Abstract

We report a high power, single frequency, linearly polarized master oscillator power amplifier emitting 110 ns, 1 kW peak power pulses at 2050 nm. A 20% slope efficiency and a beam quality of M2=1.21 are achieved with three-stage double-clad Tm3+-doped fiber architecture. Various pump schemes are compared leading to the conclusion that 793 nm pump wavelength is the most efficient for amplification at 2050 nm. Based on numerical simulations, the Brillouin gain coefficient around 2 μm in Tm3+ highly doped silica fiber is estimated to 1.2×1011m/W. Output peak power is limited by stimulated Brillouin scattering to 535 W without mitigation and to 1 kW with application of a strain distribution along the doped fiber.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Creeden, P. A. Budni, and P. A. Ketteridge, “Pulsed Tm-doped fiber lasers for mid-IR frequency conversion,” Proc. SPIE 7195, 71950X (2009).
    [CrossRef]
  2. A. Godard, “Infrared (2–12  μm) solid-state laser sources: a review,” C.R. Physique 8, 1100–1128 (2007).
    [CrossRef]
  3. M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2  μm,” Opt. Lett. 36, 2859–2861 (2011).
    [CrossRef]
  4. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Single-frequency, single-mode emission at 2040  nm from a 600-W thulium-doped fiber amplifier chain,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper MF2.
  5. J. Geng, Q. Wang, Z. Jiang, T. Luo, S. Jiang, and G. Czarnecki, “Kilowatt-peak-power, single-frequency, pulsed fiber laser near 2  μm,” Opt. Lett. 36, 2293–2295 (2011).
    [CrossRef]
  6. Q. Wang, J. Geng, T. Luo, and S. Jiang, “2  μm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012).
    [CrossRef]
  7. A. M. Heidt, Z. Li, J. Sahu, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100  kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2  μm,” Opt. Lett. 38, 1615–1617 (2013).
    [CrossRef]
  8. Q. Fang, W. Shi, K. Kieu, E. Petersen, A. Chavez-Pirson, and N. Peyghambarian, “High power and high energy monolithic single frequency 2  μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20, 16410–16420 (2012).
    [CrossRef]
  9. W. Shi, E. B. Petersen, D. T. Nguyen, Z. Yao, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “220  μJ monolithic single-frequency Q-switched fiber laser at 2  μm by using highly Tm-doped germanate fibers,” Opt. Lett. 36, 3575–3577 (2011).
    [CrossRef]
  10. M. J. Li, X. Chen, J. Wang, A. Ruffin, D. Walton, S. Li, D. Nolan, S. Gray, and L. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Optics Fiber Communication Conference (2006), pp. 1–3.
  11. M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2  dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
    [CrossRef]
  12. N. Yoshizawa and T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol. 11, 1518–1522 (1993).
    [CrossRef]
  13. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001).
    [CrossRef]
  14. M. D. Mermelstein, A. D. Yablon, and C. Headley, “Suppression of stimulated Brillouin scattering in an Er-Yb fiber amplifier utilizing temperature-segmentation,” in Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), paper TuD3.
  15. E. Lucas, L. Lombard, G. Canat, Y. Jaouen, and S. Bordais, “Dependance en temperature d’un amplificateur a fibre dopee thulium pompe a 1560  nm,” in Journées Nationales d’Optique Guidée (JNOG) (2012), pp. 1–3.
  16. S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2  μm,” J. Sel. Topics Quantum Electron. 13, 567–572 (2007).
    [CrossRef]
  17. F. Roy, F. Leplingard, L. Lorcy, A. Le Sauze, P. Baniel, and D. Bayart, “48% power conversion efficiency in single pump gain-shifted thulium-doped fibre amplifier,” Electron. Lett. 37, 943–945 (2001).
    [CrossRef]
  18. S. Jackson and T. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17, 948–956 (1999).
    [CrossRef]
  19. M. Eichhorn, “Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers,” J. Quantum Electron. 41, 1574–1581 (2005).
    [CrossRef]
  20. P. Peterka, I. Kasik, A. Dhar, B. Dussardier, and W. Blanc, “Theoretical modeling of fiber laser at 810  nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime,” Opt. Express 19, 2773–2781 (2011).
    [CrossRef]
  21. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, G. Wall, K. F. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” J. Sel. Topics Quantum Electron. 15, 85–92 (2009).
    [CrossRef]
  22. C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
    [CrossRef]
  23. J. Ji, S. Yoo, P. Shum, and J. Nilsson, “Minimize quantum-defect heating in thulium-doped silica fiber amplifiers by tandem-pumping,” in Photonics Global Conference (PGC) (2012), pp. 1–3.
  24. B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9  μm,” Appl. Phys. B 78, 325–333 (2004).
    [CrossRef]
  25. R. W. Boyd, K. Rzewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
    [CrossRef]
  26. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2594 (1972).
    [CrossRef]
  27. D. Marcuse, “Gaussian approximation of the fundamental modes of graded-index fibers,” J. Opt. Soc. Am. 68, 103–109 (1978).
    [CrossRef]
  28. M. Nikles, L. Thevenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
    [CrossRef]
  29. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
    [CrossRef]
  30. R. Engelbrecht, J. Hagen, and M. Schmidt, “SBS-suppression in variably strained fibers for fiber-amplifiers and fiber-lasers with a high spectral power density,” Proc. SPIE 5777, 795–798 (2005).
    [CrossRef]
  31. L. Zhang, S. Cui, C. Liu, J. Zhou, and Y. Feng, “170  W, single-mode, linearly-polarized, Yb-doped all-fiber amplifier,” Opt. Express 21, 5456–5462 (2013).
    [CrossRef]

