Abstract

A multiwavelength erbium-doped fiber (EDF) laser based on graphene oxide (GO) has been proposed, to the best of our knowledge, for the first time, to generate an output of stable wavelengths. The structure mainly comprises a few layers of GO between two single-mode fibers incorporated into a capillary device and a Lyot comb filter. GO can show a good nonlinear optical effect, which is beneficial to suppress the mode competition caused by the EDF and stabilize the multiwavelength output. With assistance from the GO device, 11 stable simultaneous lasing signals with a power nonuniformity of about 1.5 dB are obtained. Wavelength spacing is about 0.42 nm and the linewidth of each wavelength is less than 0.07 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wang, X. Miao, X. Zhou, and S. Qian, “Tunable multiwavelength fiber laser based on a double Sagnac HiBi fiber loop,” Appl. Opt. 51, C111–C116 (2012).
    [CrossRef]
  2. Z. Zhang, L. Zhan, K. Xu, J. Wu, Y. Xia, and J. Lin, “Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter,” Opt. Lett. 33, 324–326 (2008).
    [CrossRef]
  3. Z. Luo, M. Zhou, Z. Cai, C. Ye, J. Weng, G. Huang, and H. Xue, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23, 501–503 (2011).
    [CrossRef]
  4. H. Ahmad, A. Latif, M. Khudus, A. Zulkifli, K. Thambiratnam, and S. Harun, “Highly stable graphene-assisted tunable dual-wavelength erbium-doped fiber laser,” Appl. Opt. 52, 818–823 (2013).
    [CrossRef]
  5. X. Xu, Y. Yao, X. Zhao, and D. Chen, “Multiple four-wave-mixing processes and their application to multiwavelength erbium-doped fiber lasers,” J. Lightwave Technol. 27, 2876–2885 (2009).
    [CrossRef]
  6. X. Feng, H. Tam, H. Liu, and P. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268, 278–281 (2006).
    [CrossRef]
  7. Y. G. Han, T. Van, and S. B. Lee, “Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber,” Opt. Lett. 31, 697–699 (2006).
    [CrossRef]
  8. X. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 2538–2540 (2005).
    [CrossRef]
  9. P. Wang, D. Weng, K. Li, Y. Liu, X. Yu, and X. Zhou, “Multi-wavelength erbium-doped fiber laser based on four-wave-mixing effect in single mode fiber and high nonlinear fiber,” Opt. Express 21, 12570–12578 (2013).
    [CrossRef]
  10. Z. Luo, M. Zhou, D. Wu, C. Ye, J. Weng, J. Dong, H. Xu, Z. Cai, and L. Chen, “Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers,” J. Lightwave Technol. 29, 2732–2739 (2011).
    [CrossRef]
  11. E. Hendry, P. J. Hale, J. Moger, K. Savchenko, and A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
    [CrossRef]
  12. R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011).
    [CrossRef]
  13. A. Banerjee and H. Grebel, “Enhancing nonlinear effects with micron-scale graphene-coated plasmonic structures,” Lab Chip 6, 1140–1146 (2006).
    [CrossRef]
  14. B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photon. Technol. Lett. 24, 1792–1794 (2012).
    [CrossRef]
  15. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010).
    [CrossRef]
  16. L. Sun, H. Yu, and B. Fugetsu, “Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution,” J. Hazard. Mater. 203, 101–110 (2012).
    [CrossRef]
  17. J. Zhang, X. Qiao, F. Liu, Y. Wang, R. Wang, Y. Ma, Q. Rong, M. Hu, and Z. Feng, “A tunable erbium-doped fiber laser based on an MZ interferometer and a birefringence fiber filter,” J. Opt. 14, 015402 (2012).
    [CrossRef]
  18. X. Liu and C. Lu, “Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers,” IEEE Photon. Technol. Lett. 17, 2541–2543 (2005).
    [CrossRef]

2013 (2)

2012 (4)

T. Wang, X. Miao, X. Zhou, and S. Qian, “Tunable multiwavelength fiber laser based on a double Sagnac HiBi fiber loop,” Appl. Opt. 51, C111–C116 (2012).
[CrossRef]

B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photon. Technol. Lett. 24, 1792–1794 (2012).
[CrossRef]

L. Sun, H. Yu, and B. Fugetsu, “Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution,” J. Hazard. Mater. 203, 101–110 (2012).
[CrossRef]

J. Zhang, X. Qiao, F. Liu, Y. Wang, R. Wang, Y. Ma, Q. Rong, M. Hu, and Z. Feng, “A tunable erbium-doped fiber laser based on an MZ interferometer and a birefringence fiber filter,” J. Opt. 14, 015402 (2012).
[CrossRef]

