Abstract

This paper investigates the influences of laser source on distributed intrusion sensor based on a phase-sensitivity optical time-domain reflectometer (φ-OTDR). A numerical simulation is performed to illustrate the relationships between trace-to-trace fluctuations and frequency drift rate as well as pulse width, and fluctuations ratio coefficient (FRC) is proposed to evaluate the level of trace-to-trace fluctuations. The simulation results show that the FRC grows with increasing frequency drift rate and pulse width, reaches, and maintains the peak value when the frequency drift rate and/or the pulse width are high enough. Furthermore, experiments are implemented using a φ-OTDR prototype with a low frequency drift laser (<5MHz/min), of which the high frequency drift rate is simulated by frequency sweeping. The good agreement of experimental with simulated results in the region of high frequency drift rate validates the theoretical analysis, and the huge differences between them in the region of low frequency drift rate indicate the place of laser frequency drift among system noises. The conclusion is useful for choosing laser sources and improving the performance of φ-OTDR.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac–Michelson interferometer for distributed disturbance detection,” J. Lightwave Technol. 15, 972–976 (1997).
    [CrossRef]
  2. A. A. Chtcherbakov, P. L. Swart, and S. J. Spammer, “Mach–Zehnder and modified Sagnac-distributed fiber optic impact sensor,” Appl. Opt. 37, 3432–3437 (1998).
    [CrossRef]
  3. M. Szustakowsk, L. R. Jaroszewicz, and A. Kiezun, “Distributed fiber optic sensor on the base of Sagnac interferometer with the location of a disturbance,” Proc. SPIE 2341, 84–88 (1994).
    [CrossRef]
  4. S. Liang, C. Zhang, B. Lin, W. Lin, Q. Li, X. Zhong, and L. Li, “Influences of semiconductor laser on fibre optic distributed disturbance sensor based on Mach–Zehnder interferometer,” Chin. Phys. B 19, 124217 (2010).
    [CrossRef]
  5. W. Lin, C. Zhang, L. Li, S. Liang, Q. Li, and X. Zhong, “Novel fiber optic distributed disturbance sensor using a modified phase generation carrier technique,” Adv. Mater. Res. 282–283, 697–701 (2011).
    [CrossRef]
  6. J. Park and H. F. Taylor, “Fiber optic intrusion sensor using coherent optical time domain reflectometer,” Jpn. J. Appl. Phys. 42, 3481–3482 (2003).
    [CrossRef]
  7. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 23, 2081–2087 (2005).
    [CrossRef]
  8. J. C. Juarez and H. F. Taylor, “Field test of a distributed fiber-optic intrusion sensor system for long perimeters,” Appl. Opt. 46, 1968–1971 (2007).
    [CrossRef]
  9. Y. Rao, J. Luo, Z. Ran, J. Yue, X. Luo, and Z. Zhou, “Long-distance fiber optic φ-OTDR intrusion sensing system,” Proc. SPIE 7503, 75031O (2009).
    [CrossRef]
  10. T. Zhu, X. Xiao, Q. He, and D. Diao, “Enhancement of SNR and spatial resolution in φ-OTDR system by using two-dimensional edge detection method,” J. Lightwave Technol. 31, 2851–2856 (2013).
    [CrossRef]
  11. J. Zhou, Z. Pan, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Characteristics and explanations of interference fading of a φ-OTDR with a multi-frequency source,” J. Lightwave Technol. 31, 2947–2954 (2013).
    [CrossRef]
  12. H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazao, and M. Gonzalez-Herraez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightwave Technol. 31, 3631–3637 (2013).
    [CrossRef]
  13. H. Hui, S. Zheng, J. Zhou, C. Xu, H. Chi, X. Jin, and X. Zhang, “Electro-optic modulator feedback control in phase-sensitive optical time-domain reflectometer distributed sensor,” Appl. Opt. 52, 8581–8585 (2013).
    [CrossRef]
  14. H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazao, and M. Gonzalez-Herraez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett. 38, 872–874 (2013).
    [CrossRef]
  15. T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21, 2953–2963 (2013).
    [CrossRef]
  16. K. N. Choi and H. F. Taylor, “Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 15, 386–388 (2003).
    [CrossRef]
  17. J. C. Juarez and H. F. Taylor, “Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system,” Opt. Lett. 30, 3284–3286 (2005).
    [CrossRef]
  18. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber optic distributed strain and temperature sensing with very high measured resolution over long range using coherent OTDR,” J. Lightwave Technol. 27, 1142–1146 (2009).
    [CrossRef]
  19. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28, 3243–3249 (2010).

