Abstract

High-speed surface profile measurement with high precision is crucial for target inspection and quality control. In this study, a laser scanner based on a single point laser triangulation displacement sensor and a high-speed rotating polygon mirror is proposed. The autosynchronized scanning scheme is introduced to alleviate the trade-off between the field of view and the range precision, which is the inherent deficiency of the conventional triangulation. The lateral synchronized flying spot technology has excellent characteristics, such as programmable and larger field of view, high immunity to ambient light or secondary reflections, high optical signal-to-noise ratio, and minimum shadow effect. Owing to automatic point-to-point laser power control, high accuracy and superior data quality are possible when measuring objects featuring varying surface characteristics even in demanding applications. The proposed laser triangulation scanner is validated using a laboratory-built prototype and practical considerations for design and implementation of the system are described, including speckle noise reduction method and real-time signal processing. A method for rapid and accurate calibration of the laser triangulation scanner using lookup tables is also devised, and the system calibration accuracy is generally smaller than ±0.025mm. Experimental results are presented and show a broad application prospect for fast surface profile precision measurement.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Coupland, R. Mandal, K. Palodhi, and R. Leach, “Coherence scanning interferometry: linear theory of surface measurement,” Appl. Opt. 52, 3662–3670 (2013).
    [CrossRef]
  2. F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231–240 (2004).
    [CrossRef]
  3. F.-J. Shiou and M.-J. Chen, “Intermittent process hybrid measurement system on the machining centre,” Int. J. Prod. Res. 41, 4403–4427 (2003).
    [CrossRef]
  4. F. Blais, M. Rioux, and J.-A. Beraldin, “Practical considerations for a design of a high precision 3-D laser scanner system,” Proc. SPIE 0959, 225–246 (1988).
    [CrossRef]
  5. L. Xia, P. Chen, Y. Wang, L. Zhou, and X. Luo, “Three-dimensional measuring technique for surface topography using a light-sectioning microscope,” Appl. Opt. 51, 1162–1170 (2012).
    [CrossRef]
  6. M. Rioux, “Laser range finder based on synchronized scanners,” Appl. Opt. 23, 3837–3844 (1984).
    [CrossRef]
  7. G. L. Oomen and W. J. Verbeek, “A real-time optical profile sensor for robot arc welding,” Proc. SPIE 0449, 62–73 (1984).
    [CrossRef]
  8. F. Blais and J. Beraldin, “Calibration of an anamorphic laser-based 3D range sensor,” Proc. SPIE 3174, 113–122 (1997).
    [CrossRef]
  9. X. Li, H. Zhao, Y. Liu, H. Jiang, and Y. Bian, “Laser scanning based three dimensional measurement of vegetation canopy structure,” Opt. Lasers Eng. 54, 152–158 (2014).
    [CrossRef]
  10. J. Beraldin, J. Domey, L. Gonzo, F. Blais, M. Rioux, A. Simoni, M. Gottardi, F. De Nisi, D. Stoppa, and F. Comper, “Optimized position sensors for flying-spot active triangulation systems,” in Proceedings of IEEE Conference on 3-D Digital Imaging and Modeling (IEEE, 2003), pp. 28–36.
  11. R. G. Dorsch, G. Häusler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33, 1306–1314 (1994).
    [CrossRef]
  12. R. Baribeau and M. Rioux, “Influence of speckle on laser range finders,” Appl. Opt. 30, 2873–2878 (1991).
    [CrossRef]
  13. W. Dremel, G. Hausler, and M. Maul, “Triangulation with large dynamical range,” Proc. SPIE 0665, 182–187 (1986).
    [CrossRef]
  14. G. Yang, C. Sun, P. Wang, and Y. Xu, “High-speed scanning stroboscopic fringe-pattern projection technology for three-dimensional shape precision measurement,” Appl. Opt. 53, 174–183 (2014).
    [CrossRef]
  15. R. Fisher and D. Naidu, “A comparison of algorithms for subpixel peak detection,” in Image Technology: Advances in Image Processing, Multimedia and Machine Vision, D. Jorge and L. C. Sanz, eds. (Springer, 1996), pp. 385–404.
  16. F. Blais and M. Rioux, “Real-time numerical peak detector,” Int. J. Prod. Res. 11, 145–155 (1986).
  17. K. Žbontar, M. Mihelj, B. Podobnik, F. Povše, and M. Munih, “Dynamic symmetrical pattern projection based laser triangulation sensor for precise surface position measurement of various material types,” Appl. Opt. 52, 2750–2760 (2013).
    [CrossRef]
  18. S. Kielhofer, T. Bahls, F. Hacker, T. Wusthoff, and M. Suppa, “DLR VR-SCAN: A versatile and robust miniaturized laser scanner for short range 3D-modelling and exploration in robotics,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (IEEE, 2011), pp. 1933–1939.

