Abstract

A new method of acquiring simultaneously the signal and reference channels used for interferometric planar Doppler velocimetry is proposed and demonstrated. The technique uses frequency division multiplexing (FDM) to facilitate the capture of the requisite images on a single camera, and is suitable for time-averaged flow measurements. Furthermore, the approach has the potential to be expanded to allow the multiplexing of additional measurement channels for multicomponent velocity measurement. The use of FDM for interferometric referencing is demonstrated experimentally with measurements of a single velocity component of a seeded axisymmetric air jet. The expansion of the technique to include multiple velocity components was then investigated theoretically and experimentally to account for bandwidth, crosstalk, and dynamic range limitations. The technique offers reduced camera noise, automatic background light suppression, and crosstalk levels of typically <10%. Furthermore, as this crosstalk is dependent upon the channel modulations applied, it can be corrected for in postprocessing.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol. 23, 032001 (2012).
    [CrossRef]
  2. G. S. Elliott and T. Beutner, “Molecular filter based planar Doppler velocimetry,” Prog. Aerosp. Sci. 35, 799–845 (1999).
    [CrossRef]
  3. M. Samimy and M. P. Wernet, “Review of planar multiple-component velocimetry in high-speed flows,” AIAA J. 38, 553–574 (2000).
    [CrossRef]
  4. J. F. Meyers and H. Komine, “Doppler global velocimetry: a new way to look at velocity,” in Proceedings of the ASME Fourth International Conference on Laser Anemometry, Advances and Applications, Cleveland, Ohio, August5–9, 1991, Vol. 1, pp. 289–296.
  5. M. S. Reinath, “Doppler global velocimeter development,” Meas. Sci. Technol. 12, 432–441 (2001).
    [CrossRef]
  6. V. Chan, A. Heyes, D. Robinson, and J. Turner, “Iodine absorption filters for Doppler global velocimetry,” Meas. Sci. Technol. 6, 784–794 (1995).
    [CrossRef]
  7. J. F. Meyers and J. W. Lee, “Investigation of measurement errors in Doppler global velocimetry,” in SAE World Aviation Congress and ExpositionSan Francisco, California, October, 1999.
  8. F. Seiler, A. George, F. Leopold, J. Srulijes, and G. Smeets, “Flow velocities visualization using Doppler picture interference velocimetry,” in ICIASF 99. 18th International Congress on Instrumentation in Aerospace Simulation Facilities (IEEE, 1999), pp. 11/1–11/8.
  9. F. Seiler, A. George, J. Srulijes, and M. Havermann, “Progress in Doppler picture velocimetry (DPV) technique,” in Proceedings of the 12th International Symposium on Flow Visualization, Göttingen, Germany (2006), pp. 1–10.
  10. A. Pichler, A. George, F. Seiler, J. Srulijes, and M. Havermann, “Doppler picture velocimetry (DPV) applied to hypersonics,” in Shock Waves SE—80, K. Hannemann and F. Seiler, eds. (Springer, 2009), pp. 503–508.
  11. Z. Lu, T. O. H. Charrett, and R. P. Tatam, “Three-component planar velocity measurements using Mach–Zehnder interferometric filter-based planar Doppler velocimetry (MZI-PDV),” Meas. Sci. Technol. 20, 034019 (2009).
    [CrossRef]
  12. Z. Lu, T. O. H. Charrett, H. D. Ford, and R. P. Tatam, “Mach–Zehnder interferometric filter based planar Doppler velocimetry (MZI-PDV),” J. Opt. A 9, 1002–1013 (2007).
    [CrossRef]
  13. A. Landolt and T. Roesgen, “Global Doppler frequency shift detection with near-resonant interferometry,” Exp. Fluids 47, 733–743 (2009).
    [CrossRef]
  14. A. Landolt and T. Roesgen, “Anomalous dispersion in atomic line filters applied for spatial frequency detection,” Appl. Opt. 48, 5948–5955 (2009).
    [CrossRef]
  15. F. Seiler, A. Pichler, R. Pfaff, and A. George, “Improved Doppler picture velocimetry and new automated processing,” in 14th International Symposium on Application of Laser Techniques to Fluids, Lisbon, Portugal (2008), pp. 7–10.
  16. I. A. Bledowski, T. O. H. Charrett, D. Francis, S. W. James, and R. P. Tatam, “Frequency-division multiplexing for multicomponent shearography,” Appl. Opt. 52, 350–358 (2013).
    [CrossRef]
  17. A. Fischer, L. Büttner, and J. Czarske, “Simultaneous measurements of multiple flow velocity components using frequency modulated lasers and a single molecular absorption cell,” Opt. Commun. 284, 3060–3064 (2011).
    [CrossRef]
  18. T. O. H. Charrett, D. S. Nobes, and R. P. Tatam, “Investigation into the selection of viewing configurations for three-component planar Doppler velocimetry measurements,” Appl. Opt. 46, 4102–4116 (2007).
    [CrossRef]
  19. Python Software Foundation, “Python Programming Language—Official Website,” http://www.python.org/ .
  20. “SciPy—Scientific Tools for Python,” http://www.scipy.org/ .
  21. M. Frigo and S. G. Johnson, “FFTW—Fastest Fourier transform in the west,” http://www.fftw.org/ .
  22. D. S. Nobes, B. Wieneke, and R. P. Tatam, “Determination of view vectors from image warping mapping functions,” Opt. Eng. 43, 407–414 (2004).
    [CrossRef]
  23. N. Rajaratnam, Turbulent Jets (Elsevier, 1976), Vol. 5, Chap. 4, pp. 63–86.
  24. Sacher Lasertechnik Group, Pilot PC Laser Driver User Manual (2008).
  25. R. M. Groves, S. W. James, and R. P. Tatam, “Polarization-multiplexed and phase-stepped fibre optic shearography using laser wavelength modulation,” Meas. Sci. Technol. 11, 1389–1395 (2000).
    [CrossRef]
  26. G. Betta, C. Liguori, and A. Pietrosanto, “Propagation of uncertainty in a discrete Fourier transform algorithm,” Measurement 27, 231–239 (2000).
    [CrossRef]
  27. G. Frankowski, I. Stobbe, W. Tischer, and F. Schillke, “Investigation of surface shapes using a carrier frequency based analysing system,” Proc. SPIE 1121, 89–100 (1990).

