Abstract

Analytical models, describing laser Doppler flowmetry and its derived applications, are based on fundamental assumptions of photon scattering angles. It is shown by means of Monte Carlo simulations that, even in the case these assumptions are correct, the presence of a specific source–detector configuration may bias the shape of the probability density functions describing scattering angle behavior. It is found that these biased shapes are generated by selective filtering of photons induced by a particular source–detector configuration. In some specific cases, this phenomenon might invalidate laser Doppler analytical models.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Z. Cummins and H. L. Swinney, “Light beating spectroscopy,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1970), Vol. 8, pp. 133–200.
  2. R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).
    [CrossRef]
  3. J. Zhong, A. M. Seifalian, G. E. Salerud, and G. E. Nilsson, “A mathematical analysis on the biological zero problem in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 354–364 (1998).
    [CrossRef]
  4. T. Binzoni, T. S. Leung, D. Boggett, and D. T. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood rms velocity,” Phys. Med. Biol. 48, 2527–2549 (2003).
    [CrossRef]
  5. T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy, “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Phys. Med. Biol. 49, 5445–5458 (2004).
    [CrossRef]
  6. T. Binzoni, T. S. Leung, D. Rüfenacht, and D. T. Delpy, “Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes,” Phys. Med. Biol. 51, 311–333 (2006).
    [CrossRef]
  7. A. N. Serov, W. Steenbergen, and F. F. M. de Mul, “Method for estimation of the fraction of Doppler-shifted photons in light scattered by a mixture of moving and stationary scatterers,” Proc. SPIE 4001, 178–189 (2000).
    [CrossRef]
  8. S. Wojtkiewicz, A. Liebert, H. Rix, P. Sawosz, and R. Maniewski, “Estimation of scattering phase function utilizing laser Doppler power density spectra,” Phys. Med. Biol. 58, 937–955 (2013).
    [CrossRef]
  9. J. Zhong, G. E. Nilsson, G. E. Salerud, and A. M. Seifalian, “A note on the compartmental analysis and related issues in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 534–537 (1998).
    [CrossRef]
  10. K. Dorschel and G. Muller, “Velocity resolved laser Doppler blood flow measurements in skin,” Flow Meas. Instrum. 7, 257–264 (1996).
    [CrossRef]
  11. A. Liebert, N. Żołek, and R. Maniewski, “Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study,” Phys. Med. Biol. 51, 5737–5751 (2006).
    [CrossRef]
  12. S. Wojtkiewicz, A. Liebert, H. Rix, N. Żołek, and R. Maniewski, “Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium,” Phys. Med. Biol. 54, 679–697 (2009).
    [CrossRef]
  13. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
    [CrossRef]
  14. T. Binzoni, T. S. Leung, A. H. Gandjbakhche, D. Rüfenacht, and D. T. Delpy, “Comment on ‘the use of the Henyey–Greenstein phase function in Monte Carlo simulations in biomedical optics’,” Phys. Med. Biol. 51, L39–L41 (2006).
    [CrossRef]
  15. F. F. de Mul, M. H. Koelink, M. L. Kok, P. J. Harmsma, J. Greve, R. Graaff, and J. G. Aarnoudse, “Laser Doppler velocimetry and Monte Carlo simulations on models for blood perfusion in tissue,” Appl. Opt. 34, 6595–6611 (1995).
    [CrossRef]
  16. G. Soelkner, G. Mitic, and R. Lohwasser, “Monte Carlo simulations and laser Doppler flow measurements with high penetration depth in biological tissuelike head phantoms,” Appl. Opt. 36, 5647–5654 (1997).
    [CrossRef]
  17. T. Binzoni, T. S. Leung, and D. Van De Ville, “The photo-electric current in laser-Doppler flowmetry by Monte Carlo simulations,” Phys. Med. Biol. 54, N303–N318 (2009).
    [CrossRef]
  18. P. Farzam, P. Zirak, T. Binzoni, and T. Durduran, “Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy,” Physiol. Meas. 34, 839–857 (2013).
    [CrossRef]
  19. T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas. 34, N25–N40 (2013).
    [CrossRef]
  20. A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500  nm,” J. Biomed. Opt. 4, 36–46 (1999).
    [CrossRef]

