Abstract

Filter technologies implemented on CMOS image sensors for spectrally selective applications often use a combination of on-chip organic resists and an external substrate with multilayer dielectric coatings. The photopic-like and near-infrared bandpass filtering functions respectively required by ambient light sensing and user proximity detection through time-of-flight can be fully integrated on chip with multilayer metal–dielectric filters. Copper, silicon nitride, and silicon oxide are the materials selected for a technological proof-of-concept on functional wafers, due to their immediate availability in front-end semiconductor fabs. Filter optical designs are optimized with respect to specific performance criteria, and the robustness of the designs regarding process errors are evaluated for industrialization purposes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33, 1589–1591 (2012).
    [CrossRef]
  2. S. Cova, M. Ghioni, M. A. Itzler, J. C. Bienfang, and A. Restelli, “Semi-conductor based detectors,” Exp. Methods Phys. Sci. 45, 83–146 (2013).
    [CrossRef]
  3. S. Kawada, S. Sakai, N. Akahane, R. Kuroda, and S. Sugawa, “A wide dynamic range checkered-color CMOS image sensor with IR-cut RGB and visible-to-near-IR pixels,” in Proceedings of IEEE Sensors Conference (IEEE, 2009), pp. 1648–1651.
  4. S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron Devices 55, 754–759 (2008).
    [CrossRef]
  5. Y. T. Yoon and S. S. Lee, “Transmission type color filter incorporating a silver film etalon,” Opt. Express 18, 5344–5349 (2010).
    [CrossRef]
  6. L. Frey, P. Parrein, J. Raby, C. Pellé, D. Hérault, M. Marty, and J. Michailos, “Color filters including infrared cut-off integrated on CMOS image sensors,” Opt. Express 19, 13073–13080 (2011).
    [CrossRef]
  7. H. A. Macleod, Thin-Film Optical Filters III (Institute of Physics, 2001).
  8. J. A. Dobrowolski, “Comparison of the Fourier-transform and flip-flop thin-film synthesis methods,” Appl. Opt. 25, 1966–1972 (1986).
    [CrossRef]
  9. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004).
    [CrossRef]
  10. D65 illuminant, http://www.cie.co.at/publ/abst/datatables15_2004/std65.txt .
  11. A. V. Tikhonravov and M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com .
  12. J. L. Regolini, D. Benoit, and P. Morin, “Passivation issues in active pixel CMOS image sensors,” Microelectron. Reliab. 47, 739–742 (2007).
  13. P. Verly, “Design of a robust thin-film interference filter for erbium-doped fiber amplifier gain equalization,” Appl. Opt. 41, 3092–3096 (2002).
    [CrossRef]
  14. Y. L. Cheng, T. J. Chiu, B. J. Wei, H. J. Wang, J. Wu, and Y. L. Wang, “Effect of copper barrier dielectric deposition process on characterization of copper interconnect,” J. Vac. Sci. Technol. B 28, 567–572 (2010).
    [CrossRef]
  15. C. Boehme and G. Lucovsky, “Dissociation reactions of hydrogen in remote plasma-enhanced chemical vapor-deposition silicon nitride,” J. Vac. Sci. Technol. A 19, 2622–2628 (2001).
    [CrossRef]
  16. D. Benoit, P. Morin, and J. Regolini, “Determination of silicon nitride film chemical composition to study hydrogen desorption mechanisms,” Thin Solid Films 519, 6550–6553 (2011).
    [CrossRef]
  17. S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16, 20809–20816 (2008).
    [CrossRef]
  18. F. Karouta, K. Vora, J. Tian, and C. Jagadish, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D 45, 445301 (2012).
    [CrossRef]
  19. E. R. Fossum and D. B. Hondongwa, “A review of the pinned photodiode for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc. 2, 33–43 (2014).
  20. M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.
  21. C. Mornet, J. Vaillant, T. Decroux, N. Virollet, D. Herault, and I. Schanen, “An image quality evaluation tool simulating image sensors including quantum efficiency off-axis effect,” Proc. SPIE 7876, 78760M (2011).
    [CrossRef]
  22. L. Frey, P. Parrein, L. Virot, C. Pellé, and J. Raby, “Thin film characterization for modeling and optimization of silver-dielectric color filters,” Appl. Opt. 53, 1663–1673 (2014).
    [CrossRef]
  23. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Manufacturing of an absorbing filter controlled by a broadband optical monitoring,” Opt. Express 16, 12008–12017 (2008).
    [CrossRef]
  24. C. C. Lee, K. Wu, and M. Y. Ho, “Reflection coefficient monitoring for optical interference coating depositions,” Opt. Lett. 38, 1325–1327 (2013).
    [CrossRef]

2014 (2)

E. R. Fossum and D. B. Hondongwa, “A review of the pinned photodiode for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc. 2, 33–43 (2014).

