998 (1)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

1997 (1)

E. M. Dianov, S. A. Vasilev, O. I. Medvedkov, and A. A. Frolov, “Dynamics of the refractive index induced in germanosilicate optical fibres by different types of UV irradiation,” Quantum Electron. 27, 785–788 (1997).
[CrossRef]

1996 (1)

Ahn, T.-J.

Anemogiannis, E.

Baek, S.

S. Baek, S. Roh, Y. Jeong, and B. Lee, “Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump coupling long-period gratings,” IEEE Photon. Technol. Lett. 18, 700–702 (2006).
[CrossRef]

Bennion, I.

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164, 27–31 (1999).
[CrossRef]

L. Zhang, W. Zhang, and I. Bennion, “In-fiber grating optic sensors,” in Fiber Optic Sensors, S. Yin, P. B. Ruffin, and F. T. S. Yu, eds., 2nd ed. (CRC Press, 2008), pp. 109–162.

Bhatia, V.

Birks, T. A.

Blows, J.

J. Blows and D. Y. Tang, “Gratings written with tripled output of Q-switched Nd:YAG laser,” Electron. Lett. 36, 1837–1839 (2000).
[CrossRef]

Brambilla, G.

Brebner, J. L.

Cheung, C. S.

Chung, Y.

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Davis, F.

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fiber long period grating based selective vapor sensing of volatile organic compounds,” Sens. Actuators B 143, 629–634 (2010).
[CrossRef]

De Sario, M.

Dianov, E.

G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings using an electric arc,” J. Lightwave Technol. 29, 1137–1139 (2001).

Dianov, E. M.

E. M. Dianov, S. A. Vasilev, O. I. Medvedkov, and A. A. Frolov, “Dynamics of the refractive index induced in germanosilicate optical fibres by different types of UV irradiation,” Quantum Electron. 27, 785–788 (1997).
[CrossRef]

Digonnet, M. J. F.

Dimmick, T. E.

Dong, J.

Frolov, A. A.

E. M. Dianov, S. A. Vasilev, O. I. Medvedkov, and A. A. Frolov, “Dynamics of the refractive index induced in germanosilicate optical fibres by different types of UV irradiation,” Quantum Electron. 27, 785–788 (1997).
[CrossRef]

Fujumaki, M.

Gaylord, T. K.

E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Lightwave Technol. 21, 218–227 (2003).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Glytsis, E. N.

E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Lightwave Technol. 21, 218–227 (2003).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Han, Q.

X. Lan, Q. Han, T. Wei, J. Huang, and H. Xiao, “Turn-around-point long-period fiber gratings fabricated by CO2 laser point-by-point irradiations,” IEEE Photon. Technol. Lett. 23, 1664–1666 (2011).
[CrossRef]

Han, W.-T.

Higson, S. P. J.

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fiber long period grating based selective vapor sensing of volatile organic compounds,” Sens. Actuators B 143, 629–634 (2010).
[CrossRef]

Hirao, K.

Huang, J.

X. Lan, Q. Han, T. Wei, J. Huang, and H. Xiao, “Turn-around-point long-period fiber gratings fabricated by CO2 laser point-by-point irradiations,” IEEE Photon. Technol. Lett. 23, 1664–1666 (2011).
[CrossRef]

James, S. W.

S. W. James, S. Korposh, S.-W. Lee, and R. P. Tatam, “A long period grating-based chemical sensor insensitive to the influence of interfering parameters,” Opt. Express 22, 8012–8023 (2014).
[CrossRef]

T. Wang, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators. B 185, 117–124 (2013).
[CrossRef]

S. W. James, S. M. Topliss, and R. P. Tatam, “Properties of length-apodized LPGs operating at the phase matching turning point,” J. Lightwave Technol. 30, 2203–2209 (2012).
[CrossRef]

S. Korposh, T. Wang, S. W. James, R. P. Tatam, and S.-W. Lee, “Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fiber long period grating,” Sens. Actuators B 173, 300–309 (2012).
[CrossRef]

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fiber long period grating based selective vapor sensing of volatile organic compounds,” Sens. Actuators B 143, 629–634 (2010).
[CrossRef]

C. S. Cheung, S. M. Topliss, S. W. James, and R. P. Tatam, “Response of fiber optic long period gratings operating near the phase matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Am. B 25, 897–902 (2008).
[CrossRef]

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

Jeong, Y.

