Abstract

A basic slit spectroscope is usually held close to the eye to produce the spectrum of a single slit view. However, a more distant viewer may have multiple slit views at once, an effect of dispersion that has been overlooked. Investigations of spectroscopic image geometry reveal that the maximum field of view equals the dispersion angle. Spectrally decoded camera-obscura projections compose three-dimensional images of a scene, emulating a Benton hologram. The images represent diagonal sections of a hyperspectral datacube. Consequently, the spectroscope can be used as an autostereoscopic display and for a fourth technique of hyperspectral data acquisition, named spatiospectral scanning.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Newton, Opticks: Or, a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light, 4th ed. (Dover, 1979).
  2. J. Browning, How to Work with the Spectroscope. A Manual of Practical Manipulation with Spectroscopes of All Kinds (Browning, 1882).
  3. F. Theilmann and S. Grusche, “An RGB approach to prismatic colours,” Phys. Educ. 48, 750–759 (2013).
    [CrossRef]
  4. J.-P. Meyn, “Colour mixing based on daylight,” Eur. J. Phys. 29, 1017–1031 (2008).
    [CrossRef]
  5. N. Pahlevan, Z. Lee, C. Hu, and J. R. Schott, “Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for geostationary coastal and air pollution events,” Appl. Opt. 53, 648–665 (2014).
    [CrossRef]
  6. K. Chance, “Spectroscopic needs for atmospheric pollution measurements from space,” in AIP Conference Proceedings, E. Roueff, ed. (AIP, 2007), pp. 13–18.
  7. M.-F. Nieva and S. Simón-Díaz, “The chemical composition of the Orion star forming region,” Astron. Astrophys. 532, A2 (2011).
    [CrossRef]
  8. A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
    [CrossRef]
  9. P. Figueira, F. Pepe, C. H. F. Melo, N. C. Santos, C. Lovis, M. Mayor, D. Queloz, A. Smette, and S. Udry, “Radial velocities with CRIRES,” Astron. Astrophys. 511, A55 (2010).
    [CrossRef]
  10. M. Franz and R. Schlichenmaier, “The velocity fields of sunspot penumbrae,” Astron. Astrophys. 508, 1453–1460 (2009).
    [CrossRef]
  11. W. W. Luo and H. J. Gerritsen, “Seeing the Fraunhofer lines with only a diffraction grating and a slit,” Am. J. Phys. 61, 632–635 (1993).
    [CrossRef]
  12. K. Thompson, “An easy-to-build spectroscope,” Phys. Educ. 31, 382–385 (1996).
    [CrossRef]
  13. J. Nemechek, “OSA E-Day 2008: a simple spectroscope,” https://www.youtube.com/watch?v=jaoEmc7kQSI .
  14. Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogju, “Cell-phone-based platform for biomedical device development and education applications,” PlosOne 6, e1570 (2011).
  15. R. D. Lorenz, “A simple webcam spectrograph,” Am. J. Phys. 82, 169–173 (2014).
    [CrossRef]
  16. J. J. Lunazzi, “Holophotography with a diffraction grating,” Opt. Eng. 29, 15–18 (1990).
    [CrossRef]
  17. M. Müller and L.-H. Schön, “Virtuelle Beugungsbilder am Gitter,” in Didaktik der Physik. Frühjahrstagung Münster, H. Groetzebach and V. Nordmeier, eds. (PhyDid B, 2011) pp. 1–9.
  18. J. Dong and W. Zhang, “Imaging of virtual objects with a plane periodic grating,” Opt. Lett. 34, 3232–3234 (2009).
    [CrossRef]
  19. S. Grusche, “Spectral synthesis provides two-dimensional videos on a one-dimensional screen with 360°-visibility and mirror-immunity,” Appl. Opt. 53, 674–684 (2014).
    [CrossRef]
  20. J. J. Lunazzi and N. I. R. Rivera, “Pseudoscopic imaging in a double diffraction process with a slit,” Opt. Express 10, 1368–1373 (2002).
    [CrossRef]
  21. J. J. Lunazzi and N. I. R. Rivera, “Pseudoscopic imaging in a double diffraction process with a slit: critical point properties,” J. Opt. Soc. Am. A 23, 1021–1026 (2006).
    [CrossRef]
  22. J. J. Lunazzi, N. I. R. Rivera, and D. S. F. Magalhães, “Imaging with two spiral diffracting elements intermediated by a pinhole,” J. Opt. Soc. Am. A 25, 1091–1097 (2008).
    [CrossRef]
  23. J. J. Lunazzi and N. I. R. Rivera, “3D imaging with a linear light source,” in AIP Conference Proceedings, N. U. Wetter and J. Frejlich, eds. (AIP, 2008), pp. 677–680.
  24. S. Benton, “Hologram reconstructions with extended incoherent sources,” J. Opt. Soc. Am. 59, 1545–1546 (1969).
  25. R. Sato and K. Murata, “Cylindrical rainbow hologram,” Appl. Opt. 24, 2161–2165 (1985).
    [CrossRef]
  26. M. Vannoni, V. Greco, and G. Molesini, “One-step 360° rainbow holography with two spherical mirrors,” Appl. Opt. 40, 633–635 (2001).
    [CrossRef]
  27. B. J. Jackin and T. Yatagai, “360° reconstruction of a 3D object using cylindrical computer generated holography,” Appl. Opt. 50, H147–H152 (2011).
    [CrossRef]
  28. M. A. Bershady, “3D spectroscopic instrumentation,” in 3D Spectroscopy in Astronomy, E. Mediavilla, S. Arribas, M. Roth, J. Cepa-Nogué, and F. Sánchez, eds. (Cambridge University, 2010), pp. 87–125.
  29. M. Gunn, D. Barnes, C. R. Cousins, D. Langstaff, L. Tyler, S. Pugh, D. Pullan, and A. D. Griffiths, “A method of extending the capabilities of multispectral interference-filter cameras for planetary exploration and similar applications,” in Proceedings of University of Strathclyde’s Second Annual Academic Hyperspectral Imaging Conference, S. Marshall, ed. (University of Strathclyde, 2012), pp. 108–113.
  30. N. Tack, A. Lambrechts, P. Soussan, and L. Haspeslagh, “A compact, high-speed, and low-cost hyperspectral imager,” Proc. SPIE 8266, 82660Q (2012).
    [CrossRef]
  31. B. Delauré, B. Michiels, J. Biesemans, S. Livens, and T. Van Achteren, “The geospectral camera: a compact and geometrically precise hyperspectral and high spatial resolution imager,” in ISPRS Archives, C. Heipke, K. Jacobsen, F. Rottensteiner, and U. Sörgel, eds., Volume XL-1/W1 (ISPRS, 2013), pp. 69–74.
  32. A. Abramov, L. Minai, and D. Yelin, “Spectrally encoded spectral imaging,” Opt. Express 19, 6913–6922 (2011).
    [CrossRef]
  33. M. A. Bershady, Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, Wisconsin 53706 (personal communication, 2014).
  34. N. Hagan and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
    [CrossRef]
  35. Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18, 100901 (2013).
    [CrossRef]
  36. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19, 010901 (2014).
    [CrossRef]
  37. Z. Xiong, D.-W. Sun, X.-A. Zeng, and A. Xie, “Recent developments of hyperspectral imaging systems and their applications in detecting quality attributes of red meats: a review,” J. Food Eng. 132, 1–13 (2014).
    [CrossRef]
  38. G. Høye and A. Fridman, “Mixel camera: a new push-broom camera concept for high spatial resolution keystone-free hyperspectral imaging,” Opt. Express 21, 11057–11077 (2013).
    [CrossRef]