2013 (3)

S. Wojtkiewicz, A. Liebert, H. Rix, P. Sawosz, and R. Maniewski, “Estimation of scattering phase function utilizing laser Doppler power density spectra,” Phys. Med. Biol. 58, 937–955 (2013).
[CrossRef]

P. Farzam, P. Zirak, T. Binzoni, and T. Durduran, “Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy,” Physiol. Meas. 34, 839–857 (2013).
[CrossRef]

T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas. 34, N25–N40 (2013).
[CrossRef]

2009 (2)

S. Wojtkiewicz, A. Liebert, H. Rix, N. Żołek, and R. Maniewski, “Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium,” Phys. Med. Biol. 54, 679–697 (2009).
[CrossRef]

T. Binzoni, T. S. Leung, and D. Van De Ville, “The photo-electric current in laser-Doppler flowmetry by Monte Carlo simulations,” Phys. Med. Biol. 54, N303–N318 (2009).
[CrossRef]

2006 (3)

T. Binzoni, T. S. Leung, A. H. Gandjbakhche, D. Rüfenacht, and D. T. Delpy, “Comment on ‘the use of the Henyey–Greenstein phase function in Monte Carlo simulations in biomedical optics’,” Phys. Med. Biol. 51, L39–L41 (2006).
[CrossRef]

A. Liebert, N. Żołek, and R. Maniewski, “Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study,” Phys. Med. Biol. 51, 5737–5751 (2006).
[CrossRef]

T. Binzoni, T. S. Leung, D. Rüfenacht, and D. T. Delpy, “Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes,” Phys. Med. Biol. 51, 311–333 (2006).
[CrossRef]

2004 (1)

T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy, “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Phys. Med. Biol. 49, 5445–5458 (2004).
[CrossRef]

2003 (1)

T. Binzoni, T. S. Leung, D. Boggett, and D. T. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood rms velocity,” Phys. Med. Biol. 48, 2527–2549 (2003).
[CrossRef]

2000 (1)

A. N. Serov, W. Steenbergen, and F. F. M. de Mul, “Method for estimation of the fraction of Doppler-shifted photons in light scattered by a mixture of moving and stationary scatterers,” Proc. SPIE 4001, 178–189 (2000).
[CrossRef]

1999 (1)

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500  nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef]

1998 (2)

J. Zhong, A. M. Seifalian, G. E. Salerud, and G. E. Nilsson, “A mathematical analysis on the biological zero problem in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 354–364 (1998).
[CrossRef]

J. Zhong, G. E. Nilsson, G. E. Salerud, and A. M. Seifalian, “A note on the compartmental analysis and related issues in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 534–537 (1998).
[CrossRef]

1997 (1)

1996 (1)

K. Dorschel and G. Muller, “Velocity resolved laser Doppler blood flow measurements in skin,” Flow Meas. Instrum. 7, 257–264 (1996).
[CrossRef]

1995 (1)

1981 (1)

1941 (1)

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Aarnoudse, J. G.

Binzoni, T.

T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas. 34, N25–N40 (2013).
[CrossRef]

P. Farzam, P. Zirak, T. Binzoni, and T. Durduran, “Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy,” Physiol. Meas. 34, 839–857 (2013).
[CrossRef]

T. Binzoni, T. S. Leung, and D. Van De Ville, “The photo-electric current in laser-Doppler flowmetry by Monte Carlo simulations,” Phys. Med. Biol. 54, N303–N318 (2009).
[CrossRef]

T. Binzoni, T. S. Leung, D. Rüfenacht, and D. T. Delpy, “Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes,” Phys. Med. Biol. 51, 311–333 (2006).
[CrossRef]

T. Binzoni, T. S. Leung, A. H. Gandjbakhche, D. Rüfenacht, and D. T. Delpy, “Comment on ‘the use of the Henyey–Greenstein phase function in Monte Carlo simulations in biomedical optics’,” Phys. Med. Biol. 51, L39–L41 (2006).
[CrossRef]

T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy, “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Phys. Med. Biol. 49, 5445–5458 (2004).
[CrossRef]

T. Binzoni, T. S. Leung, D. Boggett, and D. T. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood rms velocity,” Phys. Med. Biol. 48, 2527–2549 (2003).
[CrossRef]

Boggett, D.