2013 (2)

2012 (2)

2011 (4)

2009 (2)

D. Creeden, P. A. Budni, and P. A. Ketteridge, “Pulsed Tm-doped fiber lasers for mid-IR frequency conversion,” Proc. SPIE 7195, 71950X (2009).
[CrossRef]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, G. Wall, K. F. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” J. Sel. Topics Quantum Electron. 15, 85–92 (2009).
[CrossRef]

2008 (1)

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2  dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

2007 (3)

A. Godard, “Infrared (2–12  μm) solid-state laser sources: a review,” C.R. Physique 8, 1100–1128 (2007).
[CrossRef]

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2  μm,” J. Sel. Topics Quantum Electron. 13, 567–572 (2007).
[CrossRef]

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef]

2005 (2)

R. Engelbrecht, J. Hagen, and M. Schmidt, “SBS-suppression in variably strained fibers for fiber-amplifiers and fiber-lasers with a high spectral power density,” Proc. SPIE 5777, 795–798 (2005).
[CrossRef]

M. Eichhorn, “Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers,” J. Quantum Electron. 41, 1574–1581 (2005).
[CrossRef]

2004 (1)

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9  μm,” Appl. Phys. B 78, 325–333 (2004).
[CrossRef]

2001 (2)

F. Roy, F. Leplingard, L. Lorcy, A. Le Sauze, P. Baniel, and D. Bayart, “48% power conversion efficiency in single pump gain-shifted thulium-doped fibre amplifier,” Electron. Lett. 37, 943–945 (2001).
[CrossRef]

J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001).
[CrossRef]

1999 (1)

1997 (1)

M. Nikles, L. Thevenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

1993 (1)

N. Yoshizawa and T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol. 11, 1518–1522 (1993).
[CrossRef]

1991 (1)

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

1990 (1)

R. W. Boyd, K. Rzewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef]

1978 (1)

1972 (1)

Alam, S. U.

Andrejco, M. J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2  dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Andrekson, P. A.

Baniel, P.

F. Roy, F. Leplingard, L. Lorcy, A. Le Sauze, P. Baniel, and D. Bayart, “48% power conversion efficiency in single pump gain-shifted thulium-doped fibre amplifier,” Electron. Lett. 37, 943–945 (2001).
[CrossRef]

Barnes, N. P.

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9  μm,” Appl. Phys. B 78, 325–333 (2004).
[CrossRef]

Bayart, D.

F. Roy, F. Leplingard, L. Lorcy, A. Le Sauze, P. Baniel, and D. Bayart, “48% power conversion efficiency in single pump gain-shifted thulium-doped fibre amplifier,” Electron. Lett. 37, 943–945 (2001).
[CrossRef]

Becker, M.

Blanc, W.

Book, L. D.

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Single-frequency, single-mode emission at 2040  nm from a 600-W thulium-doped fiber amplifier chain,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper MF2.