2014

N. Pahlevan, Z. Lee, C. Hu, and J. R. Schott, “Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for geostationary coastal and air pollution events,” Appl. Opt. 53, 648–665 (2014).
[CrossRef]

R. D. Lorenz, “A simple webcam spectrograph,” Am. J. Phys. 82, 169–173 (2014).
[CrossRef]

S. Grusche, “Spectral synthesis provides two-dimensional videos on a one-dimensional screen with 360°-visibility and mirror-immunity,” Appl. Opt. 53, 674–684 (2014).
[CrossRef]

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19, 010901 (2014).
[CrossRef]

Z. Xiong, D.-W. Sun, X.-A. Zeng, and A. Xie, “Recent developments of hyperspectral imaging systems and their applications in detecting quality attributes of red meats: a review,” J. Food Eng. 132, 1–13 (2014).
[CrossRef]

2013

G. Høye and A. Fridman, “Mixel camera: a new push-broom camera concept for high spatial resolution keystone-free hyperspectral imaging,” Opt. Express 21, 11057–11077 (2013).
[CrossRef]

N. Hagan and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[CrossRef]

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18, 100901 (2013).
[CrossRef]

F. Theilmann and S. Grusche, “An RGB approach to prismatic colours,” Phys. Educ. 48, 750–759 (2013).
[CrossRef]

A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
[CrossRef]

2012

N. Tack, A. Lambrechts, P. Soussan, and L. Haspeslagh, “A compact, high-speed, and low-cost hyperspectral imager,” Proc. SPIE 8266, 82660Q (2012).
[CrossRef]

2011

A. Abramov, L. Minai, and D. Yelin, “Spectrally encoded spectral imaging,” Opt. Express 19, 6913–6922 (2011).
[CrossRef]

B. J. Jackin and T. Yatagai, “360° reconstruction of a 3D object using cylindrical computer generated holography,” Appl. Opt. 50, H147–H152 (2011).
[CrossRef]

M.-F. Nieva and S. Simón-Díaz, “The chemical composition of the Orion star forming region,” Astron. Astrophys. 532, A2 (2011).
[CrossRef]

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogju, “Cell-phone-based platform for biomedical device development and education applications,” PlosOne 6, e1570 (2011).

