Abstract

This study proposes using an inductively coupled plasma etching process to fabricate notched long-period fiber grating (NLPFG) for sensor applications. The effects of the designed parameters (i.e., different fiber cladding thicknesses, grating periods, and etching depths) are studied to explore the characterization of NLPFG. The characterization as indicated by tests of the NLPF showed that the wavelength of NLPFG produced a redshift with decreases in cladding thickness. The drift rate of the wavelength following changes in thickness was 2.801nm/μm. In addition, a redshift also was exhibited in the increased period, with a wavelength drift rate corresponding to the size of the period of 1.466nm/μm. Moreover, the results showed that the transmission loss in the spectra increased with etching depth. The variation rate of transmission loss based on etching depth was 0.458dB/μm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Harumoto, M. Shigehara, and H. Suganuma, “Gain-flattening filter using long-period fiber gratings,” J. Lightwave Technol. 20, 1027–1033 (2002).
    [CrossRef]
  2. K. W. Chung and S. Yin, “Analysis of a widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling,” Opt. Lett. 29, 812–814 (2004).
    [CrossRef]
  3. M. Vaziri and C. L. Chen, “Etched fibers as strain gauges,” J. Lightwave Technol. 10, 836–841 (1992).
    [CrossRef]
  4. Y. P. Wang, L. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Opt. Lett. 31, 3414–3416 (2006).
    [CrossRef]
  5. X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, and Y. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B 144, 260–266 (2010).
    [CrossRef]
  6. T. Yokouchi, Y. Suzaki, K. Nakagawa, M. Yamauchi, M. Kimura, Y. Mizutani, S. Kimura, and S. Ejima, “Thermal tuning of mechanically induced long-period fiber grating,” Appl. Opt. 44, 5024–5028 (2005).
    [CrossRef]
  7. J. Yang, L. Yang, C. Q. Xu, C. Xu, W. Huang, and Y. Li, “Long-period grating refractive index sensor with a modified cladding structure for large operational range and high sensitivity,” Appl. Opt. 45, 6142–6147 (2006).
    [CrossRef]
  8. R. Falate, O. Frazão, G. Rego, J. L. Fabris, and J. L. Santos, “Refractometric sensor based on a phase-shifted long-period fiber grating,” Appl. Opt. 45, 5066–5072 (2006).
    [CrossRef]
  9. A. Iadicicco, S. Campopiano, M. Giordano, and A. Cusano, “Spectral behavior in thinned long period gratings: effects of fiber diameter on refractive index sensitivity,” Appl. Opt. 46, 6945–6952 (2007).
    [CrossRef]
  10. H. J. Patrick, C. G. Askins, R. W. McElhanon, and E. J. Friebele, “Amplitude mask patterned on an excimer laser mirror for high intensity writing of long period fibre gratings,” Electron. Lett. 33, 1167–1168 (1997).
    [CrossRef]
  11. Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, “Glass structure changes in CO2 laser writing of long-period fiber gratings in boron-doped single-mode fibers,” J. Lightwave Technol. 27, 857–863 (2009).
    [CrossRef]
  12. Y. Wang, D. N. Wang, W. Jin, and Y. Rao, “Asymmetric transverse-load characteristics and polarization dependence of long-period fiber gratings written by a focused CO2 laser,” Appl. Opt. 46, 3079–3086 (2007).
    [CrossRef]
  13. Y. P. Wang, D. N. Wang, and W. Jin, “CO2 laser-grooved long period fiber grating temperature sensor system based on intensity modulation,” Appl. Opt. 45, 7966–7970 (2006).
    [CrossRef]
  14. A. Iadicicco, S. Campopiano, and A. Cusano, “Long-period gratings in hollow core fibers by pressure-assisted arc discharge technique,” IEEE Photon. Technol. Lett. 23, 1567–1569 (2011).
    [CrossRef]
  15. F. Abrishamian, N. Dragomir, and K. Morishita, “Refractive index profile changes caused by arc discharge in long-period fiber gratings fabricated by a point-by-point method,” Appl. Opt. 51, 8271–8276 (2012).
    [CrossRef]
  16. P. Caldas, G. Rego, O. V. Ivanov, and J. L. Santos, “Characterization of the response of a dual resonance of an arc-induced long-period grating to various physical parameters,” Appl. Opt. 49, 2994–2999 (2010).
    [CrossRef]
  17. K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photon. Technol. Lett. 17, 594–596 (2005).
    [CrossRef]
  18. C. C. Chiang, H. J. Chang, and J. S. Kuo, “Novel fabrication method of corrugated long-period fiber gratings by thick SU-8 photoresist and wet-etching technique,” J. Micro/Nanolithogr. MEMS MOEMS 9, 033007 (2010).
    [CrossRef]
  19. H. Kumazaki, Y. Yamada, T. Oshima, S. Inaba, and K. Hane, “Micromachining of optical fiber using reactive ion etching and its application,” in Microprocesses and Nanotechnology Conference (IEEE, 2000), pp. 154–155.
  20. H. Kumazaki, Y. Yamada, H. Nakamura, S. Inaba, and K. Hane, “Tunable wavelength filter using a Bragg grating fiber thinned by plasma etching,” IEEE Photon. Technol. Lett. 13, 1206–1208 (2001).
    [CrossRef]
  21. W. Ding, S. Andrews, and S. Maier, “Surface corrugation Bragg gratings on optical fiber tapers created via plasma etch postprocessing,” Opt. Lett. 32, 2499–2501 (2007).
    [CrossRef]
  22. W. Ding and S. Andrews, “Modal coupling in surface-corrugated long-period-grating fiber tapers,” Opt. Lett. 33, 717–719 (2008).
    [CrossRef]
  23. C. C. Chiang and L. Tasi, “Perfectly notched long period fiber grating filter based on ICP dry etching technique,” Opt. Lett. 37, 193–195, (2012).
    [CrossRef]
  24. C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19, 1159–1168 (2001).
    [CrossRef]
  25. W. J. Stephen and P. T. Ralph, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49 (2003).
    [CrossRef]
  26. X. Yu, M. Zhang, P. Childs, L. W. Wang, M. Lei, Y. B. Liao, J. Ju, and W. Jin, “Research on testing the characteristics of hydrogel film by using a long-period fiber grating,” Appl. Opt. 48, 2171–2177 (2009).
    [CrossRef]