2014 (2)

X. Li, H. Zhao, Y. Liu, H. Jiang, and Y. Bian, “Laser scanning based three dimensional measurement of vegetation canopy structure,” Opt. Lasers Eng. 54, 152–158 (2014).
[CrossRef]

G. Yang, C. Sun, P. Wang, and Y. Xu, “High-speed scanning stroboscopic fringe-pattern projection technology for three-dimensional shape precision measurement,” Appl. Opt. 53, 174–183 (2014).
[CrossRef]

2013 (2)

2012 (1)

2004 (1)

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231–240 (2004).
[CrossRef]

2003 (1)

F.-J. Shiou and M.-J. Chen, “Intermittent process hybrid measurement system on the machining centre,” Int. J. Prod. Res. 41, 4403–4427 (2003).
[CrossRef]

1997 (1)

F. Blais and J. Beraldin, “Calibration of an anamorphic laser-based 3D range sensor,” Proc. SPIE 3174, 113–122 (1997).
[CrossRef]

1994 (1)

1991 (1)

1988 (1)

F. Blais, M. Rioux, and J.-A. Beraldin, “Practical considerations for a design of a high precision 3-D laser scanner system,” Proc. SPIE 0959, 225–246 (1988).
[CrossRef]

1986 (2)

W. Dremel, G. Hausler, and M. Maul, “Triangulation with large dynamical range,” Proc. SPIE 0665, 182–187 (1986).
[CrossRef]

F. Blais and M. Rioux, “Real-time numerical peak detector,” Int. J. Prod. Res. 11, 145–155 (1986).

1984 (2)

M. Rioux, “Laser range finder based on synchronized scanners,” Appl. Opt. 23, 3837–3844 (1984).
[CrossRef]

G. L. Oomen and W. J. Verbeek, “A real-time optical profile sensor for robot arc welding,” Proc. SPIE 0449, 62–73 (1984).
[CrossRef]

Bahls, T.

S. Kielhofer, T. Bahls, F. Hacker, T. Wusthoff, and M. Suppa, “DLR VR-SCAN: A versatile and robust miniaturized laser scanner for short range 3D-modelling and exploration in robotics,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (IEEE, 2011), pp. 1933–1939.

Baribeau, R.

Beraldin, J.

F. Blais and J. Beraldin, “Calibration of an anamorphic laser-based 3D range sensor,” Proc. SPIE 3174, 113–122 (1997).
[CrossRef]

J. Beraldin, J. Domey, L. Gonzo, F. Blais, M. Rioux, A. Simoni, M. Gottardi, F. De Nisi, D. Stoppa, and F. Comper, “Optimized position sensors for flying-spot active triangulation systems,” in Proceedings of IEEE Conference on 3-D Digital Imaging and Modeling (IEEE, 2003), pp. 28–36.

Beraldin, J.-A.

F. Blais, M. Rioux, and J.-A. Beraldin, “Practical considerations for a design of a high precision 3-D laser scanner system,” Proc. SPIE 0959, 225–246 (1988).
[CrossRef]

Bian, Y.

X. Li, H. Zhao, Y. Liu, H. Jiang, and Y. Bian, “Laser scanning based three dimensional measurement of vegetation canopy structure,” Opt. Lasers Eng. 54, 152–158 (2014).
[CrossRef]

Blais, F.

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231–240 (2004).
[CrossRef]

F. Blais and J. Beraldin, “Calibration of an anamorphic laser-based 3D range sensor,” Proc. SPIE 3174, 113–122 (1997).
[CrossRef]

F. Blais, M. Rioux, and J.-A. Beraldin, “Practical considerations for a design of a high precision 3-D laser scanner system,” Proc. SPIE 0959, 225–246 (1988).
[CrossRef]

F. Blais and M. Rioux, “Real-time numerical peak detector,” Int. J. Prod. Res. 11, 145–155 (1986).

J. Beraldin, J. Domey, L. Gonzo, F. Blais, M. Rioux, A. Simoni, M. Gottardi, F. De Nisi, D. Stoppa, and F. Comper, “Optimized position sensors for flying-spot active triangulation systems,” in Proceedings of IEEE Conference on 3-D Digital Imaging and Modeling (IEEE, 2003), pp. 28–36.