S. Baek, S. Roh, Y. Jeong, and B. Lee, “Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump coupling long-period gratings,” IEEE Photon. Technol. Lett. 18, 700–702 (2006).
[CrossRef]

Kakarantzas, G.

Kalachev, A. I.

Kazansky, P.

Kim, B. H.

Kim, D. Y.

Kino, G. S.

Kondo, Y.

Korposh, S.

S. W. James, S. Korposh, S.-W. Lee, and R. P. Tatam, “A long period grating-based chemical sensor insensitive to the influence of interfering parameters,” Opt. Express 22, 8012–8023 (2014).
[CrossRef]

T. Wang, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators. B 185, 117–124 (2013).
[CrossRef]

S. Korposh, T. Wang, S. W. James, R. P. Tatam, and S.-W. Lee, “Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fiber long period grating,” Sens. Actuators B 173, 300–309 (2012).
[CrossRef]

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Lan, X.

X. Lan, Q. Han, T. Wei, J. Huang, and H. Xiao, “Turn-around-point long-period fiber gratings fabricated by CO2 laser point-by-point irradiations,” IEEE Photon. Technol. Lett. 23, 1664–1666 (2011).
[CrossRef]

Y. Li, T. Wei, J. A. Montoya, S. V. Saini, X. Lan, X. Tang, J. Dong, and H. Xiao, “Measurement of CO2-laser-irradiation-induced refractive index modulation in single-mode fiber toward long-period fiber grating design and fabrication,” Appl. Opt. 47, 5296–5304 (2008).
[CrossRef]

Le Roux, R.

Lee, B.

S. Baek, S. Roh, Y. Jeong, and B. Lee, “Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump coupling long-period gratings,” IEEE Photon. Technol. Lett. 18, 700–702 (2006).
[CrossRef]

Lee, B. H.

Lee, S.-W.

S. W. James, S. Korposh, S.-W. Lee, and R. P. Tatam, “A long period grating-based chemical sensor insensitive to the influence of interfering parameters,” Opt. Express 22, 8012–8023 (2014).
[CrossRef]

T. Wang, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators. B 185, 117–124 (2013).
[CrossRef]

S. Korposh, T. Wang, S. W. James, R. P. Tatam, and S.-W. Lee, “Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fiber long period grating,” Sens. Actuators B 173, 300–309 (2012).
[CrossRef]

Li, Y.

Liu, Y.

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164, 27–31 (1999).
[CrossRef]

Medvedkov, O. I.

E. M. Dianov, S. A. Vasilev, O. I. Medvedkov, and A. A. Frolov, “Dynamics of the refractive index induced in germanosilicate optical fibres by different types of UV irradiation,” Quantum Electron. 27, 785–788 (1997).
[CrossRef]

Mescia, L.

Messcia, L.

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Mitsuyu, T.

Montoya, J. A.

Nikogosyan, D. N.

Nouchi, K.

Ohki, Y.

Okhotnikov, O.

G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings using an electric arc,” J. Lightwave Technol. 29, 1137–1139 (2001).

Paek, U.-C.

Palmisano, T.

Prudenzano, F.

Rego, G.

G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings using an electric arc,” J. Lightwave Technol. 29, 1137–1139 (2001).

Righini, G. C.

Roh, S.

S. Baek, S. Roh, Y. Jeong, and B. Lee, “Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump coupling long-period gratings,” IEEE Photon. Technol. Lett. 18, 700–702 (2006).
[CrossRef]

Roorda, S.

Russell, P. S. J.

Saini, S. V.

Sakata, H.

H. Sakata and K. Yamahata, “Variable long-period fiber gratings controlled by ND-FE-B permanent magnet for erbium-doped fiber sources,” Microwave Opt. Technol. Lett. 56, 864–867 (2014).

Savin, S.

Shaw, H. J.