Bordais, S.

E. Lucas, L. Lombard, G. Canat, Y. Jaouen, and S. Bordais, “Dependance en temperature d’un amplificateur a fibre dopee thulium pompe a 1560  nm,” in Journées Nationales d’Optique Guidée (JNOG) (2012), pp. 1–3.

Bourdon, P.

Boyd, R. W.

R. W. Boyd, K. Rzewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef]

Brilland, L.

Budni, P. A.

D. Creeden, P. A. Budni, and P. A. Ketteridge, “Pulsed Tm-doped fiber lasers for mid-IR frequency conversion,” Proc. SPIE 7195, 71950X (2009).
[CrossRef]

Canat, G.

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2  μm,” Opt. Lett. 36, 2859–2861 (2011).
[CrossRef]

E. Lucas, L. Lombard, G. Canat, Y. Jaouen, and S. Bordais, “Dependance en temperature d’un amplificateur a fibre dopee thulium pompe a 1560  nm,” in Journées Nationales d’Optique Guidée (JNOG) (2012), pp. 1–3.

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, G. Wall, K. F. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” J. Sel. Topics Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Chavez-Pirson, A.

Chen, X.

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef]

M. J. Li, X. Chen, J. Wang, A. Ruffin, D. Walton, S. Li, D. Nolan, S. Gray, and L. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Optics Fiber Communication Conference (2006), pp. 1–3.

Coulombier, Q.

Creeden, D.

D. Creeden, P. A. Budni, and P. A. Ketteridge, “Pulsed Tm-doped fiber lasers for mid-IR frequency conversion,” Proc. SPIE 7195, 71950X (2009).
[CrossRef]

Crowley, A. M.

Cui, S.

Czarnecki, G.

Demeritt, J. A.

Desurvire, E.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

Dhar, A.

DiGiovanni, D. J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2  dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Dross, F.

Duhant, M.

Dussardier, B.

Eichhorn, M.

M. Eichhorn, “Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers,” J. Quantum Electron. 41, 1574–1581 (2005).
[CrossRef]

Engelbrecht, R.

R. Engelbrecht, J. Hagen, and M. Schmidt, “SBS-suppression in variably strained fibers for fiber-amplifiers and fiber-lasers with a high spectral power density,” Proc. SPIE 5777, 795–798 (2005).
[CrossRef]

Fang, Q.

Feng, Y.

Fini, J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2  dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Frith, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, G. Wall, K. F. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” J. Sel. Topics Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Geng, J.

Giles, C. R.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

Godard, A.

A. Godard, “Infrared (2–12  μm) solid-state laser sources: a review,” C.R. Physique 8, 1100–1128 (2007).
[CrossRef]

Goodno, G. D.

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Single-frequency, single-mode emission at 2040  nm from a 600-W thulium-doped fiber amplifier chain,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper MF2.

Gray, S.

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef]

M. J. Li, X. Chen, J. Wang, A. Ruffin, D. Walton, S. Li, D. Nolan, S. Gray, and L. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Optics Fiber Communication Conference (2006), pp. 1–3.

Hagen, J.

R. Engelbrecht, J. Hagen, and M. Schmidt, “SBS-suppression in variably strained fibers for fiber-amplifiers and fiber-lasers with a high spectral power density,” Proc. SPIE 5777, 795–798 (2005).
[CrossRef]

Hansryd, J.

Headley, C.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2  dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

M. D. Mermelstein, A. D. Yablon, and C. Headley, “Suppression of stimulated Brillouin scattering in an Er-Yb fiber amplifier utilizing temperature-segmentation,” in Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), paper TuD3.

Heidt, A. M.

Ibsen, M.

Imai, T.

N. Yoshizawa and T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol. 11, 1518–1522 (1993).
[CrossRef]

Jackson, S.

Jackson, S. D.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2  μm,” J. Sel. Topics Quantum Electron. 13, 567–572 (2007).
[CrossRef]

Jaouen, Y.

E. Lucas, L. Lombard, G. Canat, Y. Jaouen, and S. Bordais, “Dependance en temperature d’un amplificateur a fibre dopee thulium pompe a 1560  nm,” in Journées Nationales d’Optique Guidée (JNOG) (2012), pp. 1–3.

Ji, J.