2011 (3)

Z. Luo, M. Zhou, Z. Cai, C. Ye, J. Weng, G. Huang, and H. Xue, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23, 501–503 (2011).
[CrossRef]

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011).
[CrossRef]

Z. Luo, M. Zhou, D. Wu, C. Ye, J. Weng, J. Dong, H. Xu, Z. Cai, and L. Chen, “Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers,” J. Lightwave Technol. 29, 2732–2739 (2011).
[CrossRef]

2010 (2)

E. Hendry, P. J. Hale, J. Moger, K. Savchenko, and A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[CrossRef]

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010).
[CrossRef]

2009 (1)

2008 (1)

2006 (3)

Y. G. Han, T. Van, and S. B. Lee, “Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber,” Opt. Lett. 31, 697–699 (2006).
[CrossRef]

A. Banerjee and H. Grebel, “Enhancing nonlinear effects with micron-scale graphene-coated plasmonic structures,” Lab Chip 6, 1140–1146 (2006).
[CrossRef]

X. Feng, H. Tam, H. Liu, and P. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268, 278–281 (2006).
[CrossRef]

2005 (2)

X. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 2538–2540 (2005).
[CrossRef]

X. Liu and C. Lu, “Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers,” IEEE Photon. Technol. Lett. 17, 2541–2543 (2005).
[CrossRef]

Ahmad, H.

Bai, X.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011).
[CrossRef]

Banerjee, A.

A. Banerjee and H. Grebel, “Enhancing nonlinear effects with micron-scale graphene-coated plasmonic structures,” Lab Chip 6, 1140–1146 (2006).
[CrossRef]

Bao, Q.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010).
[CrossRef]

Bian, F.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011).
[CrossRef]

Cai, Z.

Z. Luo, M. Zhou, D. Wu, C. Ye, J. Weng, J. Dong, H. Xu, Z. Cai, and L. Chen, “Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers,” J. Lightwave Technol. 29, 2732–2739 (2011).
[CrossRef]

Z. Luo, M. Zhou, Z. Cai, C. Ye, J. Weng, G. Huang, and H. Xue, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23, 501–503 (2011).
[CrossRef]

Chen, D.

Chen, L.

Chhowalla, M.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010).
[CrossRef]

Dong, J.

Dong, X.

X. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 2538–2540 (2005).
[CrossRef]

Eda, G.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010).
[CrossRef]

Feng, X.

X. Feng, H. Tam, H. Liu, and P. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268, 278–281 (2006).
[CrossRef]

Feng, Z.

J. Zhang, X. Qiao, F. Liu, Y. Wang, R. Wang, Y. Ma, Q. Rong, M. Hu, and Z. Feng, “A tunable erbium-doped fiber laser based on an MZ interferometer and a birefringence fiber filter,” J. Opt. 14, 015402 (2012).
[CrossRef]

Fugetsu, B.

L. Sun, H. Yu, and B. Fugetsu, “Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution,” J. Hazard. Mater. 203, 101–110 (2012).
[CrossRef]

Grebel, H.

A. Banerjee and H. Grebel, “Enhancing nonlinear effects with micron-scale graphene-coated plasmonic structures,” Lab Chip 6, 1140–1146 (2006).
[CrossRef]

Hale, P. J.

E. Hendry, P. J. Hale, J. Moger, K. Savchenko, and A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[CrossRef]

Han, Y. G.

Harun, S.

Hendry, E.

E. Hendry, P. J. Hale, J. Moger, K. Savchenko, and A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[CrossRef]

Hu, M.

J. Zhang, X. Qiao, F. Liu, Y. Wang, R. Wang, Y. Ma, Q. Rong, M. Hu, and Z. Feng, “A tunable erbium-doped fiber laser based on an MZ interferometer and a birefringence fiber filter,” J. Opt. 14, 015402 (2012).
[CrossRef]

Huang, G.

Z. Luo, M. Zhou, Z. Cai, C. Ye, J. Weng, G. Huang, and H. Xue, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23, 501–503 (2011).
[CrossRef]

Khudus, M.

Latif, A.

Lee, S. B.

Li, K.

Lin, J.

Liu, F.

J. Zhang, X. Qiao, F. Liu, Y. Wang, R. Wang, Y. Ma, Q. Rong, M. Hu, and Z. Feng, “A tunable erbium-doped fiber laser based on an MZ interferometer and a birefringence fiber filter,” J. Opt. 14, 015402 (2012).
[CrossRef]

Liu, H.