Sulimov, V.

G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings using an electric arc,” J. Lightwave Technol. 29, 1137–1139 (2001).

Surico, M.

Tang, D. Y.

J. Blows and D. Y. Tang, “Gratings written with tripled output of Q-switched Nd:YAG laser,” Electron. Lett. 36, 1837–1839 (2000).
[CrossRef]

Tang, X.

Tatam, R. P.

S. W. James, S. Korposh, S.-W. Lee, and R. P. Tatam, “A long period grating-based chemical sensor insensitive to the influence of interfering parameters,” Opt. Express 22, 8012–8023 (2014).
[CrossRef]

T. Wang, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators. B 185, 117–124 (2013).
[CrossRef]

S. W. James, S. M. Topliss, and R. P. Tatam, “Properties of length-apodized LPGs operating at the phase matching turning point,” J. Lightwave Technol. 30, 2203–2209 (2012).
[CrossRef]

S. Korposh, T. Wang, S. W. James, R. P. Tatam, and S.-W. Lee, “Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fiber long period grating,” Sens. Actuators B 173, 300–309 (2012).
[CrossRef]

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fiber long period grating based selective vapor sensing of volatile organic compounds,” Sens. Actuators B 143, 629–634 (2010).
[CrossRef]

C. S. Cheung, S. M. Topliss, S. W. James, and R. P. Tatam, “Response of fiber optic long period gratings operating near the phase matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Am. B 25, 897–902 (2008).
[CrossRef]

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

Topliss, S. M.

Vasilev, S. A.

E. M. Dianov, S. A. Vasilev, O. I. Medvedkov, and A. A. Frolov, “Dynamics of the refractive index induced in germanosilicate optical fibres by different types of UV irradiation,” Quantum Electron. 27, 785–788 (1997).
[CrossRef]

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef]

Wang, T.

T. Wang, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators. B 185, 117–124 (2013).
[CrossRef]

S. Korposh, T. Wang, S. W. James, R. P. Tatam, and S.-W. Lee, “Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fiber long period grating,” Sens. Actuators B 173, 300–309 (2012).
[CrossRef]

Watanabe, M.

Wei, T.

X. Lan, Q. Han, T. Wei, J. Huang, and H. Xiao, “Turn-around-point long-period fiber gratings fabricated by CO2 laser point-by-point irradiations,” IEEE Photon. Technol. Lett. 23, 1664–1666 (2011).
[CrossRef]

Y. Li, T. Wei, J. A. Montoya, S. V. Saini, X. Lan, X. Tang, J. Dong, and H. Xiao, “Measurement of CO2-laser-irradiation-induced refractive index modulation in single-mode fiber toward long-period fiber grating design and fabrication,” Appl. Opt. 47, 5296–5304 (2008).
[CrossRef]

Williams, J. A. R.

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164, 27–31 (1999).
[CrossRef]

Xiao, H.

X. Lan, Q. Han, T. Wei, J. Huang, and H. Xiao, “Turn-around-point long-period fiber gratings fabricated by CO2 laser point-by-point irradiations,” IEEE Photon. Technol. Lett. 23, 1664–1666 (2011).
[CrossRef]

Y. Li, T. Wei, J. A. Montoya, S. V. Saini, X. Lan, X. Tang, J. Dong, and H. Xiao, “Measurement of CO2-laser-irradiation-induced refractive index modulation in single-mode fiber toward long-period fiber grating design and fabrication,” Appl. Opt. 47, 5296–5304 (2008).
[CrossRef]

Yamahata, K.

H. Sakata and K. Yamahata, “Variable long-period fiber gratings controlled by ND-FE-B permanent magnet for erbium-doped fiber sources,” Microwave Opt. Technol. Lett. 56, 864–867 (2014).

Zhang, L.

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164, 27–31 (1999).
[CrossRef]

L. Zhang, W. Zhang, and I. Bennion, “In-fiber grating optic sensors,” in Fiber Optic Sensors, S. Yin, P. B. Ruffin, and F. T. S. Yu, eds., 2nd ed. (CRC Press, 2008), pp. 109–162.

