Abstract

Based on waveguide coupling technology, we set a kaleidoscope homogenizer to get an intensity redistributed uniform multimode laser beam and then shape the uniform beam into a large area square beam with an imaging system. The simulation results of overall light intensity uniformity are both greater than 89% under the irradiation areas of 3.5cm×3cm and 10cm×10cm. In the practical application, it is also greater than 85%. After that, we apply this technology to the photoluminescence imaging detection of semiconductor devices, proving that this technology can be widely used in a variety of research requiring large areas of uniform laser illuminating spots.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett. 89, 044107 (2006).
  2. P. W. Scott and W. H. Southwell, “Reflective optics for irradiance re-distribution of laser beams: design,” Appl. Opt. 20, 1606–1610 (1981).
    [CrossRef]
  3. N. C. Evans and D. L. Shealy, “Design and optimization of an irradiance profile-shaping system with a genetic algorithm method,” Appl. Opt. 37, 5216–5221 (1998).
    [CrossRef]
  4. Y. Zhang and H. Dong, “Demonstration of a home projector based on RGB semiconductor lasers,” Appl. Opt. 51, 3584–3589 (2012).
    [CrossRef]
  5. M.-D. Wei, W.-L. Shiao, and Y.-T. Lin, “Adjustable generation of bottle and hollow beams using an axicon,” Opt. Commun. 248, 7–14 (2005).
    [CrossRef]
  6. E. Bartnicki and G. L. Bourdet, “Simulation and experimental results of kaleidoscope homogenizers for longitudinal diode pumping,” Appl. Opt. 49, 1636–1641 (2010).
    [CrossRef]
  7. S. D. Fantone, “Kaleidoscopes: more than fun,” Opt. Photon. News 12(12), 68–69 (1991).
    [CrossRef]
  8. R. Pereira and B. Weichelt, “Efficient pump beam shaping for high-power thin-disk laser systems,” Appl. Opt. 49, 5157–5160 (2010).
    [CrossRef]

2012

2010

2006

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett. 89, 044107 (2006).

2005

M.-D. Wei, W.-L. Shiao, and Y.-T. Lin, “Adjustable generation of bottle and hollow beams using an axicon,” Opt. Commun. 248, 7–14 (2005).
[CrossRef]

1998

1991

S. D. Fantone, “Kaleidoscopes: more than fun,” Opt. Photon. News 12(12), 68–69 (1991).
[CrossRef]

1981

Bardos, R. A.

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett. 89, 044107 (2006).

Bartnicki, E.

Bourdet, G. L.

Dong, H.

Evans, N. C.

Fantone, S. D.

S. D. Fantone, “Kaleidoscopes: more than fun,” Opt. Photon. News 12(12), 68–69 (1991).
[CrossRef]

Lin, Y.-T.

M.-D. Wei, W.-L. Shiao, and Y.-T. Lin, “Adjustable generation of bottle and hollow beams using an axicon,” Opt. Commun. 248, 7–14 (2005).
[CrossRef]

Pereira, R.

Schubert, M. C.

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett. 89, 044107 (2006).

Scott, P. W.

Shealy, D. L.

Shiao, W.-L.

M.-D. Wei, W.-L. Shiao, and Y.-T. Lin, “Adjustable generation of bottle and hollow beams using an axicon,” Opt. Commun. 248, 7–14 (2005).
[CrossRef]

Southwell, W. H.

Trupke, T.

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett. 89, 044107 (2006).

Warta, W.

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett. 89, 044107 (2006).

Wei, M.-D.

M.-D. Wei, W.-L. Shiao, and Y.-T. Lin, “Adjustable generation of bottle and hollow beams using an axicon,” Opt. Commun. 248, 7–14 (2005).
[CrossRef]

Weichelt, B.

Zhang, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Brief schematic of a kaleidoscope.

Fig. 2.
Fig. 2.

Structure of design principle of the homogenizing system.

Fig. 3.
Fig. 3.

Simulated incident laser beam.

Fig. 4.
Fig. 4.

Homogenizing effect at the output surface of the kaleidoscope.

Fig. 5.
Fig. 5.

Light intensity distribution at different locations of the optical system. (a) 10 mm away from output surface, (b) 40 mm away from output surface, (c) 70 mm away from output surface, and (d) 100 mm away from output surface.

Fig. 6.
Fig. 6.

Homogenizing system with the double telecentric imaging system.

Fig. 7.
Fig. 7.

(a) Light intensity distribution at the illuminated plane, (b) X direction lineout, and (c) Y direction lineout.

Fig. 8.
Fig. 8.

Homogenizing system with the 10× zoom eyepiece system.

Fig. 9.
Fig. 9.

(a) Light intensity distribution at the illuminated plane, (b) X direction lineout, and (c) Y direction lineout.

Fig. 10.
Fig. 10.

(a) Laser beam spot detected by CCD and (b) and (c) light intensity distribution in X direction and Y direction.

Fig. 11.
Fig. 11.

(a) Homogenized spot detected by the CCD and (b), (c) light intensity distribution in the X direction and the Y direction.

Fig. 12.
Fig. 12.

Photoluminescence imaging system.

Fig. 13.
Fig. 13.

(a) Appearance of the under test polycrystalline silicon solar cell, (b) photoluminescence image of the polycrystalline silicon solar cell without the homogenizer, and (c) photoluminescence image of the polycrystalline silicon solar cell with the homogenizer.

Tables (6)

Tables Icon

Table 1. Information about the Focusing Optics

Tables Icon

Table 2. Information about the Double Telecentric Imaging System

Tables Icon

Table 3. Results of the Evaluation Function

Tables Icon

Table 4. Information about 10× Zoom Eyepiece System

Tables Icon

Table 5. Results of the Evaluation Function

Tables Icon

Table 6. Results of the Evaluation Function

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α1=1(ImaxImin)/(Imax+Imin).
s=i=1n(XiX)2/n.
s=i=1n(XiX)2/nXmax2.

Metrics