2012 (2)

2011 (1)

A. Iadicicco, S. Campopiano, and A. Cusano, “Long-period gratings in hollow core fibers by pressure-assisted arc discharge technique,” IEEE Photon. Technol. Lett. 23, 1567–1569 (2011).
[CrossRef]

2010 (3)

P. Caldas, G. Rego, O. V. Ivanov, and J. L. Santos, “Characterization of the response of a dual resonance of an arc-induced long-period grating to various physical parameters,” Appl. Opt. 49, 2994–2999 (2010).
[CrossRef]

C. C. Chiang, H. J. Chang, and J. S. Kuo, “Novel fabrication method of corrugated long-period fiber gratings by thick SU-8 photoresist and wet-etching technique,” J. Micro/Nanolithogr. MEMS MOEMS 9, 033007 (2010).
[CrossRef]

X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, and Y. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B 144, 260–266 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (3)

2006 (4)

2005 (2)

2004 (1)

2003 (1)

W. J. Stephen and P. T. Ralph, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

2002 (1)

2001 (2)

H. Kumazaki, Y. Yamada, H. Nakamura, S. Inaba, and K. Hane, “Tunable wavelength filter using a Bragg grating fiber thinned by plasma etching,” IEEE Photon. Technol. Lett. 13, 1206–1208 (2001).
[CrossRef]

C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19, 1159–1168 (2001).
[CrossRef]

1997 (1)

H. J. Patrick, C. G. Askins, R. W. McElhanon, and E. J. Friebele, “Amplitude mask patterned on an excimer laser mirror for high intensity writing of long period fibre gratings,” Electron. Lett. 33, 1167–1168 (1997).
[CrossRef]

1992 (1)

M. Vaziri and C. L. Chen, “Etched fibers as strain gauges,” J. Lightwave Technol. 10, 836–841 (1992).
[CrossRef]

Abrishamian, F.

Andrews, S.

Askins, C. G.

H. J. Patrick, C. G. Askins, R. W. McElhanon, and E. J. Friebele, “Amplitude mask patterned on an excimer laser mirror for high intensity writing of long period fibre gratings,” Electron. Lett. 33, 1167–1168 (1997).
[CrossRef]

Caldas, P.

Campopiano, S.

A. Iadicicco, S. Campopiano, and A. Cusano, “Long-period gratings in hollow core fibers by pressure-assisted arc discharge technique,” IEEE Photon. Technol. Lett. 23, 1567–1569 (2011).
[CrossRef]

A. Iadicicco, S. Campopiano, M. Giordano, and A. Cusano, “Spectral behavior in thinned long period gratings: effects of fiber diameter on refractive index sensitivity,” Appl. Opt. 46, 6945–6952 (2007).
[CrossRef]

Chang, H. J.