X. Feng, H. Tam, H. Liu, and P. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268, 278–281 (2006).
[CrossRef]

Liu, X.

X. Liu and C. Lu, “Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers,” IEEE Photon. Technol. Lett. 17, 2541–2543 (2005).
[CrossRef]

Liu, Y.

Loh, K. P.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010).
[CrossRef]

Lu, C.

X. Liu and C. Lu, “Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers,” IEEE Photon. Technol. Lett. 17, 2541–2543 (2005).
[CrossRef]

X. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 2538–2540 (2005).
[CrossRef]

Lu, F.

X. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 2538–2540 (2005).
[CrossRef]

Lu, X.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011).
[CrossRef]

Luo, Z.

Z. Luo, M. Zhou, D. Wu, C. Ye, J. Weng, J. Dong, H. Xu, Z. Cai, and L. Chen, “Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers,” J. Lightwave Technol. 29, 2732–2739 (2011).
[CrossRef]

Z. Luo, M. Zhou, Z. Cai, C. Ye, J. Weng, G. Huang, and H. Xue, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23, 501–503 (2011).
[CrossRef]

Ma, Y.

J. Zhang, X. Qiao, F. Liu, Y. Wang, R. Wang, Y. Ma, Q. Rong, M. Hu, and Z. Feng, “A tunable erbium-doped fiber laser based on an MZ interferometer and a birefringence fiber filter,” J. Opt. 14, 015402 (2012).
[CrossRef]

Martinez, A.

B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photon. Technol. Lett. 24, 1792–1794 (2012).
[CrossRef]

Miao, X.

Mikhailov, A.

E. Hendry, P. J. Hale, J. Moger, K. Savchenko, and A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[CrossRef]

Moger, J.

E. Hendry, P. J. Hale, J. Moger, K. Savchenko, and A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[CrossRef]

Qian, S.

Qiao, X.

J. Zhang, X. Qiao, F. Liu, Y. Wang, R. Wang, Y. Ma, Q. Rong, M. Hu, and Z. Feng, “A tunable erbium-doped fiber laser based on an MZ interferometer and a birefringence fiber filter,” J. Opt. 14, 015402 (2012).
[CrossRef]

Rong, Q.

J. Zhang, X. Qiao, F. Liu, Y. Wang, R. Wang, Y. Ma, Q. Rong, M. Hu, and Z. Feng, “A tunable erbium-doped fiber laser based on an MZ interferometer and a birefringence fiber filter,” J. Opt. 14, 015402 (2012).
[CrossRef]

Savchenko, K.

E. Hendry, P. J. Hale, J. Moger, K. Savchenko, and A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[CrossRef]

Sun, L.

L. Sun, H. Yu, and B. Fugetsu, “Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution,” J. Hazard. Mater. 203, 101–110 (2012).
[CrossRef]

Tam, H.

X. Feng, H. Tam, H. Liu, and P. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268, 278–281 (2006).
[CrossRef]

Thambiratnam, K.

Van, T.

Wai, P.

X. Feng, H. Tam, H. Liu, and P. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268, 278–281 (2006).
[CrossRef]

Wang, E.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011).
[CrossRef]

Wang, P.

Wang, R.

J. Zhang, X. Qiao, F. Liu, Y. Wang, R. Wang, Y. Ma, Q. Rong, M. Hu, and Z. Feng, “A tunable erbium-doped fiber laser based on an MZ interferometer and a birefringence fiber filter,” J. Opt. 14, 015402 (2012).
[CrossRef]

Wang, T.

Wang, W.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011).
[CrossRef]

Wang, Y.

J. Zhang, X. Qiao, F. Liu, Y. Wang, R. Wang, Y. Ma, Q. Rong, M. Hu, and Z. Feng, “A tunable erbium-doped fiber laser based on an MZ interferometer and a birefringence fiber filter,” J. Opt. 14, 015402 (2012).
[CrossRef]

Weng, D.

Weng, J.

Z. Luo, M. Zhou, D. Wu, C. Ye, J. Weng, J. Dong, H. Xu, Z. Cai, and L. Chen, “Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers,” J. Lightwave Technol. 29, 2732–2739 (2011).
[CrossRef]

Z. Luo, M. Zhou, Z. Cai, C. Ye, J. Weng, G. Huang, and H. Xue, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23, 501–503 (2011).
[CrossRef]

Wu, D.

Wu, J.

Wu, R.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011).
[CrossRef]

Xia, Y.

Xu, B.

B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photon. Technol. Lett. 24, 1792–1794 (2012).
[CrossRef]

Xu, H.

Xu, K.

Xu, X.

Xue, H.