Chen, M.-J.

F.-J. Shiou and M.-J. Chen, “Intermittent process hybrid measurement system on the machining centre,” Int. J. Prod. Res. 41, 4403–4427 (2003).
[CrossRef]

Chen, P.

Comper, F.

J. Beraldin, J. Domey, L. Gonzo, F. Blais, M. Rioux, A. Simoni, M. Gottardi, F. De Nisi, D. Stoppa, and F. Comper, “Optimized position sensors for flying-spot active triangulation systems,” in Proceedings of IEEE Conference on 3-D Digital Imaging and Modeling (IEEE, 2003), pp. 28–36.

Coupland, J.

De Nisi, F.

J. Beraldin, J. Domey, L. Gonzo, F. Blais, M. Rioux, A. Simoni, M. Gottardi, F. De Nisi, D. Stoppa, and F. Comper, “Optimized position sensors for flying-spot active triangulation systems,” in Proceedings of IEEE Conference on 3-D Digital Imaging and Modeling (IEEE, 2003), pp. 28–36.

Domey, J.

J. Beraldin, J. Domey, L. Gonzo, F. Blais, M. Rioux, A. Simoni, M. Gottardi, F. De Nisi, D. Stoppa, and F. Comper, “Optimized position sensors for flying-spot active triangulation systems,” in Proceedings of IEEE Conference on 3-D Digital Imaging and Modeling (IEEE, 2003), pp. 28–36.

Dorsch, R. G.

Dremel, W.

W. Dremel, G. Hausler, and M. Maul, “Triangulation with large dynamical range,” Proc. SPIE 0665, 182–187 (1986).
[CrossRef]

Fisher, R.

R. Fisher and D. Naidu, “A comparison of algorithms for subpixel peak detection,” in Image Technology: Advances in Image Processing, Multimedia and Machine Vision, D. Jorge and L. C. Sanz, eds. (Springer, 1996), pp. 385–404.

Gonzo, L.

J. Beraldin, J. Domey, L. Gonzo, F. Blais, M. Rioux, A. Simoni, M. Gottardi, F. De Nisi, D. Stoppa, and F. Comper, “Optimized position sensors for flying-spot active triangulation systems,” in Proceedings of IEEE Conference on 3-D Digital Imaging and Modeling (IEEE, 2003), pp. 28–36.

Gottardi, M.

J. Beraldin, J. Domey, L. Gonzo, F. Blais, M. Rioux, A. Simoni, M. Gottardi, F. De Nisi, D. Stoppa, and F. Comper, “Optimized position sensors for flying-spot active triangulation systems,” in Proceedings of IEEE Conference on 3-D Digital Imaging and Modeling (IEEE, 2003), pp. 28–36.

Hacker, F.

S. Kielhofer, T. Bahls, F. Hacker, T. Wusthoff, and M. Suppa, “DLR VR-SCAN: A versatile and robust miniaturized laser scanner for short range 3D-modelling and exploration in robotics,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (IEEE, 2011), pp. 1933–1939.

Hausler, G.

W. Dremel, G. Hausler, and M. Maul, “Triangulation with large dynamical range,” Proc. SPIE 0665, 182–187 (1986).
[CrossRef]

Häusler, G.

Herrmann, J. M.

Jiang, H.

X. Li, H. Zhao, Y. Liu, H. Jiang, and Y. Bian, “Laser scanning based three dimensional measurement of vegetation canopy structure,” Opt. Lasers Eng. 54, 152–158 (2014).
[CrossRef]

Kielhofer, S.

S. Kielhofer, T. Bahls, F. Hacker, T. Wusthoff, and M. Suppa, “DLR VR-SCAN: A versatile and robust miniaturized laser scanner for short range 3D-modelling and exploration in robotics,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (IEEE, 2011), pp. 1933–1939.

Leach, R.

Li, X.

X. Li, H. Zhao, Y. Liu, H. Jiang, and Y. Bian, “Laser scanning based three dimensional measurement of vegetation canopy structure,” Opt. Lasers Eng. 54, 152–158 (2014).
[CrossRef]

Liu, Y.