2013

2011

W. Lin, C. Zhang, L. Li, S. Liang, Q. Li, and X. Zhong, “Novel fiber optic distributed disturbance sensor using a modified phase generation carrier technique,” Adv. Mater. Res. 282–283, 697–701 (2011).
[CrossRef]

2010

S. Liang, C. Zhang, B. Lin, W. Lin, Q. Li, X. Zhong, and L. Li, “Influences of semiconductor laser on fibre optic distributed disturbance sensor based on Mach–Zehnder interferometer,” Chin. Phys. B 19, 124217 (2010).
[CrossRef]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28, 3243–3249 (2010).

2009

2007

2005

2003

K. N. Choi and H. F. Taylor, “Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 15, 386–388 (2003).
[CrossRef]

J. Park and H. F. Taylor, “Fiber optic intrusion sensor using coherent optical time domain reflectometer,” Jpn. J. Appl. Phys. 42, 3481–3482 (2003).
[CrossRef]

1998

1997

S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac–Michelson interferometer for distributed disturbance detection,” J. Lightwave Technol. 15, 972–976 (1997).
[CrossRef]

1994

M. Szustakowsk, L. R. Jaroszewicz, and A. Kiezun, “Distributed fiber optic sensor on the base of Sagnac interferometer with the location of a disturbance,” Proc. SPIE 2341, 84–88 (1994).
[CrossRef]

Bao, X.

Cai, H.

Chen, L.

Chi, H.

Choi, K. N.

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 23, 2081–2087 (2005).
[CrossRef]

K. N. Choi and H. F. Taylor, “Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 15, 386–388 (2003).
[CrossRef]

Chtcherbakov, A. A.

A. A. Chtcherbakov, P. L. Swart, and S. J. Spammer, “Mach–Zehnder and modified Sagnac-distributed fiber optic impact sensor,” Appl. Opt. 37, 3432–3437 (1998).
[CrossRef]

S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac–Michelson interferometer for distributed disturbance detection,” J. Lightwave Technol. 15, 972–976 (1997).
[CrossRef]

Corredera, P.

Diao, D.

Fang, Z.

Filograno, M. L.

Frazao, O.

Gonzalez-Herraez, M.

He, Q.

Hogari, K.

Hui, H.

Imahama, M.

Jaroszewicz, L. R.

M. Szustakowsk, L. R. Jaroszewicz, and A. Kiezun, “Distributed fiber optic sensor on the base of Sagnac interferometer with the location of a disturbance,” Proc. SPIE 2341, 84–88 (1994).
[CrossRef]

Jin, X.

Juarez, J. C.

Kiezun, A.

M. Szustakowsk, L. R. Jaroszewicz, and A. Kiezun, “Distributed fiber optic sensor on the base of Sagnac interferometer with the location of a disturbance,” Proc. SPIE 2341, 84–88 (1994).
[CrossRef]

Koyamada, Y.

Kubota, K.

Li, L.

W. Lin, C. Zhang, L. Li, S. Liang, Q. Li, and X. Zhong, “Novel fiber optic distributed disturbance sensor using a modified phase generation carrier technique,” Adv. Mater. Res. 282–283, 697–701 (2011).
[CrossRef]

S. Liang, C. Zhang, B. Lin, W. Lin, Q. Li, X. Zhong, and L. Li, “Influences of semiconductor laser on fibre optic distributed disturbance sensor based on Mach–Zehnder interferometer,” Chin. Phys. B 19, 124217 (2010).
[CrossRef]

Li, Q.

W. Lin, C. Zhang, L. Li, S. Liang, Q. Li, and X. Zhong, “Novel fiber optic distributed disturbance sensor using a modified phase generation carrier technique,” Adv. Mater. Res. 282–283, 697–701 (2011).
[CrossRef]

S. Liang, C. Zhang, B. Lin, W. Lin, Q. Li, X. Zhong, and L. Li, “Influences of semiconductor laser on fibre optic distributed disturbance sensor based on Mach–Zehnder interferometer,” Chin. Phys. B 19, 124217 (2010).
[CrossRef]

Liang, S.

W. Lin, C. Zhang, L. Li, S. Liang, Q. Li, and X. Zhong, “Novel fiber optic distributed disturbance sensor using a modified phase generation carrier technique,” Adv. Mater. Res. 282–283, 697–701 (2011).
[CrossRef]

S. Liang, C. Zhang, B. Lin, W. Lin, Q. Li, X. Zhong, and L. Li, “Influences of semiconductor laser on fibre optic distributed disturbance sensor based on Mach–Zehnder interferometer,” Chin. Phys. B 19, 124217 (2010).
[CrossRef]

Lin, B.