T. Binzoni, T. S. Leung, D. Boggett, and D. T. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood rms velocity,” Phys. Med. Biol. 48, 2527–2549 (2003).
[CrossRef]

Bonner, R.

Cummins, H. Z.

H. Z. Cummins and H. L. Swinney, “Light beating spectroscopy,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1970), Vol. 8, pp. 133–200.

de Mul, F. F.

de Mul, F. F. M.

A. N. Serov, W. Steenbergen, and F. F. M. de Mul, “Method for estimation of the fraction of Doppler-shifted photons in light scattered by a mixture of moving and stationary scatterers,” Proc. SPIE 4001, 178–189 (2000).
[CrossRef]

Delpy, D. T.

T. Binzoni, T. S. Leung, D. Rüfenacht, and D. T. Delpy, “Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes,” Phys. Med. Biol. 51, 311–333 (2006).
[CrossRef]

T. Binzoni, T. S. Leung, A. H. Gandjbakhche, D. Rüfenacht, and D. T. Delpy, “Comment on ‘the use of the Henyey–Greenstein phase function in Monte Carlo simulations in biomedical optics’,” Phys. Med. Biol. 51, L39–L41 (2006).
[CrossRef]

T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy, “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Phys. Med. Biol. 49, 5445–5458 (2004).
[CrossRef]

T. Binzoni, T. S. Leung, D. Boggett, and D. T. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood rms velocity,” Phys. Med. Biol. 48, 2527–2549 (2003).
[CrossRef]

Do Rschel, K.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500  nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef]

Dorschel, K.

K. Dorschel and G. Muller, “Velocity resolved laser Doppler blood flow measurements in skin,” Flow Meas. Instrum. 7, 257–264 (1996).
[CrossRef]

Durduran, T.

P. Farzam, P. Zirak, T. Binzoni, and T. Durduran, “Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy,” Physiol. Meas. 34, 839–857 (2013).
[CrossRef]

Farzam, P.

P. Farzam, P. Zirak, T. Binzoni, and T. Durduran, “Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy,” Physiol. Meas. 34, 839–857 (2013).
[CrossRef]

Friebel, M.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500  nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef]

Gandjbakhche, A. H.

T. Binzoni, T. S. Leung, A. H. Gandjbakhche, D. Rüfenacht, and D. T. Delpy, “Comment on ‘the use of the Henyey–Greenstein phase function in Monte Carlo simulations in biomedical optics’,” Phys. Med. Biol. 51, L39–L41 (2006).
[CrossRef]

Graaff, R.

Greenstein, J. L.

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Greve, J.

Hahn, A.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500  nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef]

Harmsma, P. J.

Henyey, L. G.

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Hyacinthe, J. N.

T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas. 34, N25–N40 (2013).
[CrossRef]

Koelink, M. H.

Kok, M. L.

Leung, T. S.

T. Binzoni, T. S. Leung, and D. Van De Ville, “The photo-electric current in laser-Doppler flowmetry by Monte Carlo simulations,” Phys. Med. Biol. 54, N303–N318 (2009).
[CrossRef]

T. Binzoni, T. S. Leung, D. Rüfenacht, and D. T. Delpy, “Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes,” Phys. Med. Biol. 51, 311–333 (2006).
[CrossRef]

T. Binzoni, T. S. Leung, A. H. Gandjbakhche, D. Rüfenacht, and D. T. Delpy, “Comment on ‘the use of the Henyey–Greenstein phase function in Monte Carlo simulations in biomedical optics’,” Phys. Med. Biol. 51, L39–L41 (2006).
[CrossRef]

T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy, “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Phys. Med. Biol. 49, 5445–5458 (2004).
[CrossRef]

T. Binzoni, T. S. Leung, D. Boggett, and D. T. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood rms velocity,” Phys. Med. Biol. 48, 2527–2549 (2003).
[CrossRef]

Liebert, A.