2013 (1)

2012 (1)

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol. 23, 032001 (2012).
[CrossRef]

2011 (1)

A. Fischer, L. Büttner, and J. Czarske, “Simultaneous measurements of multiple flow velocity components using frequency modulated lasers and a single molecular absorption cell,” Opt. Commun. 284, 3060–3064 (2011).
[CrossRef]

2009 (3)

Z. Lu, T. O. H. Charrett, and R. P. Tatam, “Three-component planar velocity measurements using Mach–Zehnder interferometric filter-based planar Doppler velocimetry (MZI-PDV),” Meas. Sci. Technol. 20, 034019 (2009).
[CrossRef]

A. Landolt and T. Roesgen, “Global Doppler frequency shift detection with near-resonant interferometry,” Exp. Fluids 47, 733–743 (2009).
[CrossRef]

A. Landolt and T. Roesgen, “Anomalous dispersion in atomic line filters applied for spatial frequency detection,” Appl. Opt. 48, 5948–5955 (2009).
[CrossRef]

2007 (2)

Z. Lu, T. O. H. Charrett, H. D. Ford, and R. P. Tatam, “Mach–Zehnder interferometric filter based planar Doppler velocimetry (MZI-PDV),” J. Opt. A 9, 1002–1013 (2007).
[CrossRef]

T. O. H. Charrett, D. S. Nobes, and R. P. Tatam, “Investigation into the selection of viewing configurations for three-component planar Doppler velocimetry measurements,” Appl. Opt. 46, 4102–4116 (2007).
[CrossRef]

2004 (1)

D. S. Nobes, B. Wieneke, and R. P. Tatam, “Determination of view vectors from image warping mapping functions,” Opt. Eng. 43, 407–414 (2004).
[CrossRef]

2001 (1)

M. S. Reinath, “Doppler global velocimeter development,” Meas. Sci. Technol. 12, 432–441 (2001).
[CrossRef]

2000 (3)

R. M. Groves, S. W. James, and R. P. Tatam, “Polarization-multiplexed and phase-stepped fibre optic shearography using laser wavelength modulation,” Meas. Sci. Technol. 11, 1389–1395 (2000).
[CrossRef]

G. Betta, C. Liguori, and A. Pietrosanto, “Propagation of uncertainty in a discrete Fourier transform algorithm,” Measurement 27, 231–239 (2000).
[CrossRef]