L. Frey, P. Parrein, L. Virot, C. Pellé, and J. Raby, “Thin film characterization for modeling and optimization of silver-dielectric color filters,” Appl. Opt. 53, 1663–1673 (2014).
[CrossRef]

2013 (2)

C. C. Lee, K. Wu, and M. Y. Ho, “Reflection coefficient monitoring for optical interference coating depositions,” Opt. Lett. 38, 1325–1327 (2013).
[CrossRef]

S. Cova, M. Ghioni, M. A. Itzler, J. C. Bienfang, and A. Restelli, “Semi-conductor based detectors,” Exp. Methods Phys. Sci. 45, 83–146 (2013).
[CrossRef]

2012 (2)

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33, 1589–1591 (2012).
[CrossRef]

F. Karouta, K. Vora, J. Tian, and C. Jagadish, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D 45, 445301 (2012).
[CrossRef]

2011 (3)

C. Mornet, J. Vaillant, T. Decroux, N. Virollet, D. Herault, and I. Schanen, “An image quality evaluation tool simulating image sensors including quantum efficiency off-axis effect,” Proc. SPIE 7876, 78760M (2011).
[CrossRef]

D. Benoit, P. Morin, and J. Regolini, “Determination of silicon nitride film chemical composition to study hydrogen desorption mechanisms,” Thin Solid Films 519, 6550–6553 (2011).
[CrossRef]

L. Frey, P. Parrein, J. Raby, C. Pellé, D. Hérault, M. Marty, and J. Michailos, “Color filters including infrared cut-off integrated on CMOS image sensors,” Opt. Express 19, 13073–13080 (2011).
[CrossRef]

2010 (2)

Y. T. Yoon and S. S. Lee, “Transmission type color filter incorporating a silver film etalon,” Opt. Express 18, 5344–5349 (2010).
[CrossRef]

Y. L. Cheng, T. J. Chiu, B. J. Wei, H. J. Wang, J. Wu, and Y. L. Wang, “Effect of copper barrier dielectric deposition process on characterization of copper interconnect,” J. Vac. Sci. Technol. B 28, 567–572 (2010).
[CrossRef]

2008 (3)

2007 (1)

J. L. Regolini, D. Benoit, and P. Morin, “Passivation issues in active pixel CMOS image sensors,” Microelectron. Reliab. 47, 739–742 (2007).

2004 (1)

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004).
[CrossRef]

2002 (1)

2001 (1)

C. Boehme and G. Lucovsky, “Dissociation reactions of hydrogen in remote plasma-enhanced chemical vapor-deposition silicon nitride,” J. Vac. Sci. Technol. A 19, 2622–2628 (2001).
[CrossRef]

1986 (1)

Akahane, N.

S. Kawada, S. Sakai, N. Akahane, R. Kuroda, and S. Sugawa, “A wide dynamic range checkered-color CMOS image sensor with IR-cut RGB and visible-to-near-IR pixels,” in Proceedings of IEEE Sensors Conference (IEEE, 2009), pp. 1648–1651.

Amotchkina, T. V.

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004).
[CrossRef]

Augier, C.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Badoil, B.

Barbier, F.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Benoit, D.

D. Benoit, P. Morin, and J. Regolini, “Determination of silicon nitride film chemical composition to study hydrogen desorption mechanisms,” Thin Solid Films 519, 6550–6553 (2011).
[CrossRef]

J. L. Regolini, D. Benoit, and P. Morin, “Passivation issues in active pixel CMOS image sensors,” Microelectron. Reliab. 47, 739–742 (2007).

Bienfang, J. C.

S. Cova, M. Ghioni, M. A. Itzler, J. C. Bienfang, and A. Restelli, “Semi-conductor based detectors,” Exp. Methods Phys. Sci. 45, 83–146 (2013).
[CrossRef]

Boehme, C.