2010

P. Figueira, F. Pepe, C. H. F. Melo, N. C. Santos, C. Lovis, M. Mayor, D. Queloz, A. Smette, and S. Udry, “Radial velocities with CRIRES,” Astron. Astrophys. 511, A55 (2010).
[CrossRef]

2009

M. Franz and R. Schlichenmaier, “The velocity fields of sunspot penumbrae,” Astron. Astrophys. 508, 1453–1460 (2009).
[CrossRef]

J. Dong and W. Zhang, “Imaging of virtual objects with a plane periodic grating,” Opt. Lett. 34, 3232–3234 (2009).
[CrossRef]

2008

2006

2002

2001

1996

K. Thompson, “An easy-to-build spectroscope,” Phys. Educ. 31, 382–385 (1996).
[CrossRef]

1993

W. W. Luo and H. J. Gerritsen, “Seeing the Fraunhofer lines with only a diffraction grating and a slit,” Am. J. Phys. 61, 632–635 (1993).
[CrossRef]

1990

J. J. Lunazzi, “Holophotography with a diffraction grating,” Opt. Eng. 29, 15–18 (1990).
[CrossRef]

1985

1969

S. Benton, “Hologram reconstructions with extended incoherent sources,” J. Opt. Soc. Am. 59, 1545–1546 (1969).

Abramov, A.

Arnaboldi, M.

A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
[CrossRef]

Bamford, S.

A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
[CrossRef]

Barnes, D.

M. Gunn, D. Barnes, C. R. Cousins, D. Langstaff, L. Tyler, S. Pugh, D. Pullan, and A. D. Griffiths, “A method of extending the capabilities of multispectral interference-filter cameras for planetary exploration and similar applications,” in Proceedings of University of Strathclyde’s Second Annual Academic Hyperspectral Imaging Conference, S. Marshall, ed. (University of Strathclyde, 2012), pp. 108–113.

Benton, S.

S. Benton, “Hologram reconstructions with extended incoherent sources,” J. Opt. Soc. Am. 59, 1545–1546 (1969).

Bershady, M. A.

M. A. Bershady, “3D spectroscopic instrumentation,” in 3D Spectroscopy in Astronomy, E. Mediavilla, S. Arribas, M. Roth, J. Cepa-Nogué, and F. Sánchez, eds. (Cambridge University, 2010), pp. 87–125.

M. A. Bershady, Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, Wisconsin 53706 (personal communication, 2014).

Biesemans, J.

B. Delauré, B. Michiels, J. Biesemans, S. Livens, and T. Van Achteren, “The geospectral camera: a compact and geometrically precise hyperspectral and high spatial resolution imager,” in ISPRS Archives, C. Heipke, K. Jacobsen, F. Rottensteiner, and U. Sörgel, eds., Volume XL-1/W1 (ISPRS, 2013), pp. 69–74.

Browning, J.

J. Browning, How to Work with the Spectroscope. A Manual of Practical Manipulation with Spectroscopes of All Kinds (Browning, 1882).

Capaccioli, M.

A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
[CrossRef]

Chance, K.

K. Chance, “Spectroscopic needs for atmospheric pollution measurements from space,” in AIP Conference Proceedings, E. Roueff, ed. (AIP, 2007), pp. 13–18.

Chies-Santos, A. L.

A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
[CrossRef]

Chu, K.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogju, “Cell-phone-based platform for biomedical device development and education applications,” PlosOne 6, e1570 (2011).

Coccato, L.

A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
[CrossRef]

Cortesi, A.

A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
[CrossRef]

Cousins, C. R.

M. Gunn, D. Barnes, C. R. Cousins, D. Langstaff, L. Tyler, S. Pugh, D. Pullan, and A. D. Griffiths, “A method of extending the capabilities of multispectral interference-filter cameras for planetary exploration and similar applications,” in Proceedings of University of Strathclyde’s Second Annual Academic Hyperspectral Imaging Conference, S. Marshall, ed. (University of Strathclyde, 2012), pp. 108–113.

Delauré, B.

B. Delauré, B. Michiels, J. Biesemans, S. Livens, and T. Van Achteren, “The geospectral camera: a compact and geometrically precise hyperspectral and high spatial resolution imager,” in ISPRS Archives, C. Heipke, K. Jacobsen, F. Rottensteiner, and U. Sörgel, eds., Volume XL-1/W1 (ISPRS, 2013), pp. 69–74.

Dong, J.

Douglas, N. G.

A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
[CrossRef]

Dwyre, D. M.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogju, “Cell-phone-based platform for biomedical device development and education applications,” PlosOne 6, e1570 (2011).

Espenson, A. R.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogju, “Cell-phone-based platform for biomedical device development and education applications,” PlosOne 6, e1570 (2011).

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19, 010901 (2014).
[CrossRef]

Figueira, P.

P. Figueira, F. Pepe, C. H. F. Melo, N. C. Santos, C. Lovis, M. Mayor, D. Queloz, A. Smette, and S. Udry, “Radial velocities with CRIRES,” Astron. Astrophys. 511, A55 (2010).
[CrossRef]

Franz, M.