M. Samimy and M. P. Wernet, “Review of planar multiple-component velocimetry in high-speed flows,” AIAA J. 38, 553–574 (2000).
[CrossRef]

1999 (1)

G. S. Elliott and T. Beutner, “Molecular filter based planar Doppler velocimetry,” Prog. Aerosp. Sci. 35, 799–845 (1999).
[CrossRef]

1995 (1)

V. Chan, A. Heyes, D. Robinson, and J. Turner, “Iodine absorption filters for Doppler global velocimetry,” Meas. Sci. Technol. 6, 784–794 (1995).
[CrossRef]

1990 (1)

G. Frankowski, I. Stobbe, W. Tischer, and F. Schillke, “Investigation of surface shapes using a carrier frequency based analysing system,” Proc. SPIE 1121, 89–100 (1990).

Betta, G.

G. Betta, C. Liguori, and A. Pietrosanto, “Propagation of uncertainty in a discrete Fourier transform algorithm,” Measurement 27, 231–239 (2000).
[CrossRef]

Beutner, T.

G. S. Elliott and T. Beutner, “Molecular filter based planar Doppler velocimetry,” Prog. Aerosp. Sci. 35, 799–845 (1999).
[CrossRef]

Bledowski, I. A.

Büttner, L.

A. Fischer, L. Büttner, and J. Czarske, “Simultaneous measurements of multiple flow velocity components using frequency modulated lasers and a single molecular absorption cell,” Opt. Commun. 284, 3060–3064 (2011).
[CrossRef]

Chan, V.

V. Chan, A. Heyes, D. Robinson, and J. Turner, “Iodine absorption filters for Doppler global velocimetry,” Meas. Sci. Technol. 6, 784–794 (1995).
[CrossRef]

Charrett, T. O. H.

I. A. Bledowski, T. O. H. Charrett, D. Francis, S. W. James, and R. P. Tatam, “Frequency-division multiplexing for multicomponent shearography,” Appl. Opt. 52, 350–358 (2013).
[CrossRef]

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol. 23, 032001 (2012).
[CrossRef]

Z. Lu, T. O. H. Charrett, and R. P. Tatam, “Three-component planar velocity measurements using Mach–Zehnder interferometric filter-based planar Doppler velocimetry (MZI-PDV),” Meas. Sci. Technol. 20, 034019 (2009).
[CrossRef]

Z. Lu, T. O. H. Charrett, H. D. Ford, and R. P. Tatam, “Mach–Zehnder interferometric filter based planar Doppler velocimetry (MZI-PDV),” J. Opt. A 9, 1002–1013 (2007).
[CrossRef]

T. O. H. Charrett, D. S. Nobes, and R. P. Tatam, “Investigation into the selection of viewing configurations for three-component planar Doppler velocimetry measurements,” Appl. Opt. 46, 4102–4116 (2007).
[CrossRef]

Czarske, J.

A. Fischer, L. Büttner, and J. Czarske, “Simultaneous measurements of multiple flow velocity components using frequency modulated lasers and a single molecular absorption cell,” Opt. Commun. 284, 3060–3064 (2011).
[CrossRef]

Elliott, G. S.

G. S. Elliott and T. Beutner, “Molecular filter based planar Doppler velocimetry,” Prog. Aerosp. Sci. 35, 799–845 (1999).
[CrossRef]

Fischer, A.

A. Fischer, L. Büttner, and J. Czarske, “Simultaneous measurements of multiple flow velocity components using frequency modulated lasers and a single molecular absorption cell,” Opt. Commun. 284, 3060–3064 (2011).
[CrossRef]

Ford, H. D.

Z. Lu, T. O. H. Charrett, H. D. Ford, and R. P. Tatam, “Mach–Zehnder interferometric filter based planar Doppler velocimetry (MZI-PDV),” J. Opt. A 9, 1002–1013 (2007).
[CrossRef]

Francis, D.

Frankowski, G.

G. Frankowski, I. Stobbe, W. Tischer, and F. Schillke, “Investigation of surface shapes using a carrier frequency based analysing system,” Proc. SPIE 1121, 89–100 (1990).

George, A.

F. Seiler, A. Pichler, R. Pfaff, and A. George, “Improved Doppler picture velocimetry and new automated processing,” in 14th International Symposium on Application of Laser Techniques to Fluids, Lisbon, Portugal (2008), pp. 7–10.

