Abstract

The feasibility and the properties of shift-multiplexed self-referential holographic data storage (SR-HDS) were investigated. Although SR-HDS has attractive features as typified by referenceless holographic recording, its multiplexing properties, which are consummately important for holographic data storage, have not been clarified until now. The results of numerical and experimental evaluations of medium shift dependence in SR-HDS clarified that the shift selectivity is almost the same as in collinear holography. Furthermore, 25 datapages were successfully shift-multiplexed with the shift pitch of 8.3 μm by the numerical simulation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage from Theory to Practical Systems (Wiley, 2010).
  2. M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013).
  3. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902–4914 (2004).
    [CrossRef]
  4. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963).
    [CrossRef]
  5. M. Takabayashi and A. Okamoto, “Self-referential holography and its applications to data storage and phase-to-intensity conversion,” Opt. Express 21, 3669–3681 (2013).
    [CrossRef]
  6. M. Takabayashi, A. Okamoto, M. Bunsen, and T. Okamoto, “Multi-level self-referential holographic data storage,” in International Symposium on Optical Memory (ISOM ’12), Technical Digest (2012), pp. 12–13.
  7. M. Takabayashi, A. Okamoto, and T. Okamoto, “Improvement of signal-to-noise ratio in self-referential holographic data storage by using oversampled additional pattern,” in International Workshop on Holography and Related Technologies (IWH 2013), Digests (2013), paper 15a-4.
  8. H. Horimai, X. D. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
    [CrossRef]
  9. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15, 16196–16209 (2007).
    [CrossRef]
  10. C. C. Sun and Y. W. Yu, “Optimized shift selectivity of collinear holographic storage system with lens-array reference,” in International Workshop on Holography and Related Technologies (IWH 2013), Digests (2013), paper 15a-2.
  11. T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006).
    [CrossRef]
  12. H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  13. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
    [CrossRef]
  14. J. Tanaka, A. Okamoto, and M. Kitano, “Development of image-based simulation for holographic data storage system by fast Fourier transform beam-propagation method,” Jpn. J. Appl. Phys. 48, 03A028 (2009).
  15. C. Katahira, “Mechanistic discussion of cationic crosslinking copolymerizations of 1,2-epoxycyclohexane with diepoxide crosslinkers accompanied by intramolecular and intermolecular chain transfer reactions,” J. Polym. Sci. A 48, 4445–4455 (2010).
  16. A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
    [CrossRef]

2013

M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013).

M. Takabayashi and A. Okamoto, “Self-referential holography and its applications to data storage and phase-to-intensity conversion,” Opt. Express 21, 3669–3681 (2013).
[CrossRef]

2010

C. Katahira, “Mechanistic discussion of cationic crosslinking copolymerizations of 1,2-epoxycyclohexane with diepoxide crosslinkers accompanied by intramolecular and intermolecular chain transfer reactions,” J. Polym. Sci. A 48, 4445–4455 (2010).

2009

J. Tanaka, A. Okamoto, and M. Kitano, “Development of image-based simulation for holographic data storage system by fast Fourier transform beam-propagation method,” Jpn. J. Appl. Phys. 48, 03A028 (2009).

2007

2006

2005

2004

1996

F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
[CrossRef]

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
[CrossRef]

1969

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

1963

Ayres, M. R.

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage from Theory to Practical Systems (Wiley, 2010).

Bjornson, E.

Bunsen, M.

M. Takabayashi, A. Okamoto, M. Bunsen, and T. Okamoto, “Multi-level self-referential holographic data storage,” in International Symposium on Optical Memory (ISOM ’12), Technical Digest (2012), pp. 12–13.

Burr, G. W.

Curtis, K.

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
[CrossRef]

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage from Theory to Practical Systems (Wiley, 2010).

Dhar, L.

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage from Theory to Practical Systems (Wiley, 2010).

Fujimura, R.

Fukumoto, A.

Hara, M.