M. Franz and R. Schlichenmaier, “The velocity fields of sunspot penumbrae,” Astron. Astrophys. 508, 1453–1460 (2009).
[CrossRef]

Freeman, K. C.

A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
[CrossRef]

Fridman, A.

Gerhard, O.

A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
[CrossRef]

Gerritsen, H. J.

W. W. Luo and H. J. Gerritsen, “Seeing the Fraunhofer lines with only a diffraction grating and a slit,” Am. J. Phys. 61, 632–635 (1993).
[CrossRef]

Greco, V.

Griffiths, A. D.

M. Gunn, D. Barnes, C. R. Cousins, D. Langstaff, L. Tyler, S. Pugh, D. Pullan, and A. D. Griffiths, “A method of extending the capabilities of multispectral interference-filter cameras for planetary exploration and similar applications,” in Proceedings of University of Strathclyde’s Second Annual Academic Hyperspectral Imaging Conference, S. Marshall, ed. (University of Strathclyde, 2012), pp. 108–113.

Grusche, S.

Gryshuk, A.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogju, “Cell-phone-based platform for biomedical device development and education applications,” PlosOne 6, e1570 (2011).

Gunn, M.

M. Gunn, D. Barnes, C. R. Cousins, D. Langstaff, L. Tyler, S. Pugh, D. Pullan, and A. D. Griffiths, “A method of extending the capabilities of multispectral interference-filter cameras for planetary exploration and similar applications,” in Proceedings of University of Strathclyde’s Second Annual Academic Hyperspectral Imaging Conference, S. Marshall, ed. (University of Strathclyde, 2012), pp. 108–113.

Guo, F.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18, 100901 (2013).
[CrossRef]

Hagan, N.

N. Hagan and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[CrossRef]

Haspeslagh, L.

N. Tack, A. Lambrechts, P. Soussan, and L. Haspeslagh, “A compact, high-speed, and low-cost hyperspectral imager,” Proc. SPIE 8266, 82660Q (2012).
[CrossRef]

He, X.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18, 100901 (2013).
[CrossRef]

Høye, G.

Hu, C.

Jackin, B. J.

Kudenov, M. W.

N. Hagan and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[CrossRef]

Kuijken, K.

A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
[CrossRef]

Lambrechts, A.

N. Tack, A. Lambrechts, P. Soussan, and L. Haspeslagh, “A compact, high-speed, and low-cost hyperspectral imager,” Proc. SPIE 8266, 82660Q (2012).
[CrossRef]

Lane, S.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogju, “Cell-phone-based platform for biomedical device development and education applications,” PlosOne 6, e1570 (2011).

Langstaff, D.

M. Gunn, D. Barnes, C. R. Cousins, D. Langstaff, L. Tyler, S. Pugh, D. Pullan, and A. D. Griffiths, “A method of extending the capabilities of multispectral interference-filter cameras for planetary exploration and similar applications,” in Proceedings of University of Strathclyde’s Second Annual Academic Hyperspectral Imaging Conference, S. Marshall, ed. (University of Strathclyde, 2012), pp. 108–113.

Lee, Z.

Li, Q.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18, 100901 (2013).
[CrossRef]

Liu, H.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18, 100901 (2013).
[CrossRef]

Livens, S.

B. Delauré, B. Michiels, J. Biesemans, S. Livens, and T. Van Achteren, “The geospectral camera: a compact and geometrically precise hyperspectral and high spatial resolution imager,” in ISPRS Archives, C. Heipke, K. Jacobsen, F. Rottensteiner, and U. Sörgel, eds., Volume XL-1/W1 (ISPRS, 2013), pp. 69–74.

Lorenz, R. D.

R. D. Lorenz, “A simple webcam spectrograph,” Am. J. Phys. 82, 169–173 (2014).
[CrossRef]

Lovis, C.

P. Figueira, F. Pepe, C. H. F. Melo, N. C. Santos, C. Lovis, M. Mayor, D. Queloz, A. Smette, and S. Udry, “Radial velocities with CRIRES,” Astron. Astrophys. 511, A55 (2010).
[CrossRef]

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19, 010901 (2014).
[CrossRef]

Lunazzi, J. J.

Luo, W. W.

W. W. Luo and H. J. Gerritsen, “Seeing the Fraunhofer lines with only a diffraction grating and a slit,” Am. J. Phys. 61, 632–635 (1993).
[CrossRef]

Magalhães, D. S. F.

Matthews, D.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogju, “Cell-phone-based platform for biomedical device development and education applications,” PlosOne 6, e1570 (2011).

Mayor, M.

P. Figueira, F. Pepe, C. H. F. Melo, N. C. Santos, C. Lovis, M. Mayor, D. Queloz, A. Smette, and S. Udry, “Radial velocities with CRIRES,” Astron. Astrophys. 511, A55 (2010).
[CrossRef]

Melo, C. H. F.