J. Ji, S. Yoo, P. Shum, and J. Nilsson, “Minimize quantum-defect heating in thulium-doped silica fiber amplifiers by tandem-pumping,” in Photonics Global Conference (PGC) (2012), pp. 1–3.

Jiang, S.

Jiang, Z.

Kasik, I.

Kelly, B.

Ketteridge, P. A.

D. Creeden, P. A. Budni, and P. A. Ketteridge, “Pulsed Tm-doped fiber lasers for mid-IR frequency conversion,” Proc. SPIE 7195, 71950X (2009).
[CrossRef]

Kieu, K.

King, T.

Knudsen, S. N.

Lancaster, D. G.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2  μm,” J. Sel. Topics Quantum Electron. 13, 567–572 (2007).
[CrossRef]

Le Sauze, A.

F. Roy, F. Leplingard, L. Lorcy, A. Le Sauze, P. Baniel, and D. Bayart, “48% power conversion efficiency in single pump gain-shifted thulium-doped fibre amplifier,” Electron. Lett. 37, 943–945 (2001).
[CrossRef]

Leplingard, F.

F. Roy, F. Leplingard, L. Lorcy, A. Le Sauze, P. Baniel, and D. Bayart, “48% power conversion efficiency in single pump gain-shifted thulium-doped fibre amplifier,” Electron. Lett. 37, 943–945 (2001).
[CrossRef]

Li, M. J.

M. J. Li, X. Chen, J. Wang, A. Ruffin, D. Walton, S. Li, D. Nolan, S. Gray, and L. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Optics Fiber Communication Conference (2006), pp. 1–3.

Li, M.-J.

Li, S.

M. J. Li, X. Chen, J. Wang, A. Ruffin, D. Walton, S. Li, D. Nolan, S. Gray, and L. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Optics Fiber Communication Conference (2006), pp. 1–3.

Li, Z.

Liu, A.

Liu, C.

Lombard, L.

E. Lucas, L. Lombard, G. Canat, Y. Jaouen, and S. Bordais, “Dependance en temperature d’un amplificateur a fibre dopee thulium pompe a 1560  nm,” in Journées Nationales d’Optique Guidée (JNOG) (2012), pp. 1–3.

Lorcy, L.

F. Roy, F. Leplingard, L. Lorcy, A. Le Sauze, P. Baniel, and D. Bayart, “48% power conversion efficiency in single pump gain-shifted thulium-doped fibre amplifier,” Electron. Lett. 37, 943–945 (2001).
[CrossRef]

Lucas, E.

E. Lucas, L. Lombard, G. Canat, Y. Jaouen, and S. Bordais, “Dependance en temperature d’un amplificateur a fibre dopee thulium pompe a 1560  nm,” in Journées Nationales d’Optique Guidée (JNOG) (2012), pp. 1–3.

Luo, T.

Marcuse, D.

McCurdy, A. H.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2  dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Mermelstein, M. D.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2  dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

M. D. Mermelstein, A. D. Yablon, and C. Headley, “Suppression of stimulated Brillouin scattering in an Er-Yb fiber amplifier utilizing temperature-segmentation,” in Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), paper TuD3.

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, G. Wall, K. F. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” J. Sel. Topics Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Narum, P.

R. W. Boyd, K. Rzewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef]

Nguyen, D. T.

Nguyen, T. N.

Nikles, M.

M. Nikles, L. Thevenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Nilsson, J.

J. Ji, S. Yoo, P. Shum, and J. Nilsson, “Minimize quantum-defect heating in thulium-doped silica fiber amplifiers by tandem-pumping,” in Photonics Global Conference (PGC) (2012), pp. 1–3.

Nolan, D.

M. J. Li, X. Chen, J. Wang, A. Ruffin, D. Walton, S. Li, D. Nolan, S. Gray, and L. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Optics Fiber Communication Conference (2006), pp. 1–3.

Peterka, P.

Petersen, E.

Petersen, E. B.

Peyghambarian, N.

Phelan, R.

Renard, W.

Renversez, G.

Richardson, D. J.

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, G. Wall, K. F. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” J. Sel. Topics Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Robert, P.

M. Nikles, L. Thevenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Rothenberg, J. E.

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Single-frequency, single-mode emission at 2040  nm from a 600-W thulium-doped fiber amplifier chain,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper MF2.