S. Wojtkiewicz, A. Liebert, H. Rix, P. Sawosz, and R. Maniewski, “Estimation of scattering phase function utilizing laser Doppler power density spectra,” Phys. Med. Biol. 58, 937–955 (2013).
[CrossRef]

S. Wojtkiewicz, A. Liebert, H. Rix, N. Żołek, and R. Maniewski, “Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium,” Phys. Med. Biol. 54, 679–697 (2009).
[CrossRef]

A. Liebert, N. Żołek, and R. Maniewski, “Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study,” Phys. Med. Biol. 51, 5737–5751 (2006).
[CrossRef]

Lohwasser, R.

Maniewski, R.

S. Wojtkiewicz, A. Liebert, H. Rix, P. Sawosz, and R. Maniewski, “Estimation of scattering phase function utilizing laser Doppler power density spectra,” Phys. Med. Biol. 58, 937–955 (2013).
[CrossRef]

S. Wojtkiewicz, A. Liebert, H. Rix, N. Żołek, and R. Maniewski, “Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium,” Phys. Med. Biol. 54, 679–697 (2009).
[CrossRef]

A. Liebert, N. Żołek, and R. Maniewski, “Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study,” Phys. Med. Biol. 51, 5737–5751 (2006).
[CrossRef]

Mitic, G.

Muller, G.

K. Dorschel and G. Muller, “Velocity resolved laser Doppler blood flow measurements in skin,” Flow Meas. Instrum. 7, 257–264 (1996).
[CrossRef]

Müller, G.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500  nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef]

Nilsson, G. E.

J. Zhong, G. E. Nilsson, G. E. Salerud, and A. M. Seifalian, “A note on the compartmental analysis and related issues in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 534–537 (1998).
[CrossRef]

J. Zhong, A. M. Seifalian, G. E. Salerud, and G. E. Nilsson, “A mathematical analysis on the biological zero problem in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 354–364 (1998).
[CrossRef]

Nossal, R.

Richiardi, J.

T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas. 34, N25–N40 (2013).
[CrossRef]

Rix, H.

S. Wojtkiewicz, A. Liebert, H. Rix, P. Sawosz, and R. Maniewski, “Estimation of scattering phase function utilizing laser Doppler power density spectra,” Phys. Med. Biol. 58, 937–955 (2013).
[CrossRef]

S. Wojtkiewicz, A. Liebert, H. Rix, N. Żołek, and R. Maniewski, “Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium,” Phys. Med. Biol. 54, 679–697 (2009).
[CrossRef]

Roggan, A.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500  nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef]

Rüfenacht, D.

T. Binzoni, T. S. Leung, A. H. Gandjbakhche, D. Rüfenacht, and D. T. Delpy, “Comment on ‘the use of the Henyey–Greenstein phase function in Monte Carlo simulations in biomedical optics’,” Phys. Med. Biol. 51, L39–L41 (2006).
[CrossRef]

T. Binzoni, T. S. Leung, D. Rüfenacht, and D. T. Delpy, “Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes,” Phys. Med. Biol. 51, 311–333 (2006).
[CrossRef]

Salerud, G. E.

J. Zhong, A. M. Seifalian, G. E. Salerud, and G. E. Nilsson, “A mathematical analysis on the biological zero problem in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 354–364 (1998).
[CrossRef]

J. Zhong, G. E. Nilsson, G. E. Salerud, and A. M. Seifalian, “A note on the compartmental analysis and related issues in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 534–537 (1998).
[CrossRef]

Sawosz, P.

S. Wojtkiewicz, A. Liebert, H. Rix, P. Sawosz, and R. Maniewski, “Estimation of scattering phase function utilizing laser Doppler power density spectra,” Phys. Med. Biol. 58, 937–955 (2013).
[CrossRef]

Seghier, M. L.

T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy, “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Phys. Med. Biol. 49, 5445–5458 (2004).
[CrossRef]

Seifalian, A. M.

J. Zhong, G. E. Nilsson, G. E. Salerud, and A. M. Seifalian, “A note on the compartmental analysis and related issues in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 534–537 (1998).
[CrossRef]

J. Zhong, A. M. Seifalian, G. E. Salerud, and G. E. Nilsson, “A mathematical analysis on the biological zero problem in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 354–364 (1998).
[CrossRef]

Serov, A. N.