C. Boehme and G. Lucovsky, “Dissociation reactions of hydrogen in remote plasma-enhanced chemical vapor-deposition silicon nitride,” J. Vac. Sci. Technol. A 19, 2622–2628 (2001).
[CrossRef]

Bruno, E.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Cathelinaud, M.

Cazaux, Y.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Cheng, Y. L.

Y. L. Cheng, T. J. Chiu, B. J. Wei, H. J. Wang, J. Wu, and Y. L. Wang, “Effect of copper barrier dielectric deposition process on characterization of copper interconnect,” J. Vac. Sci. Technol. B 28, 567–572 (2010).
[CrossRef]

Chiu, T. J.

Y. L. Cheng, T. J. Chiu, B. J. Wei, H. J. Wang, J. Wu, and Y. L. Wang, “Effect of copper barrier dielectric deposition process on characterization of copper interconnect,” J. Vac. Sci. Technol. B 28, 567–572 (2010).
[CrossRef]

Cohen, M.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Cova, S.

S. Cova, M. Ghioni, M. A. Itzler, J. C. Bienfang, and A. Restelli, “Semi-conductor based detectors,” Exp. Methods Phys. Sci. 45, 83–146 (2013).
[CrossRef]

Cowache, C.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Decroux, T.

C. Mornet, J. Vaillant, T. Decroux, N. Virollet, D. Herault, and I. Schanen, “An image quality evaluation tool simulating image sensors including quantum efficiency off-axis effect,” Proc. SPIE 7876, 78760M (2011).
[CrossRef]

Dobrowolski, J. A.

Fossum, E. R.

E. R. Fossum and D. B. Hondongwa, “A review of the pinned photodiode for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc. 2, 33–43 (2014).

Frey, L.

Gandolfi, A.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Ghioni, M.

S. Cova, M. Ghioni, M. A. Itzler, J. C. Bienfang, and A. Restelli, “Semi-conductor based detectors,” Exp. Methods Phys. Sci. 45, 83–146 (2013).
[CrossRef]

Girault, T.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Grant, L. A.

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33, 1589–1591 (2012).
[CrossRef]

Henderson, R. K.

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33, 1589–1591 (2012).
[CrossRef]

Herault, D.

C. Mornet, J. Vaillant, T. Decroux, N. Virollet, D. Herault, and I. Schanen, “An image quality evaluation tool simulating image sensors including quantum efficiency off-axis effect,” Proc. SPIE 7876, 78760M (2011).
[CrossRef]

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Hérault, D.

Ho, M. Y.

Hondongwa, D. B.

E. R. Fossum and D. B. Hondongwa, “A review of the pinned photodiode for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc. 2, 33–43 (2014).

Hotellier, N.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Inaba, Y.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron Devices 55, 754–759 (2008).
[CrossRef]

Inard, A.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Itzler, M. A.

S. Cova, M. Ghioni, M. A. Itzler, J. C. Bienfang, and A. Restelli, “Semi-conductor based detectors,” Exp. Methods Phys. Sci. 45, 83–146 (2013).
[CrossRef]

Jagadish, C.

F. Karouta, K. Vora, J. Tian, and C. Jagadish, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D 45, 445301 (2012).
[CrossRef]

Jagueneau, T.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Karouta, F.

F. Karouta, K. Vora, J. Tian, and C. Jagadish, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D 45, 445301 (2012).
[CrossRef]

Kasano, M.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron Devices 55, 754–759 (2008).
[CrossRef]

Kawada, S.

S. Kawada, S. Sakai, N. Akahane, R. Kuroda, and S. Sugawa, “A wide dynamic range checkered-color CMOS image sensor with IR-cut RGB and visible-to-near-IR pixels,” in Proceedings of IEEE Sensors Conference (IEEE, 2009), pp. 1648–1651.

Kokarev, M. A.

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004).
[CrossRef]

Koyama, S.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron Devices 55, 754–759 (2008).
[CrossRef]

Kuroda, R.

S. Kawada, S. Sakai, N. Akahane, R. Kuroda, and S. Sugawa, “A wide dynamic range checkered-color CMOS image sensor with IR-cut RGB and visible-to-near-IR pixels,” in Proceedings of IEEE Sensors Conference (IEEE, 2009), pp. 1648–1651.