P. Figueira, F. Pepe, C. H. F. Melo, N. C. Santos, C. Lovis, M. Mayor, D. Queloz, A. Smette, and S. Udry, “Radial velocities with CRIRES,” Astron. Astrophys. 511, A55 (2010).
[CrossRef]

Merrifield, M. R.

A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
[CrossRef]

Meyn, J.-P.

J.-P. Meyn, “Colour mixing based on daylight,” Eur. J. Phys. 29, 1017–1031 (2008).
[CrossRef]

Michiels, B.

B. Delauré, B. Michiels, J. Biesemans, S. Livens, and T. Van Achteren, “The geospectral camera: a compact and geometrically precise hyperspectral and high spatial resolution imager,” in ISPRS Archives, C. Heipke, K. Jacobsen, F. Rottensteiner, and U. Sörgel, eds., Volume XL-1/W1 (ISPRS, 2013), pp. 69–74.

Minai, L.

Molesini, G.

Molinaro, M.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogju, “Cell-phone-based platform for biomedical device development and education applications,” PlosOne 6, e1570 (2011).

Müller, M.

M. Müller and L.-H. Schön, “Virtuelle Beugungsbilder am Gitter,” in Didaktik der Physik. Frühjahrstagung Münster, H. Groetzebach and V. Nordmeier, eds. (PhyDid B, 2011) pp. 1–9.

Murata, K.

Napolitano, N. R.

A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
[CrossRef]

Newton, I.

I. Newton, Opticks: Or, a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light, 4th ed. (Dover, 1979).

Nieva, M.-F.

M.-F. Nieva and S. Simón-Díaz, “The chemical composition of the Orion star forming region,” Astron. Astrophys. 532, A2 (2011).
[CrossRef]

Pahlevan, N.

Pepe, F.

P. Figueira, F. Pepe, C. H. F. Melo, N. C. Santos, C. Lovis, M. Mayor, D. Queloz, A. Smette, and S. Udry, “Radial velocities with CRIRES,” Astron. Astrophys. 511, A55 (2010).
[CrossRef]

Pota, V.

A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
[CrossRef]

Pugh, S.

M. Gunn, D. Barnes, C. R. Cousins, D. Langstaff, L. Tyler, S. Pugh, D. Pullan, and A. D. Griffiths, “A method of extending the capabilities of multispectral interference-filter cameras for planetary exploration and similar applications,” in Proceedings of University of Strathclyde’s Second Annual Academic Hyperspectral Imaging Conference, S. Marshall, ed. (University of Strathclyde, 2012), pp. 108–113.

Pullan, D.

M. Gunn, D. Barnes, C. R. Cousins, D. Langstaff, L. Tyler, S. Pugh, D. Pullan, and A. D. Griffiths, “A method of extending the capabilities of multispectral interference-filter cameras for planetary exploration and similar applications,” in Proceedings of University of Strathclyde’s Second Annual Academic Hyperspectral Imaging Conference, S. Marshall, ed. (University of Strathclyde, 2012), pp. 108–113.

Queloz, D.

P. Figueira, F. Pepe, C. H. F. Melo, N. C. Santos, C. Lovis, M. Mayor, D. Queloz, A. Smette, and S. Udry, “Radial velocities with CRIRES,” Astron. Astrophys. 511, A55 (2010).
[CrossRef]

Rahimzadeh, M.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogju, “Cell-phone-based platform for biomedical device development and education applications,” PlosOne 6, e1570 (2011).

Rivera, N. I. R.

Romanowsky, A. J.

A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
[CrossRef]

Santos, N. C.

P. Figueira, F. Pepe, C. H. F. Melo, N. C. Santos, C. Lovis, M. Mayor, D. Queloz, A. Smette, and S. Udry, “Radial velocities with CRIRES,” Astron. Astrophys. 511, A55 (2010).
[CrossRef]

Sato, R.

Schlichenmaier, R.

M. Franz and R. Schlichenmaier, “The velocity fields of sunspot penumbrae,” Astron. Astrophys. 508, 1453–1460 (2009).
[CrossRef]

Schön, L.-H.

M. Müller and L.-H. Schön, “Virtuelle Beugungsbilder am Gitter,” in Didaktik der Physik. Frühjahrstagung Münster, H. Groetzebach and V. Nordmeier, eds. (PhyDid B, 2011) pp. 1–9.

Schott, J. R.

Simón-Díaz, S.

M.-F. Nieva and S. Simón-Díaz, “The chemical composition of the Orion star forming region,” Astron. Astrophys. 532, A2 (2011).
[CrossRef]

Smette, A.

P. Figueira, F. Pepe, C. H. F. Melo, N. C. Santos, C. Lovis, M. Mayor, D. Queloz, A. Smette, and S. Udry, “Radial velocities with CRIRES,” Astron. Astrophys. 511, A55 (2010).
[CrossRef]

Smith, Z. J.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogju, “Cell-phone-based platform for biomedical device development and education applications,” PlosOne 6, e1570 (2011).

Soussan, P.