X. Li, H. Zhao, Y. Liu, H. Jiang, and Y. Bian, “Laser scanning based three dimensional measurement of vegetation canopy structure,” Opt. Lasers Eng. 54, 152–158 (2014).
[CrossRef]

Luo, X.

Mandal, R.

Maul, M.

W. Dremel, G. Hausler, and M. Maul, “Triangulation with large dynamical range,” Proc. SPIE 0665, 182–187 (1986).
[CrossRef]

Mihelj, M.

Munih, M.

Naidu, D.

R. Fisher and D. Naidu, “A comparison of algorithms for subpixel peak detection,” in Image Technology: Advances in Image Processing, Multimedia and Machine Vision, D. Jorge and L. C. Sanz, eds. (Springer, 1996), pp. 385–404.

Oomen, G. L.

G. L. Oomen and W. J. Verbeek, “A real-time optical profile sensor for robot arc welding,” Proc. SPIE 0449, 62–73 (1984).
[CrossRef]

Palodhi, K.

Podobnik, B.

Povše, F.

Rioux, M.

R. Baribeau and M. Rioux, “Influence of speckle on laser range finders,” Appl. Opt. 30, 2873–2878 (1991).
[CrossRef]

F. Blais, M. Rioux, and J.-A. Beraldin, “Practical considerations for a design of a high precision 3-D laser scanner system,” Proc. SPIE 0959, 225–246 (1988).
[CrossRef]

F. Blais and M. Rioux, “Real-time numerical peak detector,” Int. J. Prod. Res. 11, 145–155 (1986).

M. Rioux, “Laser range finder based on synchronized scanners,” Appl. Opt. 23, 3837–3844 (1984).
[CrossRef]

J. Beraldin, J. Domey, L. Gonzo, F. Blais, M. Rioux, A. Simoni, M. Gottardi, F. De Nisi, D. Stoppa, and F. Comper, “Optimized position sensors for flying-spot active triangulation systems,” in Proceedings of IEEE Conference on 3-D Digital Imaging and Modeling (IEEE, 2003), pp. 28–36.

Shiou, F.-J.

F.-J. Shiou and M.-J. Chen, “Intermittent process hybrid measurement system on the machining centre,” Int. J. Prod. Res. 41, 4403–4427 (2003).
[CrossRef]

Simoni, A.

J. Beraldin, J. Domey, L. Gonzo, F. Blais, M. Rioux, A. Simoni, M. Gottardi, F. De Nisi, D. Stoppa, and F. Comper, “Optimized position sensors for flying-spot active triangulation systems,” in Proceedings of IEEE Conference on 3-D Digital Imaging and Modeling (IEEE, 2003), pp. 28–36.

Stoppa, D.

J. Beraldin, J. Domey, L. Gonzo, F. Blais, M. Rioux, A. Simoni, M. Gottardi, F. De Nisi, D. Stoppa, and F. Comper, “Optimized position sensors for flying-spot active triangulation systems,” in Proceedings of IEEE Conference on 3-D Digital Imaging and Modeling (IEEE, 2003), pp. 28–36.

Sun, C.

Suppa, M.

S. Kielhofer, T. Bahls, F. Hacker, T. Wusthoff, and M. Suppa, “DLR VR-SCAN: A versatile and robust miniaturized laser scanner for short range 3D-modelling and exploration in robotics,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (IEEE, 2011), pp. 1933–1939.

Verbeek, W. J.

G. L. Oomen and W. J. Verbeek, “A real-time optical profile sensor for robot arc welding,” Proc. SPIE 0449, 62–73 (1984).
[CrossRef]

Wang, P.

Wang, Y.

Wusthoff, T.

S. Kielhofer, T. Bahls, F. Hacker, T. Wusthoff, and M. Suppa, “DLR VR-SCAN: A versatile and robust miniaturized laser scanner for short range 3D-modelling and exploration in robotics,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (IEEE, 2011), pp. 1933–1939.

Xia, L.

Xu, Y.

Yang, G.

Žbontar, K.

Zhao, H.

X. Li, H. Zhao, Y. Liu, H. Jiang, and Y. Bian, “Laser scanning based three dimensional measurement of vegetation canopy structure,” Opt. Lasers Eng. 54, 152–158 (2014).
[CrossRef]

Zhou, L.