F. Seiler, A. George, J. Srulijes, and M. Havermann, “Progress in Doppler picture velocimetry (DPV) technique,” in Proceedings of the 12th International Symposium on Flow Visualization, Göttingen, Germany (2006), pp. 1–10.

A. Pichler, A. George, F. Seiler, J. Srulijes, and M. Havermann, “Doppler picture velocimetry (DPV) applied to hypersonics,” in Shock Waves SE—80, K. Hannemann and F. Seiler, eds. (Springer, 2009), pp. 503–508.

F. Seiler, A. George, F. Leopold, J. Srulijes, and G. Smeets, “Flow velocities visualization using Doppler picture interference velocimetry,” in ICIASF 99. 18th International Congress on Instrumentation in Aerospace Simulation Facilities (IEEE, 1999), pp. 11/1–11/8.

Groves, R. M.

R. M. Groves, S. W. James, and R. P. Tatam, “Polarization-multiplexed and phase-stepped fibre optic shearography using laser wavelength modulation,” Meas. Sci. Technol. 11, 1389–1395 (2000).
[CrossRef]

Havermann, M.

F. Seiler, A. George, J. Srulijes, and M. Havermann, “Progress in Doppler picture velocimetry (DPV) technique,” in Proceedings of the 12th International Symposium on Flow Visualization, Göttingen, Germany (2006), pp. 1–10.

A. Pichler, A. George, F. Seiler, J. Srulijes, and M. Havermann, “Doppler picture velocimetry (DPV) applied to hypersonics,” in Shock Waves SE—80, K. Hannemann and F. Seiler, eds. (Springer, 2009), pp. 503–508.

Heyes, A.

V. Chan, A. Heyes, D. Robinson, and J. Turner, “Iodine absorption filters for Doppler global velocimetry,” Meas. Sci. Technol. 6, 784–794 (1995).
[CrossRef]

James, S. W.

I. A. Bledowski, T. O. H. Charrett, D. Francis, S. W. James, and R. P. Tatam, “Frequency-division multiplexing for multicomponent shearography,” Appl. Opt. 52, 350–358 (2013).
[CrossRef]

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol. 23, 032001 (2012).
[CrossRef]

R. M. Groves, S. W. James, and R. P. Tatam, “Polarization-multiplexed and phase-stepped fibre optic shearography using laser wavelength modulation,” Meas. Sci. Technol. 11, 1389–1395 (2000).
[CrossRef]

Komine, H.

J. F. Meyers and H. Komine, “Doppler global velocimetry: a new way to look at velocity,” in Proceedings of the ASME Fourth International Conference on Laser Anemometry, Advances and Applications, Cleveland, Ohio, August5–9, 1991, Vol. 1, pp. 289–296.

Landolt, A.

A. Landolt and T. Roesgen, “Global Doppler frequency shift detection with near-resonant interferometry,” Exp. Fluids 47, 733–743 (2009).
[CrossRef]

A. Landolt and T. Roesgen, “Anomalous dispersion in atomic line filters applied for spatial frequency detection,” Appl. Opt. 48, 5948–5955 (2009).
[CrossRef]

Lee, J. W.

J. F. Meyers and J. W. Lee, “Investigation of measurement errors in Doppler global velocimetry,” in SAE World Aviation Congress and ExpositionSan Francisco, California, October, 1999.

Leopold, F.

F. Seiler, A. George, F. Leopold, J. Srulijes, and G. Smeets, “Flow velocities visualization using Doppler picture interference velocimetry,” in ICIASF 99. 18th International Congress on Instrumentation in Aerospace Simulation Facilities (IEEE, 1999), pp. 11/1–11/8.

Liguori, C.

G. Betta, C. Liguori, and A. Pietrosanto, “Propagation of uncertainty in a discrete Fourier transform algorithm,” Measurement 27, 231–239 (2000).
[CrossRef]

Lu, Z.

Z. Lu, T. O. H. Charrett, and R. P. Tatam, “Three-component planar velocity measurements using Mach–Zehnder interferometric filter-based planar Doppler velocimetry (MZI-PDV),” Meas. Sci. Technol. 20, 034019 (2009).
[CrossRef]

Z. Lu, T. O. H. Charrett, H. D. Ford, and R. P. Tatam, “Mach–Zehnder interferometric filter based planar Doppler velocimetry (MZI-PDV),” J. Opt. A 9, 1002–1013 (2007).
[CrossRef]

Meyers, J. F.