N. Tack, A. Lambrechts, P. Soussan, and L. Haspeslagh, “A compact, high-speed, and low-cost hyperspectral imager,” Proc. SPIE 8266, 82660Q (2012).
[CrossRef]

Sun, D.-W.

Z. Xiong, D.-W. Sun, X.-A. Zeng, and A. Xie, “Recent developments of hyperspectral imaging systems and their applications in detecting quality attributes of red meats: a review,” J. Food Eng. 132, 1–13 (2014).
[CrossRef]

Tack, N.

N. Tack, A. Lambrechts, P. Soussan, and L. Haspeslagh, “A compact, high-speed, and low-cost hyperspectral imager,” Proc. SPIE 8266, 82660Q (2012).
[CrossRef]

Theilmann, F.

F. Theilmann and S. Grusche, “An RGB approach to prismatic colours,” Phys. Educ. 48, 750–759 (2013).
[CrossRef]

Thompson, K.

K. Thompson, “An easy-to-build spectroscope,” Phys. Educ. 31, 382–385 (1996).
[CrossRef]

Tyler, L.

M. Gunn, D. Barnes, C. R. Cousins, D. Langstaff, L. Tyler, S. Pugh, D. Pullan, and A. D. Griffiths, “A method of extending the capabilities of multispectral interference-filter cameras for planetary exploration and similar applications,” in Proceedings of University of Strathclyde’s Second Annual Academic Hyperspectral Imaging Conference, S. Marshall, ed. (University of Strathclyde, 2012), pp. 108–113.

Udry, S.

P. Figueira, F. Pepe, C. H. F. Melo, N. C. Santos, C. Lovis, M. Mayor, D. Queloz, A. Smette, and S. Udry, “Radial velocities with CRIRES,” Astron. Astrophys. 511, A55 (2010).
[CrossRef]

Van Achteren, T.

B. Delauré, B. Michiels, J. Biesemans, S. Livens, and T. Van Achteren, “The geospectral camera: a compact and geometrically precise hyperspectral and high spatial resolution imager,” in ISPRS Archives, C. Heipke, K. Jacobsen, F. Rottensteiner, and U. Sörgel, eds., Volume XL-1/W1 (ISPRS, 2013), pp. 69–74.

Vannoni, M.

Wachsmann-Hogju, S.

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogju, “Cell-phone-based platform for biomedical device development and education applications,” PlosOne 6, e1570 (2011).

Wang, Y.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18, 100901 (2013).
[CrossRef]

Xie, A.

Z. Xiong, D.-W. Sun, X.-A. Zeng, and A. Xie, “Recent developments of hyperspectral imaging systems and their applications in detecting quality attributes of red meats: a review,” J. Food Eng. 132, 1–13 (2014).
[CrossRef]

Xiong, Z.

Z. Xiong, D.-W. Sun, X.-A. Zeng, and A. Xie, “Recent developments of hyperspectral imaging systems and their applications in detecting quality attributes of red meats: a review,” J. Food Eng. 132, 1–13 (2014).
[CrossRef]

Xu, D.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18, 100901 (2013).
[CrossRef]

Yatagai, T.

Yelin, D.

Zeng, X.-A.

Z. Xiong, D.-W. Sun, X.-A. Zeng, and A. Xie, “Recent developments of hyperspectral imaging systems and their applications in detecting quality attributes of red meats: a review,” J. Food Eng. 132, 1–13 (2014).
[CrossRef]

Zhang, W.

Am. J. Phys.

W. W. Luo and H. J. Gerritsen, “Seeing the Fraunhofer lines with only a diffraction grating and a slit,” Am. J. Phys. 61, 632–635 (1993).
[CrossRef]

R. D. Lorenz, “A simple webcam spectrograph,” Am. J. Phys. 82, 169–173 (2014).
[CrossRef]

Appl. Opt.

Astron. Astrophys.

M.-F. Nieva and S. Simón-Díaz, “The chemical composition of the Orion star forming region,” Astron. Astrophys. 532, A2 (2011).
[CrossRef]

A. Cortesi, M. Arnaboldi, L. Coccato, M. R. Merrifield, O. Gerhard, S. Bamford, A. J. Romanowsky, N. R. Napolitano, N. G. Douglas, K. Kuijken, M. Capaccioli, K. C. Freeman, A. L. Chies-Santos, and V. Pota, “The Planetary Nebula Spectrograph survey of S0 galaxy kinematics,” Astron. Astrophys. 549, A115 (2013).
[CrossRef]

P. Figueira, F. Pepe, C. H. F. Melo, N. C. Santos, C. Lovis, M. Mayor, D. Queloz, A. Smette, and S. Udry, “Radial velocities with CRIRES,” Astron. Astrophys. 511, A55 (2010).
[CrossRef]

M. Franz and R. Schlichenmaier, “The velocity fields of sunspot penumbrae,” Astron. Astrophys. 508, 1453–1460 (2009).
[CrossRef]

Eur. J. Phys.