Rothhardt, M.

Roy, F.

F. Roy, F. Leplingard, L. Lorcy, A. Le Sauze, P. Baniel, and D. Bayart, “48% power conversion efficiency in single pump gain-shifted thulium-doped fibre amplifier,” Electron. Lett. 37, 943–945 (2001).
[CrossRef]

Ruffin, A.

M. J. Li, X. Chen, J. Wang, A. Ruffin, D. Walton, S. Li, D. Nolan, S. Gray, and L. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Optics Fiber Communication Conference (2006), pp. 1–3.

Ruffin, A. B.

Rzewski, K.

R. W. Boyd, K. Rzewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef]

Sabella, A.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2  μm,” J. Sel. Topics Quantum Electron. 13, 567–572 (2007).
[CrossRef]

Sahu, J.

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, G. Wall, K. F. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” J. Sel. Topics Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Schmidt, M.

R. Engelbrecht, J. Hagen, and M. Schmidt, “SBS-suppression in variably strained fibers for fiber-amplifiers and fiber-lasers with a high spectral power density,” Proc. SPIE 5777, 795–798 (2005).
[CrossRef]

Shardlow, P. C.

Shi, W.

Shum, P.

J. Ji, S. Yoo, P. Shum, and J. Nilsson, “Minimize quantum-defect heating in thulium-doped silica fiber amplifiers by tandem-pumping,” in Photonics Global Conference (PGC) (2012), pp. 1–3.

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, G. Wall, K. F. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” J. Sel. Topics Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Smektala, F.

Smith, R. G.

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Toupin, P.

Troles, J.

Wall, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, G. Wall, K. F. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” J. Sel. Topics Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Walsh, B. M.

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9  μm,” Appl. Phys. B 78, 325–333 (2004).
[CrossRef]

Walton, D.

M. J. Li, X. Chen, J. Wang, A. Ruffin, D. Walton, S. Li, D. Nolan, S. Gray, and L. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Optics Fiber Communication Conference (2006), pp. 1–3.

Walton, D. T.

Wang, J.

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef]

M. J. Li, X. Chen, J. Wang, A. Ruffin, D. Walton, S. Li, D. Nolan, S. Gray, and L. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Optics Fiber Communication Conference (2006), pp. 1–3.

Wang, Q.

Westlund, M.

Yablon, A.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2  dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Yablon, A. D.

M. D. Mermelstein, A. D. Yablon, and C. Headley, “Suppression of stimulated Brillouin scattering in an Er-Yb fiber amplifier utilizing temperature-segmentation,” in Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), paper TuD3.

Yao, Z.

Yoo, S.

J. Ji, S. Yoo, P. Shum, and J. Nilsson, “Minimize quantum-defect heating in thulium-doped silica fiber amplifiers by tandem-pumping,” in Photonics Global Conference (PGC) (2012), pp. 1–3.

Yoshizawa, N.

N. Yoshizawa and T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol. 11, 1518–1522 (1993).
[CrossRef]

Yu, J.

Zenteno, L.

M. J. Li, X. Chen, J. Wang, A. Ruffin, D. Walton, S. Li, D. Nolan, S. Gray, and L. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Optics Fiber Communication Conference (2006), pp. 1–3.

Zenteno, L. A.

Zhang, L.

Zhou, J.

Appl. Opt. (1)

Appl. Phys. B (1)

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9  μm,” Appl. Phys. B 78, 325–333 (2004).
[CrossRef]

C.R. Physique (1)

A. Godard, “Infrared (2–12  μm) solid-state laser sources: a review,” C.R. Physique 8, 1100–1128 (2007).
[CrossRef]

Electron. Lett. (1)

F. Roy, F. Leplingard, L. Lorcy, A. Le Sauze, P. Baniel, and D. Bayart, “48% power conversion efficiency in single pump gain-shifted thulium-doped fibre amplifier,” Electron. Lett. 37, 943–945 (2001).
[CrossRef]

J. Lightwave Technol. (5)

S. Jackson and T. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17, 948–956 (1999).
[CrossRef]

N. Yoshizawa and T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol. 11, 1518–1522 (1993).
[CrossRef]

J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001).
[CrossRef]

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

M. Nikles, L. Thevenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quantum Electron. (1)

M. Eichhorn, “Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers,” J. Quantum Electron. 41, 1574–1581 (2005).
[CrossRef]