Z. Luo, M. Zhou, Z. Cai, C. Ye, J. Weng, G. Huang, and H. Xue, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23, 501–503 (2011).
[CrossRef]

Yamashita, S.

B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photon. Technol. Lett. 24, 1792–1794 (2012).
[CrossRef]

Yan, S.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011).
[CrossRef]

Yang, X.

X. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 2538–2540 (2005).
[CrossRef]

Yao, Y.

Ye, C.

Z. Luo, M. Zhou, Z. Cai, C. Ye, J. Weng, G. Huang, and H. Xue, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23, 501–503 (2011).
[CrossRef]

Z. Luo, M. Zhou, D. Wu, C. Ye, J. Weng, J. Dong, H. Xu, Z. Cai, and L. Chen, “Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers,” J. Lightwave Technol. 29, 2732–2739 (2011).
[CrossRef]

Yu, H.

L. Sun, H. Yu, and B. Fugetsu, “Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution,” J. Hazard. Mater. 203, 101–110 (2012).
[CrossRef]

Yu, X.

Zhan, L.

Zhang, J.

J. Zhang, X. Qiao, F. Liu, Y. Wang, R. Wang, Y. Ma, Q. Rong, M. Hu, and Z. Feng, “A tunable erbium-doped fiber laser based on an MZ interferometer and a birefringence fiber filter,” J. Opt. 14, 015402 (2012).
[CrossRef]

Zhang, S.

X. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 2538–2540 (2005).
[CrossRef]

Zhang, Y.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011).
[CrossRef]

Zhang, Z.

Zhao, J.

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011).
[CrossRef]

Zhao, X.

Zhou, M.

Z. Luo, M. Zhou, Z. Cai, C. Ye, J. Weng, G. Huang, and H. Xue, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23, 501–503 (2011).
[CrossRef]

Z. Luo, M. Zhou, D. Wu, C. Ye, J. Weng, J. Dong, H. Xu, Z. Cai, and L. Chen, “Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers,” J. Lightwave Technol. 29, 2732–2739 (2011).
[CrossRef]

Zhou, X.

Zulkifli, A.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (4)

X. Liu and C. Lu, “Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers,” IEEE Photon. Technol. Lett. 17, 2541–2543 (2005).
[CrossRef]

Z. Luo, M. Zhou, Z. Cai, C. Ye, J. Weng, G. Huang, and H. Xue, “Graphene-assisted multiwavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett. 23, 501–503 (2011).
[CrossRef]

X. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, “Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 2538–2540 (2005).
[CrossRef]

B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photon. Technol. Lett. 24, 1792–1794 (2012).
[CrossRef]

J. Hazard. Mater. (1)

L. Sun, H. Yu, and B. Fugetsu, “Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution,” J. Hazard. Mater. 203, 101–110 (2012).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. (1)

J. Zhang, X. Qiao, F. Liu, Y. Wang, R. Wang, Y. Ma, Q. Rong, M. Hu, and Z. Feng, “A tunable erbium-doped fiber laser based on an MZ interferometer and a birefringence fiber filter,” J. Opt. 14, 015402 (2012).
[CrossRef]

Lab Chip (1)

A. Banerjee and H. Grebel, “Enhancing nonlinear effects with micron-scale graphene-coated plasmonic structures,” Lab Chip 6, 1140–1146 (2006).
[CrossRef]

Nano Lett. (1)

R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011).
[CrossRef]

Nat. Chem. (1)

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010).
[CrossRef]

Opt. Commun. (1)

X. Feng, H. Tam, H. Liu, and P. Wai, “Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror,” Opt. Commun. 268, 278–281 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

E. Hendry, P. J. Hale, J. Moger, K. Savchenko, and A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup.

Fig. 2.
Fig. 2.

Simulation result of the Lyot filter with PC2 in state (π/4, π/4), whereas PC1 is in state (π/3).

Fig. 3.
Fig. 3.

Structure of the fiber with GO that is inserted into the capillary.

Fig. 4.
Fig. 4.

Output lasing (a)–(c) without GO and (d)–(f) with depositing once.

Fig. 5.
Fig. 5.

Output lasing with depositing (a) 5 times and (b) 10 times that uses the 10 m PMF.

Fig. 6.
Fig. 6.

Tuning characteristic of the MWEDFL.

Fig. 7.
Fig. 7.

(a) Repeatedly scanned output spectra at 10 min spacings. (b) Fluctuations of output wavelength and peak power over 1 h.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

|T|2=cos2αcos2β+sin2αsin2β+12sin2αsin2βcos(Δφ+Δφ).
Δλ=λ2/(Δn×L).

Metrics