Hesselink, L.

Hill, A. J.

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage from Theory to Practical Systems (Wiley, 2010).

Hirooka, K.

Horimai, H.

Hosaka, M.

M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013).

Hoshizawa, T.

M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013).

Ichimura, S.

Ishii, T.

M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013).

Ishioka, K.

Katahira, C.

C. Katahira, “Mechanistic discussion of cationic crosslinking copolymerizations of 1,2-epoxycyclohexane with diepoxide crosslinkers accompanied by intramolecular and intermolecular chain transfer reactions,” J. Polym. Sci. A 48, 4445–4455 (2010).

Kitano, M.

J. Tanaka, A. Okamoto, and M. Kitano, “Development of image-based simulation for holographic data storage system by fast Fourier transform beam-propagation method,” Jpn. J. Appl. Phys. 48, 03A028 (2009).

Koga, S.

M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kuroda, K.

Kwan, D.

Li, J.

Mok, F. H.

Okamoto, A.

M. Takabayashi and A. Okamoto, “Self-referential holography and its applications to data storage and phase-to-intensity conversion,” Opt. Express 21, 3669–3681 (2013).
[CrossRef]

J. Tanaka, A. Okamoto, and M. Kitano, “Development of image-based simulation for holographic data storage system by fast Fourier transform beam-propagation method,” Jpn. J. Appl. Phys. 48, 03A028 (2009).

M. Takabayashi, A. Okamoto, and T. Okamoto, “Improvement of signal-to-noise ratio in self-referential holographic data storage by using oversampled additional pattern,” in International Workshop on Holography and Related Technologies (IWH 2013), Digests (2013), paper 15a-4.

M. Takabayashi, A. Okamoto, M. Bunsen, and T. Okamoto, “Multi-level self-referential holographic data storage,” in International Symposium on Optical Memory (ISOM ’12), Technical Digest (2012), pp. 12–13.

Okamoto, T.

M. Takabayashi, A. Okamoto, M. Bunsen, and T. Okamoto, “Multi-level self-referential holographic data storage,” in International Symposium on Optical Memory (ISOM ’12), Technical Digest (2012), pp. 12–13.

M. Takabayashi, A. Okamoto, and T. Okamoto, “Improvement of signal-to-noise ratio in self-referential holographic data storage by using oversampled additional pattern,” in International Workshop on Holography and Related Technologies (IWH 2013), Digests (2013), paper 15a-4.

Okas, R.

Orlov, S. S.

Phillips, W.

Psaltis, D.

F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
[CrossRef]

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
[CrossRef]

Pu, A.

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
[CrossRef]

Shimura, T.

Snyder, R.

Sun, C. C.

C. C. Sun and Y. W. Yu, “Optimized shift selectivity of collinear holographic storage system with lens-array reference,” in International Workshop on Holography and Related Technologies (IWH 2013), Digests (2013), paper 15a-2.

Sundaram, P.

Takabayashi, M.

M. Takabayashi and A. Okamoto, “Self-referential holography and its applications to data storage and phase-to-intensity conversion,” Opt. Express 21, 3669–3681 (2013).
[CrossRef]

M. Takabayashi, A. Okamoto, and T. Okamoto, “Improvement of signal-to-noise ratio in self-referential holographic data storage by using oversampled additional pattern,” in International Workshop on Holography and Related Technologies (IWH 2013), Digests (2013), paper 15a-4.

M. Takabayashi, A. Okamoto, M. Bunsen, and T. Okamoto, “Multi-level self-referential holographic data storage,” in International Symposium on Optical Memory (ISOM ’12), Technical Digest (2012), pp. 12–13.

Takashima, Y.

Tan, X.

Tan, X. D.

Tanaka, A.

M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013).

Tanaka, J.

J. Tanaka, A. Okamoto, and M. Kitano, “Development of image-based simulation for holographic data storage system by fast Fourier transform beam-propagation method,” Jpn. J. Appl. Phys. 48, 03A028 (2009).