Kwong, D. L.

LeBorgne, O.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Lee, C. C.

Lee, S. S.

Lemarchand, F.

Lequime, M.

Lo, G. Q.

Lucovsky, G.

C. Boehme and G. Lucovsky, “Dissociation reactions of hydrogen in remote plasma-enhanced chemical vapor-deposition silicon nitride,” J. Vac. Sci. Technol. A 19, 2622–2628 (2001).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters III (Institute of Physics, 2001).

Mao, S. C.

Marty, M.

Mazaleyrat, E.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Michailos, J.

L. Frey, P. Parrein, J. Raby, C. Pellé, D. Hérault, M. Marty, and J. Michailos, “Color filters including infrared cut-off integrated on CMOS image sensors,” Opt. Express 19, 13073–13080 (2011).
[CrossRef]

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Morin, P.

D. Benoit, P. Morin, and J. Regolini, “Determination of silicon nitride film chemical composition to study hydrogen desorption mechanisms,” Thin Solid Films 519, 6550–6553 (2011).
[CrossRef]

J. L. Regolini, D. Benoit, and P. Morin, “Passivation issues in active pixel CMOS image sensors,” Microelectron. Reliab. 47, 739–742 (2007).

Mornet, C.

C. Mornet, J. Vaillant, T. Decroux, N. Virollet, D. Herault, and I. Schanen, “An image quality evaluation tool simulating image sensors including quantum efficiency off-axis effect,” Proc. SPIE 7876, 78760M (2011).
[CrossRef]

Murata, T.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron Devices 55, 754–759 (2008).
[CrossRef]

Parrein, P.

Pellé, C.

Raby, J.

Regolini, J.

D. Benoit, P. Morin, and J. Regolini, “Determination of silicon nitride film chemical composition to study hydrogen desorption mechanisms,” Thin Solid Films 519, 6550–6553 (2011).
[CrossRef]

Regolini, J. L.

J. L. Regolini, D. Benoit, and P. Morin, “Passivation issues in active pixel CMOS image sensors,” Microelectron. Reliab. 47, 739–742 (2007).

Restelli, A.

S. Cova, M. Ghioni, M. A. Itzler, J. C. Bienfang, and A. Restelli, “Semi-conductor based detectors,” Exp. Methods Phys. Sci. 45, 83–146 (2013).
[CrossRef]

Reynard, J. P.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Roy, F.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Sakai, S.

S. Kawada, S. Sakai, N. Akahane, R. Kuroda, and S. Sugawa, “A wide dynamic range checkered-color CMOS image sensor with IR-cut RGB and visible-to-near-IR pixels,” in Proceedings of IEEE Sensors Conference (IEEE, 2009), pp. 1648–1651.

Sanchez, Y.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Schanen, I.

C. Mornet, J. Vaillant, T. Decroux, N. Virollet, D. Herault, and I. Schanen, “An image quality evaluation tool simulating image sensors including quantum efficiency off-axis effect,” Proc. SPIE 7876, 78760M (2011).
[CrossRef]

Sugawa, S.

S. Kawada, S. Sakai, N. Akahane, R. Kuroda, and S. Sugawa, “A wide dynamic range checkered-color CMOS image sensor with IR-cut RGB and visible-to-near-IR pixels,” in Proceedings of IEEE Sensors Conference (IEEE, 2009), pp. 1648–1651.

Sun, X. W.

Tao, S. H.

Tian, J.

F. Karouta, K. Vora, J. Tian, and C. Jagadish, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D 45, 445301 (2012).
[CrossRef]

Tikhonravov, A. V.

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004).
[CrossRef]

Trubetskov, M. K.

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004).
[CrossRef]

Vaillant, J.

C. Mornet, J. Vaillant, T. Decroux, N. Virollet, D. Herault, and I. Schanen, “An image quality evaluation tool simulating image sensors including quantum efficiency off-axis effect,” Proc. SPIE 7876, 78760M (2011).
[CrossRef]

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Verly, P.

Virollet, N.

C. Mornet, J. Vaillant, T. Decroux, N. Virollet, D. Herault, and I. Schanen, “An image quality evaluation tool simulating image sensors including quantum efficiency off-axis effect,” Proc. SPIE 7876, 78760M (2011).
[CrossRef]

Virot, L.