J.-P. Meyn, “Colour mixing based on daylight,” Eur. J. Phys. 29, 1017–1031 (2008).
[CrossRef]

J. Biomed. Opt.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18, 100901 (2013).
[CrossRef]

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19, 010901 (2014).
[CrossRef]

J. Food Eng.

Z. Xiong, D.-W. Sun, X.-A. Zeng, and A. Xie, “Recent developments of hyperspectral imaging systems and their applications in detecting quality attributes of red meats: a review,” J. Food Eng. 132, 1–13 (2014).
[CrossRef]

J. Opt. Soc. Am.

S. Benton, “Hologram reconstructions with extended incoherent sources,” J. Opt. Soc. Am. 59, 1545–1546 (1969).

J. Opt. Soc. Am. A

Opt. Eng.

J. J. Lunazzi, “Holophotography with a diffraction grating,” Opt. Eng. 29, 15–18 (1990).
[CrossRef]

N. Hagan and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Educ.

K. Thompson, “An easy-to-build spectroscope,” Phys. Educ. 31, 382–385 (1996).
[CrossRef]

F. Theilmann and S. Grusche, “An RGB approach to prismatic colours,” Phys. Educ. 48, 750–759 (2013).
[CrossRef]

PlosOne

Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogju, “Cell-phone-based platform for biomedical device development and education applications,” PlosOne 6, e1570 (2011).

Proc. SPIE

N. Tack, A. Lambrechts, P. Soussan, and L. Haspeslagh, “A compact, high-speed, and low-cost hyperspectral imager,” Proc. SPIE 8266, 82660Q (2012).
[CrossRef]

Other

B. Delauré, B. Michiels, J. Biesemans, S. Livens, and T. Van Achteren, “The geospectral camera: a compact and geometrically precise hyperspectral and high spatial resolution imager,” in ISPRS Archives, C. Heipke, K. Jacobsen, F. Rottensteiner, and U. Sörgel, eds., Volume XL-1/W1 (ISPRS, 2013), pp. 69–74.

M. A. Bershady, Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, Wisconsin 53706 (personal communication, 2014).

J. J. Lunazzi and N. I. R. Rivera, “3D imaging with a linear light source,” in AIP Conference Proceedings, N. U. Wetter and J. Frejlich, eds. (AIP, 2008), pp. 677–680.

M. A. Bershady, “3D spectroscopic instrumentation,” in 3D Spectroscopy in Astronomy, E. Mediavilla, S. Arribas, M. Roth, J. Cepa-Nogué, and F. Sánchez, eds. (Cambridge University, 2010), pp. 87–125.

M. Gunn, D. Barnes, C. R. Cousins, D. Langstaff, L. Tyler, S. Pugh, D. Pullan, and A. D. Griffiths, “A method of extending the capabilities of multispectral interference-filter cameras for planetary exploration and similar applications,” in Proceedings of University of Strathclyde’s Second Annual Academic Hyperspectral Imaging Conference, S. Marshall, ed. (University of Strathclyde, 2012), pp. 108–113.

M. Müller and L.-H. Schön, “Virtuelle Beugungsbilder am Gitter,” in Didaktik der Physik. Frühjahrstagung Münster, H. Groetzebach and V. Nordmeier, eds. (PhyDid B, 2011) pp. 1–9.

J. Nemechek, “OSA E-Day 2008: a simple spectroscope,” https://www.youtube.com/watch?v=jaoEmc7kQSI .

K. Chance, “Spectroscopic needs for atmospheric pollution measurements from space,” in AIP Conference Proceedings, E. Roueff, ed. (AIP, 2007), pp. 13–18.

I. Newton, Opticks: Or, a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light, 4th ed. (Dover, 1979).

J. Browning, How to Work with the Spectroscope. A Manual of Practical Manipulation with Spectroscopes of All Kinds (Browning, 1882).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Ray geometry for the spectroscopic system with slit aperture A, grating G, and a viewer looking at an object at a distance dS. (a) Camera-obscura plane. With the grating, the viewer spectrally decodes a camera-obscura projection. For clarity, only the outermost rays to the viewer are shown. α: field of view; β: actual visual angle; φ: virtual visual angle; γB: incident angle of blue ray; γR: incident angle of red ray; γR: diffraction angle of red ray. (b) Slit-view plane for the blue rays. The rays are undeflected because the grating lines lie parallel to the slit-view plane.

Fig. 2.
Fig. 2.

Angles predicted for still-life situation. Parameters are the length of the spectroscope dA, its distance dS from the scene, its grating period g, and the spectral range S. A viewer directly at the spectroscopic grating G(dI0m) sees a wide spectrum (β0.25rad) of a single slit view (α0rad). With increased viewing distance, the spectrum should become narrower while representing a wider field of view. At a distance dI0.8m from the grating G, where β=φ, the image should have correct proportions.

Fig. 3.
Fig. 3.

Basic spectroscopes. A: slit aperture (emphasized by a white line); G: grating. (a) Horizontal-slit spectroscope (with mirror just above A) for still life at top left. (b) Vertical-slit spectroscope for basilica at top right.