C. C. Chiang, H. J. Chang, and J. S. Kuo, “Novel fabrication method of corrugated long-period fiber gratings by thick SU-8 photoresist and wet-etching technique,” J. Micro/Nanolithogr. MEMS MOEMS 9, 033007 (2010).
[CrossRef]

Chen, C. L.

M. Vaziri and C. L. Chen, “Etched fibers as strain gauges,” J. Lightwave Technol. 10, 836–841 (1992).
[CrossRef]

Chern, G. W.

Chiang, C. C.

C. C. Chiang and L. Tasi, “Perfectly notched long period fiber grating filter based on ICP dry etching technique,” Opt. Lett. 37, 193–195, (2012).
[CrossRef]

C. C. Chiang, H. J. Chang, and J. S. Kuo, “Novel fabrication method of corrugated long-period fiber gratings by thick SU-8 photoresist and wet-etching technique,” J. Micro/Nanolithogr. MEMS MOEMS 9, 033007 (2010).
[CrossRef]

Chiang, K. S.

Childs, P.

Chung, K. W.

Cusano, A.

A. Iadicicco, S. Campopiano, and A. Cusano, “Long-period gratings in hollow core fibers by pressure-assisted arc discharge technique,” IEEE Photon. Technol. Lett. 23, 1567–1569 (2011).
[CrossRef]

A. Iadicicco, S. Campopiano, M. Giordano, and A. Cusano, “Spectral behavior in thinned long period gratings: effects of fiber diameter on refractive index sensitivity,” Appl. Opt. 46, 6945–6952 (2007).
[CrossRef]

Ding, W.

Dragomir, N.

Ejima, S.

Fabris, J. L.

Falate, R.

Frazão, O.

Friebele, E. J.

H. J. Patrick, C. G. Askins, R. W. McElhanon, and E. J. Friebele, “Amplitude mask patterned on an excimer laser mirror for high intensity writing of long period fibre gratings,” Electron. Lett. 33, 1167–1168 (1997).
[CrossRef]

Giordano, M.

Hane, K.

H. Kumazaki, Y. Yamada, H. Nakamura, S. Inaba, and K. Hane, “Tunable wavelength filter using a Bragg grating fiber thinned by plasma etching,” IEEE Photon. Technol. Lett. 13, 1206–1208 (2001).
[CrossRef]

H. Kumazaki, Y. Yamada, T. Oshima, S. Inaba, and K. Hane, “Micromachining of optical fiber using reactive ion etching and its application,” in Microprocesses and Nanotechnology Conference (IEEE, 2000), pp. 154–155.

Harumoto, M.

Huang, W.

Iadicicco, A.

A. Iadicicco, S. Campopiano, and A. Cusano, “Long-period gratings in hollow core fibers by pressure-assisted arc discharge technique,” IEEE Photon. Technol. Lett. 23, 1567–1569 (2011).
[CrossRef]

A. Iadicicco, S. Campopiano, M. Giordano, and A. Cusano, “Spectral behavior in thinned long period gratings: effects of fiber diameter on refractive index sensitivity,” Appl. Opt. 46, 6945–6952 (2007).
[CrossRef]

Inaba, S.

H. Kumazaki, Y. Yamada, H. Nakamura, S. Inaba, and K. Hane, “Tunable wavelength filter using a Bragg grating fiber thinned by plasma etching,” IEEE Photon. Technol. Lett. 13, 1206–1208 (2001).
[CrossRef]

H. Kumazaki, Y. Yamada, T. Oshima, S. Inaba, and K. Hane, “Micromachining of optical fiber using reactive ion etching and its application,” in Microprocesses and Nanotechnology Conference (IEEE, 2000), pp. 154–155.

Ivanov, O. V.

Jin, W.

Ju, J.

Kimura, M.

Kimura, S.

Kumazaki, H.

H. Kumazaki, Y. Yamada, H. Nakamura, S. Inaba, and K. Hane, “Tunable wavelength filter using a Bragg grating fiber thinned by plasma etching,” IEEE Photon. Technol. Lett. 13, 1206–1208 (2001).
[CrossRef]

H. Kumazaki, Y. Yamada, T. Oshima, S. Inaba, and K. Hane, “Micromachining of optical fiber using reactive ion etching and its application,” in Microprocesses and Nanotechnology Conference (IEEE, 2000), pp. 154–155.

Kuo, J. S.

C. C. Chiang, H. J. Chang, and J. S. Kuo, “Novel fabrication method of corrugated long-period fiber gratings by thick SU-8 photoresist and wet-etching technique,” J. Micro/Nanolithogr. MEMS MOEMS 9, 033007 (2010).
[CrossRef]

Lan, X.