Vora, K.

F. Karouta, K. Vora, J. Tian, and C. Jagadish, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D 45, 445301 (2012).
[CrossRef]

Wang, H. J.

Y. L. Cheng, T. J. Chiu, B. J. Wei, H. J. Wang, J. Wu, and Y. L. Wang, “Effect of copper barrier dielectric deposition process on characterization of copper interconnect,” J. Vac. Sci. Technol. B 28, 567–572 (2010).
[CrossRef]

Wang, Y. L.

Y. L. Cheng, T. J. Chiu, B. J. Wei, H. J. Wang, J. Wu, and Y. L. Wang, “Effect of copper barrier dielectric deposition process on characterization of copper interconnect,” J. Vac. Sci. Technol. B 28, 567–572 (2010).
[CrossRef]

Webster, E. A. G.

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33, 1589–1591 (2012).
[CrossRef]

Wei, B. J.

Y. L. Cheng, T. J. Chiu, B. J. Wei, H. J. Wang, J. Wu, and Y. L. Wang, “Effect of copper barrier dielectric deposition process on characterization of copper interconnect,” J. Vac. Sci. Technol. B 28, 567–572 (2010).
[CrossRef]

Wu, J.

Y. L. Cheng, T. J. Chiu, B. J. Wei, H. J. Wang, J. Wu, and Y. L. Wang, “Effect of copper barrier dielectric deposition process on characterization of copper interconnect,” J. Vac. Sci. Technol. B 28, 567–572 (2010).
[CrossRef]

Wu, K.

Xu, Y. L.

Yoon, Y. T.

Yu, M. B.

Zinck, C.

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Appl. Opt. (3)

Exp. Methods Phys. Sci. (1)

S. Cova, M. Ghioni, M. A. Itzler, J. C. Bienfang, and A. Restelli, “Semi-conductor based detectors,” Exp. Methods Phys. Sci. 45, 83–146 (2013).
[CrossRef]

IEEE Electron Device Lett. (1)

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33, 1589–1591 (2012).
[CrossRef]

IEEE J. Electron Devices Soc. (1)

E. R. Fossum and D. B. Hondongwa, “A review of the pinned photodiode for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc. 2, 33–43 (2014).

IEEE Trans. Electron Devices (1)

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron Devices 55, 754–759 (2008).
[CrossRef]

J. Phys. D (1)

F. Karouta, K. Vora, J. Tian, and C. Jagadish, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D 45, 445301 (2012).
[CrossRef]

J. Vac. Sci. Technol. A (1)

C. Boehme and G. Lucovsky, “Dissociation reactions of hydrogen in remote plasma-enhanced chemical vapor-deposition silicon nitride,” J. Vac. Sci. Technol. A 19, 2622–2628 (2001).
[CrossRef]

J. Vac. Sci. Technol. B (1)

Y. L. Cheng, T. J. Chiu, B. J. Wei, H. J. Wang, J. Wu, and Y. L. Wang, “Effect of copper barrier dielectric deposition process on characterization of copper interconnect,” J. Vac. Sci. Technol. B 28, 567–572 (2010).
[CrossRef]

Microelectron. Reliab. (1)

J. L. Regolini, D. Benoit, and P. Morin, “Passivation issues in active pixel CMOS image sensors,” Microelectron. Reliab. 47, 739–742 (2007).

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (2)

C. Mornet, J. Vaillant, T. Decroux, N. Virollet, D. Herault, and I. Schanen, “An image quality evaluation tool simulating image sensors including quantum efficiency off-axis effect,” Proc. SPIE 7876, 78760M (2011).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004).
[CrossRef]

Thin Solid Films (1)

D. Benoit, P. Morin, and J. Regolini, “Determination of silicon nitride film chemical composition to study hydrogen desorption mechanisms,” Thin Solid Films 519, 6550–6553 (2011).
[CrossRef]

Other (5)

S. Kawada, S. Sakai, N. Akahane, R. Kuroda, and S. Sugawa, “A wide dynamic range checkered-color CMOS image sensor with IR-cut RGB and visible-to-near-IR pixels,” in Proceedings of IEEE Sensors Conference (IEEE, 2009), pp. 1648–1651.