Fig. 4.
Fig. 4.

Increasing the viewing distance dI increases the field of view α, while decreasing the absolute value of angular magnification |Ms| (in the vertical direction). The scale (left) indicates α (1unit=1cm10mrad, emphasized by a white frame). (a) dI=0m; a0. (b) dI=10±0.5cm, α=55±5mrad; |MS|=4.75±0.1 (c) dI=20±0.5cm, α=105±8mrad; |MS|=2.9±0.1. (d) dI=50±1cm, α=145±10mrad; |MS|=1.72±0.05. (e) dI=75±1cm, α=172±10mrad; |MS|=1.27±0.05. (f) dI=100±1cm, α=190±10mrad; |MS|=0.93±0.03.

Fig. 5.
Fig. 5.

Changing the viewing height h reveals different parts of the scene but from the same perspective. (a) h=+8.8cm. (b) h=+4.4cm. (c) h=+2.2cm. (d) h0 (e) h=2.2cm. (f) h=4.4cm. (g) h=6.6cm (h) h=8.8cm.

Fig. 6.
Fig. 6.

Parallax parallel to the slit. (a) Left-eye view. (b) Right-eye view.

Fig. 7.
Fig. 7.

High-resolution spectroscopic image of the basilica before the author’s office window. The camera and photographer are reflected in the glass that holds the grating. The slit appears as a bright line on the right.

Fig. 8.
Fig. 8.

The absolute value of angular magnification |Ms| (along the horizontal direction) increases as the sphere’s distance ds to the slit is reduced, cf. Fig. 9. (a) dS=100±0.5cm, (b) dS=75±0.5cm, (c) dS=50±0.5cm, (d) dS=25±0.5cm, (e) dS=12.5±0.5cm.

Fig. 9.
Fig. 9.

Experimental values for angular magnification from Fig. 8 (data points with error bars for measurement uncertainties) confirm the theoretical values from Eq. (10) (solid line).

Fig. 10.
Fig. 10.

Introducing a fourth hyperspectral imaging technique. The datacube represents two spatial dimensions (x,y) and one spectral dimension (λ) of a scene. (a) Nonscanning techniques produce a chromatically dispersed snapshot of the scene. (b) Spectral scanning techniques produce a temporal sequence of monochromatic images of the scene. (c) Spatial scanning techniques produce a temporal sequence of ordinary slit spectra for strips of the scene. (d) The proposed spatiospectral scanning technique produces a temporal sequence of spectrally coded images of the scene. Note: As the slit is widened, (d) becomes (a). As the viewing distance dI approaches zero, (d) becomes (c), cf. Fig. 4.

Fig. 11.
Fig. 11.

Spatiospectral scanning, shown in the camera-obscura plane. (a) While the actual camera is moved transverse to the slit A, the recorded virtual images represent the actual scene as if photographed from the direction of a virtual camera that is tilted. If β=φ, the virtual image has the same width wI=wS as the actual scene. (b) Shifting the camera produces a sequence (in time t) of diagonal slices of the hyperspectral datacube, as in Fig. 10(d), cf. Fig. 5; x-dimension not shown. Each symbolic shade of gray relates each image to the corresponding camera position and spectrally diverse light bundle in (a).

Fig. 12.
Fig. 12.

Ray diagram for spatiospectral resolution, cf. Fig. 1. (a) Rays from a single object point diverge (black) toward the grating, forming an image spot with an apparent size Δβ that determines spatial resolution. Simultaneously, rays from various object points converge (gray) toward a single point on the grating, thus determining spectral resolution. (b) Each ray that exits the grating has a spectral width that is proportional to the slit width w. If w=wfull, a single ray may comprise the full spectrum.

Fig. 13.
Fig. 13.

Lens-based hyperspectral imager, modeled on the pinhole-based slit spectroscope. Without prism P, a single strip of the scene (solid rays) is imaged, being dispersed by grating G into a slit spectrum on the sensor, as in [38]; cf. Fig. 10(c). With prism P, multiple strips of the scene (dashed rays) are spectrally encoded at aperture A, being decoded by grating G as a spatiospectral image on the sensor, cf. Fig. 10(d).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

γB=arcsin(λBg).
γR=γB+α.
β=γR=arcsin(λRgsinγR)0.
wG=(tanγRtanγB)dA=dItanβ.
β=arctan(dAtanγRtanγBdI).
limdIα=αmax=arcsin(λRg)arcsin(λBg).
δγR(γR=0)γB(γB=0).
αmax=δ.
φ=arctan(wSdS+dA/cosγB+dI).
MS=tanβtanφ.
ΔwG=(1+dAdScosγB)w.
ΔywSΔwGwG.
Δy(β=φ)=dStanαdItanβ(1+dAdScosγB)w.
wres(β=φ)Δy2.
wfull[tan(arcsinλRg)tan(arcsinλBg)]dA.
ΔλλRλB=wwfull.
Δλ(β=φ)λRλB[tan(arcsinλRg)tan(arcsinλBg)]dAw.

Metrics