Tanaka, K.

Tokuyama, K.

van Heerden, P. J.

Watanabe, K.

Wilson, W. L.

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage from Theory to Practical Systems (Wiley, 2010).

Yu, Y. W.

C. C. Sun and Y. W. Yu, “Optimized shift selectivity of collinear holographic storage system with lens-array reference,” in International Workshop on Holography and Related Technologies (IWH 2013), Digests (2013), paper 15a-2.

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

J. Polym. Sci. A

C. Katahira, “Mechanistic discussion of cationic crosslinking copolymerizations of 1,2-epoxycyclohexane with diepoxide crosslinkers accompanied by intramolecular and intermolecular chain transfer reactions,” J. Polym. Sci. A 48, 4445–4455 (2010).

Jpn. J. Appl. Phys.

J. Tanaka, A. Okamoto, and M. Kitano, “Development of image-based simulation for holographic data storage system by fast Fourier transform beam-propagation method,” Jpn. J. Appl. Phys. 48, 03A028 (2009).

M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013).

Opt. Eng.

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Other

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage from Theory to Practical Systems (Wiley, 2010).

M. Takabayashi, A. Okamoto, M. Bunsen, and T. Okamoto, “Multi-level self-referential holographic data storage,” in International Symposium on Optical Memory (ISOM ’12), Technical Digest (2012), pp. 12–13.

M. Takabayashi, A. Okamoto, and T. Okamoto, “Improvement of signal-to-noise ratio in self-referential holographic data storage by using oversampled additional pattern,” in International Workshop on Holography and Related Technologies (IWH 2013), Digests (2013), paper 15a-4.

C. C. Sun and Y. W. Yu, “Optimized shift selectivity of collinear holographic storage system with lens-array reference,” in International Workshop on Holography and Related Technologies (IWH 2013), Digests (2013), paper 15a-2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Optical configurations of SR-HDS. (a) Recording process. (b) Reading process.

Fig. 2.
Fig. 2.

Patterns used and observed in SR-HDS.

Fig. 3.
Fig. 3.

Two-pixel model.

Fig. 4.
Fig. 4.

Numerical simulation result of the relationship between Contrast and Δϕ.

Fig. 5.
Fig. 5.

Conceptual diagram of multipixel operation.

Fig. 6.
Fig. 6.

Spatial phase shift that the reading beams feel when the recording medium is shifted.

Fig. 7.
Fig. 7.

Relationship between Contrast and shift distance obtained by numerical simulation. It is assumed that the x axis is parallel to the grating vector of the recorded hologram.

Fig. 8.
Fig. 8.

Simulation models. (a) Optical configuration. (b) Calculation meshes on SLM plane. (c) Calculation meshes in recording medium. Intensity distribution (d) on focal plane (xy) and (e) on cross-sectional plane (xz).

Fig. 9.
Fig. 9.

Numerically evaluated shift selectivities of SR-HDS and collinear HDS.

Fig. 10.
Fig. 10.

Experimental setup.

Fig. 11.
Fig. 11.

Observed intensity distributions on imager plane by (a) numerical simulation and (b) experiment.

Fig. 12.
Fig. 12.

Recording layout.

Fig. 13.
Fig. 13.

Numerical simulation results of 25-multiplexed SR-HDS. (a) SNR of first datapage and the number of multiplexings. The dashed line is an exponentially approximated curve defined by Eq. (4). (b) Output intensity distribution when 1, 10, 20, and 25 hologram(s) are multiplexed. (c) SNR values of each multiplexed datapage.

Tables (1)

Tables Icon

Table 1. Parameters in the Numerical Simulations

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Contrast=(I1I2)/(I1+I2).
Dave=I¯ONI¯OFF.
SNR=I¯ONI¯OFFVON+VOFF,
SNR(#1)11.71e0.056m,

Metrics