D65 illuminant, http://www.cie.co.at/publ/abst/datatables15_2004/std65.txt .

A. V. Tikhonravov and M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com .

H. A. Macleod, Thin-Film Optical Filters III (Institute of Physics, 2001).

M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Double integration schemes for IR bandpass and ALS filters on CMOS wafer, with filters above passivation layers (top), or passivation layers included in at least one of the filters (bottom).

Fig. 2.
Fig. 2.

Sketch of an example of Si QE spectral response (solid line) and black housing transmittance (dotted line) used in the ALS and IR sensor system. Black resist (dashed line) is only used on the IR sensor to enhance visible rejection. The exact measured data are used in the calculations of the whole paper but are not shown because they are proprietary data.

Fig. 3.
Fig. 3.

Nominal performances of several optimized Cu filters (disks), compared to reference filter (cross). The out-of-specification area is colored in light gray.

Fig. 4.
Fig. 4.

Layer thickness (in nm) and normal incidence spectral responses of one optimized ALS filter example (solid line), and reference filter (dotted line).

Fig. 5.
Fig. 5.

Dispersion of performances of the ALS Cu filter shown in Fig. 4, simulated at normal incidence with three sets of standard deviations on process errors, respectively large (blue), intermediate (red), and low (green) dispersions. Nominal performances of this filter and reference filter are respectively represented by the disk and cross. The out-of-specification area is colored in light gray.

Fig. 6.
Fig. 6.

Dispersion of performances of the ALS Cu filter shown in Fig. 4, simulated with large dispersion on process errors, at several incidence angles: 0°, 15°, 30°, and 60° (from dark blue to light blue). The out-of-specification area is colored in light gray.

Fig. 7.
Fig. 7.

Layer thickness (in nm) and normal incidence spectral responses of optimized IR bandpass Cu filter (solid line), and reference filter (dotted line), multiplied by black housing transmittance, black resist transmittance, and Si QE.

Fig. 8.
Fig. 8.

Dispersion of performances of the IR bandpass Cu filter shown in Fig. 7, simulated with three sets of standard deviations on process errors, respectively large (blue), intermediate (red), and low (green) dispersions. In yellow: same dispersion as for the red graph, but with further reduction of dispersion (only 0.5% standard deviation) on the thickness of the two passivation layers inside Fabry–Perot cavity. Nominal performances of this filter and reference filter are respectively represented by the disk and cross. The out-of-specification area is colored in light gray.

Fig. 9.
Fig. 9.

Cross-section image of five-layer PVD Cu/PECVD SiN stacks with low-H SiN (STEM image).

Fig. 10.
Fig. 10.

Cu/SiN filter integration scheme for the first demonstration on CMOS wafer.

Fig. 11.
Fig. 11.

QE spectral responses of ALS filter (top) and IR bandpass filter (bottom) respectively measured at the center, mi-radius, and edge of a CMOS wafer (respectively dark, medium, and light solid lines), and simulated (dotted line). Simulations did not take into account the losses induced by the absence of microlenses. Filter stacks are shown on the right with layer thicknesses in nm. “BE” and “AR” stand for back-end and antireflective coatings.

Tables (2)

Tables Icon

Table 1. Deposition Conditions of PECVD SiN Layers

Tables Icon

Table 2. Hydrogen Content and Refractive Index of SiN Layers

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S(i)=a2hc·λBlack(λ)·Filter(λ)·QE(λ)·Ill(i,λ)·λ·dλKm·λVobs(λ)·Ill(i,λ)·dλ,
ALSErrordB(i)=10log10(Fcal.S(i)).
ALSDarklux(T)=Fcal·DC(T).
(1)A=min(T)[845865nm],A>70%.
(2)B=845865FIR(λ)dλ4001000FIR(λ)dλ,B>35%,
(3)C=400845FIR(λ)dλ4001000FIR(λ)dλ,C<33%,
(4)D=9001000FIR(λ)dλ4001000FIR(λ)dλ,D<1%.
(process error set1)σCu=5%,σdiel=2.7%,σn=1.6%,(process error set2)σCu=3.75%,σdiel=2%,σn=0.16%,(process error set3)σCu=2.5%,σdiel=1.35%,σn=0.13%,

Metrics