X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, and Y. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B 144, 260–266 (2010).
[CrossRef]

Lee, H. W.

Lei, M.

Li, J.

X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, and Y. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B 144, 260–266 (2010).
[CrossRef]

Li, Y.

Liao, Y. B.

Lin, C. Y.

Lin, Y.

X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, and Y. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B 144, 260–266 (2010).
[CrossRef]

Liu, Q.

K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photon. Technol. Lett. 17, 594–596 (2005).
[CrossRef]

Liu, Y.

Lor, K. P.

K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photon. Technol. Lett. 17, 594–596 (2005).
[CrossRef]

Maier, S.

McElhanon, R. W.

H. J. Patrick, C. G. Askins, R. W. McElhanon, and E. J. Friebele, “Amplitude mask patterned on an excimer laser mirror for high intensity writing of long period fibre gratings,” Electron. Lett. 33, 1167–1168 (1997).
[CrossRef]

Mizutani, Y.

Morishita, K.

Nakagawa, K.

Nakamura, H.

H. Kumazaki, Y. Yamada, H. Nakamura, S. Inaba, and K. Hane, “Tunable wavelength filter using a Bragg grating fiber thinned by plasma etching,” IEEE Photon. Technol. Lett. 13, 1206–1208 (2001).
[CrossRef]

Oshima, T.

H. Kumazaki, Y. Yamada, T. Oshima, S. Inaba, and K. Hane, “Micromachining of optical fiber using reactive ion etching and its application,” in Microprocesses and Nanotechnology Conference (IEEE, 2000), pp. 154–155.

Patrick, H. J.

H. J. Patrick, C. G. Askins, R. W. McElhanon, and E. J. Friebele, “Amplitude mask patterned on an excimer laser mirror for high intensity writing of long period fibre gratings,” Electron. Lett. 33, 1167–1168 (1997).
[CrossRef]

Ralph, P. T.

W. J. Stephen and P. T. Ralph, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Rao, Y.

Rao, Y. J.

Rego, G.

Santos, J. L.

Shigehara, M.

Stephen, W. J.

W. J. Stephen and P. T. Ralph, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Suganuma, H.

Suzaki, Y.

Tasi, L.

Vaziri, M.

M. Vaziri and C. L. Chen, “Etched fibers as strain gauges,” J. Lightwave Technol. 10, 836–841 (1992).
[CrossRef]

Wang, D. N.

Wang, L. A.

Wang, L. W.

Wang, Y.

Wang, Y. P.

Wei, T.

X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, and Y. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B 144, 260–266 (2010).
[CrossRef]

Wei, X.

X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, and Y. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B 144, 260–266 (2010).
[CrossRef]

Xiao, H.

X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, and Y. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B 144, 260–266 (2010).
[CrossRef]

Xiao, L.

Xu, C.

Xu, C. Q.

Yamada, Y.

H. Kumazaki, Y. Yamada, H. Nakamura, S. Inaba, and K. Hane, “Tunable wavelength filter using a Bragg grating fiber thinned by plasma etching,” IEEE Photon. Technol. Lett. 13, 1206–1208 (2001).
[CrossRef]

H. Kumazaki, Y. Yamada, T. Oshima, S. Inaba, and K. Hane, “Micromachining of optical fiber using reactive ion etching and its application,” in Microprocesses and Nanotechnology Conference (IEEE, 2000), pp. 154–155.

Yamauchi, M.

Yang, J.

Yang, L.

Yin, S.

Yokouchi, T.

Yu, X.

Zhang, M.

Zhu, T.

Appl. Opt. (9)

T. Yokouchi, Y. Suzaki, K. Nakagawa, M. Yamauchi, M. Kimura, Y. Mizutani, S. Kimura, and S. Ejima, “Thermal tuning of mechanically induced long-period fiber grating,” Appl. Opt. 44, 5024–5028 (2005).
[CrossRef]

J. Yang, L. Yang, C. Q. Xu, C. Xu, W. Huang, and Y. Li, “Long-period grating refractive index sensor with a modified cladding structure for large operational range and high sensitivity,” Appl. Opt. 45, 6142–6147 (2006).
[CrossRef]

R. Falate, O. Frazão, G. Rego, J. L. Fabris, and J. L. Santos, “Refractometric sensor based on a phase-shifted long-period fiber grating,” Appl. Opt. 45, 5066–5072 (2006).
[CrossRef]