J. F. Meyers and J. W. Lee, “Investigation of measurement errors in Doppler global velocimetry,” in SAE World Aviation Congress and ExpositionSan Francisco, California, October, 1999.

J. F. Meyers and H. Komine, “Doppler global velocimetry: a new way to look at velocity,” in Proceedings of the ASME Fourth International Conference on Laser Anemometry, Advances and Applications, Cleveland, Ohio, August5–9, 1991, Vol. 1, pp. 289–296.

Nobes, D. S.

Pfaff, R.

F. Seiler, A. Pichler, R. Pfaff, and A. George, “Improved Doppler picture velocimetry and new automated processing,” in 14th International Symposium on Application of Laser Techniques to Fluids, Lisbon, Portugal (2008), pp. 7–10.

Pichler, A.

F. Seiler, A. Pichler, R. Pfaff, and A. George, “Improved Doppler picture velocimetry and new automated processing,” in 14th International Symposium on Application of Laser Techniques to Fluids, Lisbon, Portugal (2008), pp. 7–10.

A. Pichler, A. George, F. Seiler, J. Srulijes, and M. Havermann, “Doppler picture velocimetry (DPV) applied to hypersonics,” in Shock Waves SE—80, K. Hannemann and F. Seiler, eds. (Springer, 2009), pp. 503–508.

Pietrosanto, A.

G. Betta, C. Liguori, and A. Pietrosanto, “Propagation of uncertainty in a discrete Fourier transform algorithm,” Measurement 27, 231–239 (2000).
[CrossRef]

Rajaratnam, N.

N. Rajaratnam, Turbulent Jets (Elsevier, 1976), Vol. 5, Chap. 4, pp. 63–86.

Reinath, M. S.

M. S. Reinath, “Doppler global velocimeter development,” Meas. Sci. Technol. 12, 432–441 (2001).
[CrossRef]

Robinson, D.

V. Chan, A. Heyes, D. Robinson, and J. Turner, “Iodine absorption filters for Doppler global velocimetry,” Meas. Sci. Technol. 6, 784–794 (1995).
[CrossRef]

Roesgen, T.

A. Landolt and T. Roesgen, “Global Doppler frequency shift detection with near-resonant interferometry,” Exp. Fluids 47, 733–743 (2009).
[CrossRef]

A. Landolt and T. Roesgen, “Anomalous dispersion in atomic line filters applied for spatial frequency detection,” Appl. Opt. 48, 5948–5955 (2009).
[CrossRef]

Samimy, M.

M. Samimy and M. P. Wernet, “Review of planar multiple-component velocimetry in high-speed flows,” AIAA J. 38, 553–574 (2000).
[CrossRef]

Schillke, F.

G. Frankowski, I. Stobbe, W. Tischer, and F. Schillke, “Investigation of surface shapes using a carrier frequency based analysing system,” Proc. SPIE 1121, 89–100 (1990).

Seiler, F.

F. Seiler, A. Pichler, R. Pfaff, and A. George, “Improved Doppler picture velocimetry and new automated processing,” in 14th International Symposium on Application of Laser Techniques to Fluids, Lisbon, Portugal (2008), pp. 7–10.

F. Seiler, A. George, F. Leopold, J. Srulijes, and G. Smeets, “Flow velocities visualization using Doppler picture interference velocimetry,” in ICIASF 99. 18th International Congress on Instrumentation in Aerospace Simulation Facilities (IEEE, 1999), pp. 11/1–11/8.

A. Pichler, A. George, F. Seiler, J. Srulijes, and M. Havermann, “Doppler picture velocimetry (DPV) applied to hypersonics,” in Shock Waves SE—80, K. Hannemann and F. Seiler, eds. (Springer, 2009), pp. 503–508.

F. Seiler, A. George, J. Srulijes, and M. Havermann, “Progress in Doppler picture velocimetry (DPV) technique,” in Proceedings of the 12th International Symposium on Flow Visualization, Göttingen, Germany (2006), pp. 1–10.

Smeets, G.