A. N. Serov, W. Steenbergen, and F. F. M. de Mul, “Method for estimation of the fraction of Doppler-shifted photons in light scattered by a mixture of moving and stationary scatterers,” Proc. SPIE 4001, 178–189 (2000).
[CrossRef]

Soelkner, G.

Steenbergen, W.

A. N. Serov, W. Steenbergen, and F. F. M. de Mul, “Method for estimation of the fraction of Doppler-shifted photons in light scattered by a mixture of moving and stationary scatterers,” Proc. SPIE 4001, 178–189 (2000).
[CrossRef]

Swinney, H. L.

H. Z. Cummins and H. L. Swinney, “Light beating spectroscopy,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1970), Vol. 8, pp. 133–200.

Tchernin, D.

T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas. 34, N25–N40 (2013).
[CrossRef]

Van De Ville, D.

T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas. 34, N25–N40 (2013).
[CrossRef]

T. Binzoni, T. S. Leung, and D. Van De Ville, “The photo-electric current in laser-Doppler flowmetry by Monte Carlo simulations,” Phys. Med. Biol. 54, N303–N318 (2009).
[CrossRef]

Wojtkiewicz, S.

S. Wojtkiewicz, A. Liebert, H. Rix, P. Sawosz, and R. Maniewski, “Estimation of scattering phase function utilizing laser Doppler power density spectra,” Phys. Med. Biol. 58, 937–955 (2013).
[CrossRef]

S. Wojtkiewicz, A. Liebert, H. Rix, N. Żołek, and R. Maniewski, “Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium,” Phys. Med. Biol. 54, 679–697 (2009).
[CrossRef]

Zhong, J.

J. Zhong, G. E. Nilsson, G. E. Salerud, and A. M. Seifalian, “A note on the compartmental analysis and related issues in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 534–537 (1998).
[CrossRef]

J. Zhong, A. M. Seifalian, G. E. Salerud, and G. E. Nilsson, “A mathematical analysis on the biological zero problem in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 354–364 (1998).
[CrossRef]

Zirak, P.

P. Farzam, P. Zirak, T. Binzoni, and T. Durduran, “Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy,” Physiol. Meas. 34, 839–857 (2013).
[CrossRef]

Zolek, N.

S. Wojtkiewicz, A. Liebert, H. Rix, N. Żołek, and R. Maniewski, “Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium,” Phys. Med. Biol. 54, 679–697 (2009).
[CrossRef]

A. Liebert, N. Żołek, and R. Maniewski, “Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study,” Phys. Med. Biol. 51, 5737–5751 (2006).
[CrossRef]

Appl. Opt. (3)

Astrophys. J. (1)

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Flow Meas. Instrum. (1)

K. Dorschel and G. Muller, “Velocity resolved laser Doppler blood flow measurements in skin,” Flow Meas. Instrum. 7, 257–264 (1996).
[CrossRef]

IEEE Trans. Biomed. Eng. (2)

J. Zhong, G. E. Nilsson, G. E. Salerud, and A. M. Seifalian, “A note on the compartmental analysis and related issues in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 534–537 (1998).
[CrossRef]

J. Zhong, A. M. Seifalian, G. E. Salerud, and G. E. Nilsson, “A mathematical analysis on the biological zero problem in laser Doppler flowmetry,” IEEE Trans. Biomed. Eng. 45, 354–364 (1998).
[CrossRef]

J. Biomed. Opt. (1)

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500  nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef]

Phys. Med. Biol. (8)

T. Binzoni, T. S. Leung, A. H. Gandjbakhche, D. Rüfenacht, and D. T. Delpy, “Comment on ‘the use of the Henyey–Greenstein phase function in Monte Carlo simulations in biomedical optics’,” Phys. Med. Biol. 51, L39–L41 (2006).
[CrossRef]

T. Binzoni, T. S. Leung, and D. Van De Ville, “The photo-electric current in laser-Doppler flowmetry by Monte Carlo simulations,” Phys. Med. Biol. 54, N303–N318 (2009).
[CrossRef]

T. Binzoni, T. S. Leung, D. Boggett, and D. T. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood rms velocity,” Phys. Med. Biol. 48, 2527–2549 (2003).
[CrossRef]