A. Iadicicco, S. Campopiano, M. Giordano, and A. Cusano, “Spectral behavior in thinned long period gratings: effects of fiber diameter on refractive index sensitivity,” Appl. Opt. 46, 6945–6952 (2007).
[CrossRef]

F. Abrishamian, N. Dragomir, and K. Morishita, “Refractive index profile changes caused by arc discharge in long-period fiber gratings fabricated by a point-by-point method,” Appl. Opt. 51, 8271–8276 (2012).
[CrossRef]

P. Caldas, G. Rego, O. V. Ivanov, and J. L. Santos, “Characterization of the response of a dual resonance of an arc-induced long-period grating to various physical parameters,” Appl. Opt. 49, 2994–2999 (2010).
[CrossRef]

Y. Wang, D. N. Wang, W. Jin, and Y. Rao, “Asymmetric transverse-load characteristics and polarization dependence of long-period fiber gratings written by a focused CO2 laser,” Appl. Opt. 46, 3079–3086 (2007).
[CrossRef]

Y. P. Wang, D. N. Wang, and W. Jin, “CO2 laser-grooved long period fiber grating temperature sensor system based on intensity modulation,” Appl. Opt. 45, 7966–7970 (2006).
[CrossRef]

X. Yu, M. Zhang, P. Childs, L. W. Wang, M. Lei, Y. B. Liao, J. Ju, and W. Jin, “Research on testing the characteristics of hydrogel film by using a long-period fiber grating,” Appl. Opt. 48, 2171–2177 (2009).
[CrossRef]

Electron. Lett. (1)

H. J. Patrick, C. G. Askins, R. W. McElhanon, and E. J. Friebele, “Amplitude mask patterned on an excimer laser mirror for high intensity writing of long period fibre gratings,” Electron. Lett. 33, 1167–1168 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photon. Technol. Lett. 17, 594–596 (2005).
[CrossRef]

H. Kumazaki, Y. Yamada, H. Nakamura, S. Inaba, and K. Hane, “Tunable wavelength filter using a Bragg grating fiber thinned by plasma etching,” IEEE Photon. Technol. Lett. 13, 1206–1208 (2001).
[CrossRef]

A. Iadicicco, S. Campopiano, and A. Cusano, “Long-period gratings in hollow core fibers by pressure-assisted arc discharge technique,” IEEE Photon. Technol. Lett. 23, 1567–1569 (2011).
[CrossRef]

J. Lightwave Technol. (4)

J. Micro/Nanolithogr. MEMS MOEMS (1)

C. C. Chiang, H. J. Chang, and J. S. Kuo, “Novel fabrication method of corrugated long-period fiber gratings by thick SU-8 photoresist and wet-etching technique,” J. Micro/Nanolithogr. MEMS MOEMS 9, 033007 (2010).
[CrossRef]

Meas. Sci. Technol. (1)

W. J. Stephen and P. T. Ralph, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Opt. Lett. (5)

Sens. Actuators B (1)

X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, and Y. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B 144, 260–266 (2010).
[CrossRef]

Other (1)

H. Kumazaki, Y. Yamada, T. Oshima, S. Inaba, and K. Hane, “Micromachining of optical fiber using reactive ion etching and its application,” in Microprocesses and Nanotechnology Conference (IEEE, 2000), pp. 154–155.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of the NLPFG structure.

Fig. 2.
Fig. 2.

Fabrication process of the NLPFG.

Fig. 3.
Fig. 3.

OM image of NLPFG.

Fig. 4.
Fig. 4.

Spectra of the NLPFG under various loadings.

Fig. 5.
Fig. 5.

Spectra of the NLPFG with various periods of 630–660 μm; thicknesses of 35, 30.5, 28, 26.5, 24.5, and 22.5 μm; and etching depths of 11.5 μm (with loadings of 0.083–0.51 N).

Fig. 6.
Fig. 6.

Analysis of cladding thicknesses and corresponding wavelengths (with loadings of 0.083–0.51 N).

Fig. 7.
Fig. 7.

Analysis of periodic structures and corresponding wavelengths (with loadings of 0.083–0.51 N).

Fig. 8.
Fig. 8.

Transmission loss of the NLPFG with periods of 630–660 μm and cladding thicknesses of 35, 30.5, 26.5, 24.5, and 22.5 μm.

Fig. 9.
Fig. 9.

Spectra of NLPFG (with etching depths between 11.5 and 18.4 μm) under increasing loading.

Fig. 10.
Fig. 10.

Analysis of dry etched LPFG with etching depths of between 11.5 and 18.4 μm and their corresponding transmission losses.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ=[neff(λ)ncladi(λ)]Λ,
Ti=1sin2(kiL),

Metrics