S. Liang, C. Zhang, B. Lin, W. Lin, Q. Li, X. Zhong, and L. Li, “Influences of semiconductor laser on fibre optic distributed disturbance sensor based on Mach–Zehnder interferometer,” Chin. Phys. B 19, 124217 (2010).
[CrossRef]

Lin, W.

W. Lin, C. Zhang, L. Li, S. Liang, Q. Li, and X. Zhong, “Novel fiber optic distributed disturbance sensor using a modified phase generation carrier technique,” Adv. Mater. Res. 282–283, 697–701 (2011).
[CrossRef]

S. Liang, C. Zhang, B. Lin, W. Lin, Q. Li, X. Zhong, and L. Li, “Influences of semiconductor laser on fibre optic distributed disturbance sensor based on Mach–Zehnder interferometer,” Chin. Phys. B 19, 124217 (2010).
[CrossRef]

Lu, Y.

Luo, J.

Y. Rao, J. Luo, Z. Ran, J. Yue, X. Luo, and Z. Zhou, “Long-distance fiber optic φ-OTDR intrusion sensing system,” Proc. SPIE 7503, 75031O (2009).
[CrossRef]

Luo, X.

Y. Rao, J. Luo, Z. Ran, J. Yue, X. Luo, and Z. Zhou, “Long-distance fiber optic φ-OTDR intrusion sensing system,” Proc. SPIE 7503, 75031O (2009).
[CrossRef]

Maier, E. W.

Martin-Lopez, S.

Martins, H. F.

Pan, Z.

Park, J.

J. Park and H. F. Taylor, “Fiber optic intrusion sensor using coherent optical time domain reflectometer,” Jpn. J. Appl. Phys. 42, 3481–3482 (2003).
[CrossRef]

Qu, R.

Ran, Z.

Y. Rao, J. Luo, Z. Ran, J. Yue, X. Luo, and Z. Zhou, “Long-distance fiber optic φ-OTDR intrusion sensing system,” Proc. SPIE 7503, 75031O (2009).
[CrossRef]

Rao, Y.

Y. Rao, J. Luo, Z. Ran, J. Yue, X. Luo, and Z. Zhou, “Long-distance fiber optic φ-OTDR intrusion sensing system,” Proc. SPIE 7503, 75031O (2009).
[CrossRef]

Salgado, P.

Spammer, S. J.

A. A. Chtcherbakov, P. L. Swart, and S. J. Spammer, “Mach–Zehnder and modified Sagnac-distributed fiber optic impact sensor,” Appl. Opt. 37, 3432–3437 (1998).
[CrossRef]

S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac–Michelson interferometer for distributed disturbance detection,” J. Lightwave Technol. 15, 972–976 (1997).
[CrossRef]

Swart, P. L.

A. A. Chtcherbakov, P. L. Swart, and S. J. Spammer, “Mach–Zehnder and modified Sagnac-distributed fiber optic impact sensor,” Appl. Opt. 37, 3432–3437 (1998).
[CrossRef]

S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac–Michelson interferometer for distributed disturbance detection,” J. Lightwave Technol. 15, 972–976 (1997).
[CrossRef]

Szustakowsk, M.

M. Szustakowsk, L. R. Jaroszewicz, and A. Kiezun, “Distributed fiber optic sensor on the base of Sagnac interferometer with the location of a disturbance,” Proc. SPIE 2341, 84–88 (1994).
[CrossRef]

Taylor, H. F.

Xiao, X.

Xu, C.

Ye, Q.

Yue, J.

Y. Rao, J. Luo, Z. Ran, J. Yue, X. Luo, and Z. Zhou, “Long-distance fiber optic φ-OTDR intrusion sensing system,” Proc. SPIE 7503, 75031O (2009).
[CrossRef]

Zhang, C.

W. Lin, C. Zhang, L. Li, S. Liang, Q. Li, and X. Zhong, “Novel fiber optic distributed disturbance sensor using a modified phase generation carrier technique,” Adv. Mater. Res. 282–283, 697–701 (2011).
[CrossRef]

S. Liang, C. Zhang, B. Lin, W. Lin, Q. Li, X. Zhong, and L. Li, “Influences of semiconductor laser on fibre optic distributed disturbance sensor based on Mach–Zehnder interferometer,” Chin. Phys. B 19, 124217 (2010).
[CrossRef]

Zhang, X.