Zhang, W.

L. Zhang, W. Zhang, and I. Bennion, “In-fiber grating optic sensors,” in Fiber Optic Sensors, S. Yin, P. B. Ruffin, and F. T. S. Yu, eds., 2nd ed. (CRC Press, 2008), pp. 109–162.

Appl. Opt. (3)

Electron. Lett. (2)

J. Blows and D. Y. Tang, “Gratings written with tripled output of Q-switched Nd:YAG laser,” Electron. Lett. 36, 1837–1839 (2000).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

X. Lan, Q. Han, T. Wei, J. Huang, and H. Xiao, “Turn-around-point long-period fiber gratings fabricated by CO2 laser point-by-point irradiations,” IEEE Photon. Technol. Lett. 23, 1664–1666 (2011).
[CrossRef]

S. Baek, S. Roh, Y. Jeong, and B. Lee, “Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump coupling long-period gratings,” IEEE Photon. Technol. Lett. 18, 700–702 (2006).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

H. Sakata and K. Yamahata, “Variable long-period fiber gratings controlled by ND-FE-B permanent magnet for erbium-doped fiber sources,” Microwave Opt. Technol. Lett. 56, 864–867 (2014).

Opt. Commun. (1)

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164, 27–31 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Quantum Electron. (1)

E. M. Dianov, S. A. Vasilev, O. I. Medvedkov, and A. A. Frolov, “Dynamics of the refractive index induced in germanosilicate optical fibres by different types of UV irradiation,” Quantum Electron. 27, 785–788 (1997).
[CrossRef]

Sens. Actuators B (2)

S. Korposh, T. Wang, S. W. James, R. P. Tatam, and S.-W. Lee, “Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fiber long period grating,” Sens. Actuators B 173, 300–309 (2012).
[CrossRef]

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fiber long period grating based selective vapor sensing of volatile organic compounds,” Sens. Actuators B 143, 629–634 (2010).
[CrossRef]

Sens. Actuators. B (1)

T. Wang, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators. B 185, 117–124 (2013).
[CrossRef]

Other (1)

L. Zhang, W. Zhang, and I. Bennion, “In-fiber grating optic sensors,” in Fiber Optic Sensors, S. Yin, P. B. Ruffin, and F. T. S. Yu, eds., 2nd ed. (CRC Press, 2008), pp. 109–162.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Phase matching curves for modes LP02LP08. (b) Phase matching curves for modes LP014LP020.

Fig. 2.
Fig. 2.

Simulated evolution of the resonance band of an LPG of period 111 μm, corresponding to coupling to the LP019 cladding mode, in response to changes in surrounding refractive index. White and black represent 100% and 0% transmission, respectively.

Fig. 3.
Fig. 3.

Simulated evolution of the resonance band corresponding to coupling to the LP019 cladding mode in response to changes in grating period. White and black represent 100% and 0% transmission, respectively.

Fig. 4.
Fig. 4.

Optical setup used for fabricating LPGs using the point-by-point technique.

Fig. 5.
Fig. 5.

Optical images of a 110.9 μm period structure inscribed on the fiber buffer jacket of a single mode fiber with duty cycles (a) 5050, (b) 7030, and (c) 8020. The darker sections denote the regions exposed to the laser through the slit.

Fig. 6.
Fig. 6.

Transmission spectra of LPGs written at and around the PMTP.

Fig. 7.
Fig. 7.

LPG with a 110.7 μm period with varying duty cycles of 5050, 7030, and 8020 where the percentage ratio is irradiated section: nonirradiated section.

Fig. 8.
Fig. 8.

LPG with a 110.9 μm period with varying duty cycles of 5050, 7030, and 8020 where the percentage ratio is irradiated section: nonirradiated section.

Fig. 9.
Fig. 9.

Transmission spectra of four LPGs, each of 110.9 μm period, fabricated in an environment in which the temperature was controlled to 0.5°C.

Fig. 10.
Fig. 10.

Transmission spectra of four LPGs, each fabricated with a period 110.9 μm where the temperature has not been controlled.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ=[neff(λ)ncladi(λ)]Λ,

Metrics