T. Binzoni, T. S. Leung, M. L. Seghier, and D. T. Delpy, “Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes,” Phys. Med. Biol. 49, 5445–5458 (2004).
[CrossRef]

T. Binzoni, T. S. Leung, D. Rüfenacht, and D. T. Delpy, “Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes,” Phys. Med. Biol. 51, 311–333 (2006).
[CrossRef]

S. Wojtkiewicz, A. Liebert, H. Rix, P. Sawosz, and R. Maniewski, “Estimation of scattering phase function utilizing laser Doppler power density spectra,” Phys. Med. Biol. 58, 937–955 (2013).
[CrossRef]

A. Liebert, N. Żołek, and R. Maniewski, “Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study,” Phys. Med. Biol. 51, 5737–5751 (2006).
[CrossRef]

S. Wojtkiewicz, A. Liebert, H. Rix, N. Żołek, and R. Maniewski, “Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium,” Phys. Med. Biol. 54, 679–697 (2009).
[CrossRef]

Physiol. Meas. (2)

P. Farzam, P. Zirak, T. Binzoni, and T. Durduran, “Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy,” Physiol. Meas. 34, 839–857 (2013).
[CrossRef]

T. Binzoni, D. Tchernin, J. N. Hyacinthe, D. Van De Ville, and J. Richiardi, “Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals,” Physiol. Meas. 34, N25–N40 (2013).
[CrossRef]

Proc. SPIE (1)

A. N. Serov, W. Steenbergen, and F. F. M. de Mul, “Method for estimation of the fraction of Doppler-shifted photons in light scattered by a mixture of moving and stationary scatterers,” Proc. SPIE 4001, 178–189 (2000).
[CrossRef]

Other (1)

H. Z. Cummins and H. L. Swinney, “Light beating spectroscopy,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1970), Vol. 8, pp. 133–200.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic representing the parameters appearing in the manuscript. For explanatory purposes, the schematic is in 2D, but the vectors actually evolve in a 3D space. The red circle is a moving scatterer.

Fig. 2.
Fig. 2.

Red (g=0), blue (g=0.4), and green (g=0.8) lines are the p^θ(θ) obtained by MC simulations. The black curves represent pθ(θ) [Eq. (3)] for the correspondent g, as for p^θ(θ). For the optical parameters of muscle and bone, see Section 3. The figure pertains to nse=1.

Fig. 3.
Fig. 3.

Red (g=0), blue (g=0.4), and green (g=0.8) lines are the percent deviations Δp^θ(θ) [Eq. (5)] of p^θ(θ) from pθ(θ). For the optical parameters of muscle and bone, see Section 3. The three curves for a given color refer to nse{1,2,3} [Δp^θ(θ) decreases for increasing nse].

Fig. 4.
Fig. 4.

Red (g=0), blue (g=0.4), and green (g=0.8) lines are the p^α(α) obtained by MC simulations. Black lines represent pα(α) [Eq. (4)]. For the optical parameters of muscle and bone, see Section 3. The figure pertains to nse=1.

Fig. 5.
Fig. 5.

Red (g=0), blue (g=0.4), and green (g=0.8) lines are the percent deviations Δp^θ(θ) [Eq. (5)] of p^θ(θ) from pθ(θ). For the optical parameters of muscle and bone, see Section 3. The three curves for a given color refer to nse=1,2,3 [Δp^θ(θ) decreases for increasing nse].

Fig. 6.
Fig. 6.

Red (g=0), blue (g=0.4), and green (g=0.8) bar plots represent the probability that a photon experiences Nse scattering events with moving scatterers when going from the source to the detector. For the optical parameters of muscle and bone, see Section 3.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δω=(k⃗sk⃗i)v⃗,
Δω=4πnv⃗λsin(θ2)cos(α),
pθ(θ)=12(1g2)sin(θ)(1+g22gcos(θ))3/2
pα(α)=sin(α)2,
Δp^θ(θ)=100×[p^θ(θ)pθ(θ)]/max0<θπpθ(θ),
Δp^α(α)=100×[p^α(α)pα(α)]/max0<απpα(α)

Metrics