F. Seiler, A. George, F. Leopold, J. Srulijes, and G. Smeets, “Flow velocities visualization using Doppler picture interference velocimetry,” in ICIASF 99. 18th International Congress on Instrumentation in Aerospace Simulation Facilities (IEEE, 1999), pp. 11/1–11/8.

Srulijes, J.

F. Seiler, A. George, J. Srulijes, and M. Havermann, “Progress in Doppler picture velocimetry (DPV) technique,” in Proceedings of the 12th International Symposium on Flow Visualization, Göttingen, Germany (2006), pp. 1–10.

A. Pichler, A. George, F. Seiler, J. Srulijes, and M. Havermann, “Doppler picture velocimetry (DPV) applied to hypersonics,” in Shock Waves SE—80, K. Hannemann and F. Seiler, eds. (Springer, 2009), pp. 503–508.

F. Seiler, A. George, F. Leopold, J. Srulijes, and G. Smeets, “Flow velocities visualization using Doppler picture interference velocimetry,” in ICIASF 99. 18th International Congress on Instrumentation in Aerospace Simulation Facilities (IEEE, 1999), pp. 11/1–11/8.

Stobbe, I.

G. Frankowski, I. Stobbe, W. Tischer, and F. Schillke, “Investigation of surface shapes using a carrier frequency based analysing system,” Proc. SPIE 1121, 89–100 (1990).

Tatam, R. P.

I. A. Bledowski, T. O. H. Charrett, D. Francis, S. W. James, and R. P. Tatam, “Frequency-division multiplexing for multicomponent shearography,” Appl. Opt. 52, 350–358 (2013).
[CrossRef]

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol. 23, 032001 (2012).
[CrossRef]

Z. Lu, T. O. H. Charrett, and R. P. Tatam, “Three-component planar velocity measurements using Mach–Zehnder interferometric filter-based planar Doppler velocimetry (MZI-PDV),” Meas. Sci. Technol. 20, 034019 (2009).
[CrossRef]

Z. Lu, T. O. H. Charrett, H. D. Ford, and R. P. Tatam, “Mach–Zehnder interferometric filter based planar Doppler velocimetry (MZI-PDV),” J. Opt. A 9, 1002–1013 (2007).
[CrossRef]

T. O. H. Charrett, D. S. Nobes, and R. P. Tatam, “Investigation into the selection of viewing configurations for three-component planar Doppler velocimetry measurements,” Appl. Opt. 46, 4102–4116 (2007).
[CrossRef]

D. S. Nobes, B. Wieneke, and R. P. Tatam, “Determination of view vectors from image warping mapping functions,” Opt. Eng. 43, 407–414 (2004).
[CrossRef]

R. M. Groves, S. W. James, and R. P. Tatam, “Polarization-multiplexed and phase-stepped fibre optic shearography using laser wavelength modulation,” Meas. Sci. Technol. 11, 1389–1395 (2000).
[CrossRef]

Tischer, W.

G. Frankowski, I. Stobbe, W. Tischer, and F. Schillke, “Investigation of surface shapes using a carrier frequency based analysing system,” Proc. SPIE 1121, 89–100 (1990).

Turner, J.

V. Chan, A. Heyes, D. Robinson, and J. Turner, “Iodine absorption filters for Doppler global velocimetry,” Meas. Sci. Technol. 6, 784–794 (1995).
[CrossRef]

Wernet, M. P.

M. Samimy and M. P. Wernet, “Review of planar multiple-component velocimetry in high-speed flows,” AIAA J. 38, 553–574 (2000).
[CrossRef]

Wieneke, B.

D. S. Nobes, B. Wieneke, and R. P. Tatam, “Determination of view vectors from image warping mapping functions,” Opt. Eng. 43, 407–414 (2004).
[CrossRef]

AIAA J. (1)

M. Samimy and M. P. Wernet, “Review of planar multiple-component velocimetry in high-speed flows,” AIAA J. 38, 553–574 (2000).
[CrossRef]

Appl. Opt. (3)

Exp. Fluids (1)

A. Landolt and T. Roesgen, “Global Doppler frequency shift detection with near-resonant interferometry,” Exp. Fluids 47, 733–743 (2009).
[CrossRef]

J. Opt. A (1)

Z. Lu, T. O. H. Charrett, H. D. Ford, and R. P. Tatam, “Mach–Zehnder interferometric filter based planar Doppler velocimetry (MZI-PDV),” J. Opt. A 9, 1002–1013 (2007).
[CrossRef]