Appl. Opt. (7)

Int. J. Prod. Res. (2)

F.-J. Shiou and M.-J. Chen, “Intermittent process hybrid measurement system on the machining centre,” Int. J. Prod. Res. 41, 4403–4427 (2003).
[CrossRef]

F. Blais and M. Rioux, “Real-time numerical peak detector,” Int. J. Prod. Res. 11, 145–155 (1986).

J. Electron. Imaging (1)

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231–240 (2004).
[CrossRef]

Opt. Lasers Eng. (1)

X. Li, H. Zhao, Y. Liu, H. Jiang, and Y. Bian, “Laser scanning based three dimensional measurement of vegetation canopy structure,” Opt. Lasers Eng. 54, 152–158 (2014).
[CrossRef]

Proc. SPIE (4)

W. Dremel, G. Hausler, and M. Maul, “Triangulation with large dynamical range,” Proc. SPIE 0665, 182–187 (1986).
[CrossRef]

F. Blais, M. Rioux, and J.-A. Beraldin, “Practical considerations for a design of a high precision 3-D laser scanner system,” Proc. SPIE 0959, 225–246 (1988).
[CrossRef]

G. L. Oomen and W. J. Verbeek, “A real-time optical profile sensor for robot arc welding,” Proc. SPIE 0449, 62–73 (1984).
[CrossRef]

F. Blais and J. Beraldin, “Calibration of an anamorphic laser-based 3D range sensor,” Proc. SPIE 3174, 113–122 (1997).
[CrossRef]

Other (3)

J. Beraldin, J. Domey, L. Gonzo, F. Blais, M. Rioux, A. Simoni, M. Gottardi, F. De Nisi, D. Stoppa, and F. Comper, “Optimized position sensors for flying-spot active triangulation systems,” in Proceedings of IEEE Conference on 3-D Digital Imaging and Modeling (IEEE, 2003), pp. 28–36.

S. Kielhofer, T. Bahls, F. Hacker, T. Wusthoff, and M. Suppa, “DLR VR-SCAN: A versatile and robust miniaturized laser scanner for short range 3D-modelling and exploration in robotics,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (IEEE, 2011), pp. 1933–1939.

R. Fisher and D. Naidu, “A comparison of algorithms for subpixel peak detection,” in Image Technology: Advances in Image Processing, Multimedia and Machine Vision, D. Jorge and L. C. Sanz, eds. (Springer, 1996), pp. 385–404.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Working principle of the single spot laser scanner.

Fig. 2.
Fig. 2.

Working principle of the laser stripe sensor.

Fig. 3.
Fig. 3.

Schematic diagram of the single point laser triangulation displacement sensor based on Scheimpflug principle.

Fig. 4.
Fig. 4.

Schematic diagram of the flying spot laser triangulation scanner using lateral synchronization.

Fig. 5.
Fig. 5.

Schematic diagram of the calibration system. (a) Determining measurement point coordinate in Z axis, and (b) calibration of the incident laser beam equations.

Fig. 6.
Fig. 6.

Laser power control and data processing timing diagram. α is the scanning angle.

Fig. 7.
Fig. 7.

Design and fabrication of the laser scanner. (a) Laser triangulation scanner system setup, and (b) photo of the fabricated scanner, (1) laser diode, (2) folding mirror, (3) polygon mirror, (4) objective lens, (5) linear CCD, (6) rotary encoder.

Fig. 8.
Fig. 8.

Experimental setup to calibrate the laser scanner using the Renishaw XL-80 laser interferometer system.

Fig. 9.
Fig. 9.

Measurement standard deviations of laser spot positions for 400 laser beams from a working distance of 70 mm.

Fig. 10.
Fig. 10.

Recorded laser spot image position raw data in steps of approximately 2 mm.

Fig. 11.
Fig. 11.

Calculated equations of the laser scanning beams. Not all laser beams are drawn for clarity.

Fig. 12.
Fig. 12.

Deviation of measurement results from its median value among the whole profile for the 30 acquisitions. The short line and the dot in the box represent the median and the mean value, respectively.

Fig. 13.
Fig. 13.

Profile measurement of a manufactured object. (a) Photo of the specimen, and (b) measurement results from a working distance of 70 mm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x=kz,k=tan(90°θ),
x=k(zΔj),k=tan(90°θ).
σp=λfDcos(β)2π,

Metrics