Zheng, S.

Zhong, X.

W. Lin, C. Zhang, L. Li, S. Liang, Q. Li, and X. Zhong, “Novel fiber optic distributed disturbance sensor using a modified phase generation carrier technique,” Adv. Mater. Res. 282–283, 697–701 (2011).
[CrossRef]

S. Liang, C. Zhang, B. Lin, W. Lin, Q. Li, X. Zhong, and L. Li, “Influences of semiconductor laser on fibre optic distributed disturbance sensor based on Mach–Zehnder interferometer,” Chin. Phys. B 19, 124217 (2010).
[CrossRef]

Zhou, J.

Zhou, Z.

Y. Rao, J. Luo, Z. Ran, J. Yue, X. Luo, and Z. Zhou, “Long-distance fiber optic φ-OTDR intrusion sensing system,” Proc. SPIE 7503, 75031O (2009).
[CrossRef]

Zhu, T.

Adv. Mater. Res.

W. Lin, C. Zhang, L. Li, S. Liang, Q. Li, and X. Zhong, “Novel fiber optic distributed disturbance sensor using a modified phase generation carrier technique,” Adv. Mater. Res. 282–283, 697–701 (2011).
[CrossRef]

Appl. Opt.

Chin. Phys. B

S. Liang, C. Zhang, B. Lin, W. Lin, Q. Li, X. Zhong, and L. Li, “Influences of semiconductor laser on fibre optic distributed disturbance sensor based on Mach–Zehnder interferometer,” Chin. Phys. B 19, 124217 (2010).
[CrossRef]

IEEE Photonics Technol. Lett.

K. N. Choi and H. F. Taylor, “Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectometry,” IEEE Photonics Technol. Lett. 15, 386–388 (2003).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

J. Park and H. F. Taylor, “Fiber optic intrusion sensor using coherent optical time domain reflectometer,” Jpn. J. Appl. Phys. 42, 3481–3482 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

Y. Rao, J. Luo, Z. Ran, J. Yue, X. Luo, and Z. Zhou, “Long-distance fiber optic φ-OTDR intrusion sensing system,” Proc. SPIE 7503, 75031O (2009).
[CrossRef]

M. Szustakowsk, L. R. Jaroszewicz, and A. Kiezun, “Distributed fiber optic sensor on the base of Sagnac interferometer with the location of a disturbance,” Proc. SPIE 2341, 84–88 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of φ-OTDR. LS, laser source; AOM, acoustic optical modulator; EDFA, Er-doped fiber amplifier; PD, photodiode.

Fig. 2.
Fig. 2.

Simulated temporal response of φ-OTDR over 0.1 s at specified range in condition of (a) different rate of frequency drift with fixed pulse width of 1 μs; (b) different pulse width with fixed frequency drift rate of 10GHz/min. The traces have been vertically displaced so that the curves can easily be distinguished from one another.

Fig. 3.
Fig. 3.

Simulated FRC in cases of different frequency drift rate and pulse width.

Fig. 4.
Fig. 4.

Experimental temporal response of φ-OTDR over 0.1 s at range of 3 km for the case where (a) the pulse width is 0.5 μs and (b) the pulse width is 5 μs. The traces have been vertically displaced so that the curves can easily be distinguished from one another.

Fig. 5.
Fig. 5.

Comparisons between the simulated values and experimentally measured values of FRC.

Fig. 6.
Fig. 6.

Summary of detection times in cases of different frequency drift rates and pulse widths.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I(t)=Ic(t)+Iv(t),
Ic(t)=i=1Nai2exp(αcτin)rect(tτiTp),
Iv(t)=2i=1Nj=i+1Naiajexp[α2c(τi+τj)n]cosφij·rect(tτiTp)rect(tτjTp),
φij=2πυ(τiτj)=4πυn(lilj)/c,
Iv(t1)=2i=1Mj=i+1Maiajexp[α2c(τi+τj)n]cos[2πυ(τiτj)],
Iv(t1+tp)=2i=1Mj=i+1Maiajexp[α2c(τi+τj)n]·cos[2π(υ+Δυ)(τiτj)],
ΔIv=2i=1Mj=i+1Maiajexp[α2c(τi+τj)n]·{cos[2π(υ+Δυ)(τiτj)]cos[2πυ(τiτj)]}.
FRC=1Mk1i=2Mk|kiki1|/tp,

Metrics