Meas. Sci. Technol. (5)

Z. Lu, T. O. H. Charrett, and R. P. Tatam, “Three-component planar velocity measurements using Mach–Zehnder interferometric filter-based planar Doppler velocimetry (MZI-PDV),” Meas. Sci. Technol. 20, 034019 (2009).
[CrossRef]

T. O. H. Charrett, S. W. James, and R. P. Tatam, “Optical fibre laser velocimetry: a review,” Meas. Sci. Technol. 23, 032001 (2012).
[CrossRef]

M. S. Reinath, “Doppler global velocimeter development,” Meas. Sci. Technol. 12, 432–441 (2001).
[CrossRef]

V. Chan, A. Heyes, D. Robinson, and J. Turner, “Iodine absorption filters for Doppler global velocimetry,” Meas. Sci. Technol. 6, 784–794 (1995).
[CrossRef]

R. M. Groves, S. W. James, and R. P. Tatam, “Polarization-multiplexed and phase-stepped fibre optic shearography using laser wavelength modulation,” Meas. Sci. Technol. 11, 1389–1395 (2000).
[CrossRef]

Measurement (1)

G. Betta, C. Liguori, and A. Pietrosanto, “Propagation of uncertainty in a discrete Fourier transform algorithm,” Measurement 27, 231–239 (2000).
[CrossRef]

Opt. Commun. (1)

A. Fischer, L. Büttner, and J. Czarske, “Simultaneous measurements of multiple flow velocity components using frequency modulated lasers and a single molecular absorption cell,” Opt. Commun. 284, 3060–3064 (2011).
[CrossRef]

Opt. Eng. (1)

D. S. Nobes, B. Wieneke, and R. P. Tatam, “Determination of view vectors from image warping mapping functions,” Opt. Eng. 43, 407–414 (2004).
[CrossRef]

Proc. SPIE (1)

G. Frankowski, I. Stobbe, W. Tischer, and F. Schillke, “Investigation of surface shapes using a carrier frequency based analysing system,” Proc. SPIE 1121, 89–100 (1990).

Prog. Aerosp. Sci. (1)

G. S. Elliott and T. Beutner, “Molecular filter based planar Doppler velocimetry,” Prog. Aerosp. Sci. 35, 799–845 (1999).
[CrossRef]

Other (11)

J. F. Meyers and H. Komine, “Doppler global velocimetry: a new way to look at velocity,” in Proceedings of the ASME Fourth International Conference on Laser Anemometry, Advances and Applications, Cleveland, Ohio, August5–9, 1991, Vol. 1, pp. 289–296.

J. F. Meyers and J. W. Lee, “Investigation of measurement errors in Doppler global velocimetry,” in SAE World Aviation Congress and ExpositionSan Francisco, California, October, 1999.

F. Seiler, A. George, F. Leopold, J. Srulijes, and G. Smeets, “Flow velocities visualization using Doppler picture interference velocimetry,” in ICIASF 99. 18th International Congress on Instrumentation in Aerospace Simulation Facilities (IEEE, 1999), pp. 11/1–11/8.

F. Seiler, A. George, J. Srulijes, and M. Havermann, “Progress in Doppler picture velocimetry (DPV) technique,” in Proceedings of the 12th International Symposium on Flow Visualization, Göttingen, Germany (2006), pp. 1–10.

A. Pichler, A. George, F. Seiler, J. Srulijes, and M. Havermann, “Doppler picture velocimetry (DPV) applied to hypersonics,” in Shock Waves SE—80, K. Hannemann and F. Seiler, eds. (Springer, 2009), pp. 503–508.

F. Seiler, A. Pichler, R. Pfaff, and A. George, “Improved Doppler picture velocimetry and new automated processing,” in 14th International Symposium on Application of Laser Techniques to Fluids, Lisbon, Portugal (2008), pp. 7–10.

Python Software Foundation, “Python Programming Language—Official Website,” http://www.python.org/ .

“SciPy—Scientific Tools for Python,” http://www.scipy.org/ .