J. Sel. Topics Quantum Electron. (2)

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2  μm,” J. Sel. Topics Quantum Electron. 13, 567–572 (2007).
[CrossRef]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, G. Wall, K. F. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” J. Sel. Topics Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. A (1)

R. W. Boyd, K. Rzewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef]

Proc. SPIE (4)

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2  dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

R. Engelbrecht, J. Hagen, and M. Schmidt, “SBS-suppression in variably strained fibers for fiber-amplifiers and fiber-lasers with a high spectral power density,” Proc. SPIE 5777, 795–798 (2005).
[CrossRef]

Q. Wang, J. Geng, T. Luo, and S. Jiang, “2  μm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012).
[CrossRef]

D. Creeden, P. A. Budni, and P. A. Ketteridge, “Pulsed Tm-doped fiber lasers for mid-IR frequency conversion,” Proc. SPIE 7195, 71950X (2009).
[CrossRef]

Other (5)

M. J. Li, X. Chen, J. Wang, A. Ruffin, D. Walton, S. Li, D. Nolan, S. Gray, and L. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Optics Fiber Communication Conference (2006), pp. 1–3.

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Single-frequency, single-mode emission at 2040  nm from a 600-W thulium-doped fiber amplifier chain,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper MF2.

M. D. Mermelstein, A. D. Yablon, and C. Headley, “Suppression of stimulated Brillouin scattering in an Er-Yb fiber amplifier utilizing temperature-segmentation,” in Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), paper TuD3.

E. Lucas, L. Lombard, G. Canat, Y. Jaouen, and S. Bordais, “Dependance en temperature d’un amplificateur a fibre dopee thulium pompe a 1560  nm,” in Journées Nationales d’Optique Guidée (JNOG) (2012), pp. 1–3.

J. Ji, S. Yoo, P. Shum, and J. Nilsson, “Minimize quantum-defect heating in thulium-doped silica fiber amplifiers by tandem-pumping,” in Photonics Global Conference (PGC) (2012), pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Energy level diagram for the Tm3+-doped silica fiber showing the pump transitions, the cross relaxation process (between the Tm3+ ions labeled a and b), and the laser transition. Routes for possible multiphonon decay after optical excitation to the H34 level are also shown.

Fig. 2.
Fig. 2.

Gain peak wavelength versus averaged normalized excited population n¯2 for Tm:silica cross-sections from [20,21].

Fig. 3.
Fig. 3.

Simulation of population inversion fraction for three different pumping schemes.

Fig. 4.
Fig. 4.

Lineic gains of the simulated fraction maxima of excited Tm3+-ions shown Fig. 3.

Fig. 5.
Fig. 5.

Three-stage amplifier layout. AOM, acousto-optic modulator; HR, high reflexion; FBG, fiber Bragg grating.

Fig. 6.
Fig. 6.

Normalized output spectrum of the MOPFA. Inset: output spectra of the second stage, unfiltered and filtered, respectively.

Fig. 7.
Fig. 7.

Third-stage output peak power, simulated and experimental. Inset: far field beam profile measured at 1 kW peak power.

Fig. 8.
Fig. 8.

Normalized pulses at the SBS threshold and at 1 kW peak power with SBS mitigation. The 30 ns gaps between the dips correspond approximately to the round trip of the pulses reflected by the SBS.

Tables (1)

Tables Icon

Table 1. Comparison of Various Pump Schemes for 2050 nm Amplification Forward Pumped Single Stage CW MOPFAs with 3.6 m 6/130 μm Tm3+-Doped Fiber

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

g=4.34N0Γ[n¯2(σa(λs)+σe(λs))σa(λs)],
RSBS=ηβLexpGSBSπGSBS3/2,
GSBS=gBAeffPp(L)L,
gBAeffPp(L)L=21.
Leff=1Pp(L)0LPp(z)dz.
RSBS˜=ηβLeffexpGSBSπGSBS3/2.
RSBS=GAηβLeffexpGSBSπGSBS3/2.
lnRSBSπηβLeff=18.7=lnGA+GSBS32lnGSBS.
gB(ε,Δf)=(BB/2)2(ΔfΔfB0(1+Csε))2+(BB/2)2.

Metrics