M. Frigo and S. G. Johnson, “FFTW—Fastest Fourier transform in the west,” http://www.fftw.org/ .

N. Rajaratnam, Turbulent Jets (Elsevier, 1976), Vol. 5, Chap. 4, pp. 63–86.

Sacher Lasertechnik Group, Pilot PC Laser Driver User Manual (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic showing the application of FDM to a general I-PDV system. Here, a three-velocity component system is shown using three signal channels illuminating the flow from different directions together with an unshifted reference channel. The channels are modulated here using beam choppers with the reference channel modulated at frequency f0 and the three measurement channels at frequencies f1, f2, and f3, respectively. Either bulk optics or fiber delivery can be employed to transport the beams to the light sheet forming optics.

Fig. 2.
Fig. 2.

Steps to demultiplex images from a FDM image time series. The example shown is for a single-velocity component system, consisting of two multiplexed channels.

Fig. 3.
Fig. 3.

Schematic showing the experimental FDM I-PDV system used. Inset is a photograph of the imaging MZI and the chamber containing the jet.

Fig. 4.
Fig. 4.

Velocity measurements taken at 45° slices across the jet at different x positions of the center of the flow downstream from the nozzle. The field of view was 35×35mm. On the 15 and 24 mm images, the jet nozzle can be seen impinging in the field of view on the left side.

Fig. 5.
Fig. 5.

Comparison of velocity profiles taken vertically through the center of the jet at different positions downstream from the nozzle (red points), and an empirical model (black lines) of an axisymmetric compound air jet [23].

Fig. 6.
Fig. 6.

Enlarged regions of the demultiplexed reference fringes. Left image shows fringes 15 mm downstream with a low drift. Right image shows fringes at 47 mm demultiplexed with a higher drift.

Fig. 7.
Fig. 7.

Calculated FDM fringe visibility for varying levels of phase drift during data acquisition.

Fig. 8.
Fig. 8.

Signal leakage (crosstalk) as a percentage of the channel’s RMS intensity, IRMS,n, into other demultiplexing frequencies. Crosstalk from the reference channel (17.6 Hz peak) is shown by the red/dashed line and crosstalk from the signal channel (25.2 Hz) is shown by the blue/solid line. The center frequencies of the signal and reference channels are shown by the vertical dashed lines.

Fig. 9.
Fig. 9.

Noise standard deviation versus number of frames in the time series, N. The solid lines show the theoretical noise propagation for frame averaging (solid/black) and FDM scaled to the peak-to-peak intensity (dashed/blue), and experimental results are shown using two FDM window widths, 3.75 Hz (red crosses) and 11.25 Hz (red dots), and frame averaging (black crosses).

Fig. 10.
Fig. 10.

Plots of a single row of a fringe pattern recorded using FDM for various peak amplitudes, Ipp.

Fig. 11.
Fig. 11.

Experimental crosstalk spectra between four FDM channels. The lines show the total crosstalk into a channel from the other three channels as a percentage of the channel’s RMS intensity, IRMS,n, at N=128 frames (red/dashed lines) and N=256 frames (blue/solid lines). Also shown, as the shaded areas, are the power spectrums of the channel itself calculated at N=128 (red/hatched shading) and N=256 (blue/solid shading).

Tables (3)

Tables Icon

Table 1. Noise Characteristics of a Typical Camera Pixel Using FDM Demultiplexing at (a) f=17.6Hz and (b) f=25.2Hz, with a 1.5 Hz Windowa

Tables Icon

Table 2. Experimental Comparison of the Noise Standard Deviation for a Typical Camera Pixel When Using FDM Demultiplexing (shown in bold) and Frame Averaging Measurements of 1, 2, 3 and 4 Channels Recorded Sequentially in the Same Acquisition Time

Tables Icon

Table 3. Total Crosstalk as a Percentage of the Channel’s RMS Intensity, IRMS,n, for Four Channels of Equal Peak Intensity

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δν=ν0(oi).Vc,
Δϕ=2πΔlcΔν.
FSR=cΔl.
x(t)=nxn(t)+C,
IRMS,n=1NN|x(t)|2=1N2N|X(f)·Hn(f)|2=σn,
Ipp,n=IRMS,nσcal.
σRMS=σx2N,
σpp=σxσcal2N,
σAVG=σxN.
σxσcal2NσxNm,
m12σcal2.
I0σx=Ippσpp,
Ipp=I0(σcal2N).
[IRMS,1IRMS,2IRMS,3IRMS,4]=[1C21C31C41C121C32C42C13C231C43C14C24C341][IRMS,1IRMS,2IRMS,3IRMS,4].

Metrics