Abstract

An algorithm is offered for finding the range within which cumulative particle size distribution functions can be located in consistency with experimental turbidimetric data at a number of wavelengths. It is based on linear programming and minimization techniques. Several tests were performed. The lower right-hand branch of the corridor was found to locate near the initial distribution function.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data

Eduard Chemyakin, Detlef Müller, Sharon Burton, Alexei Kolgotin, Chris Hostetler, and Richard Ferrare
Appl. Opt. 53(31) 7252-7266 (2014)

Inversion of particle-size distribution from angular light-scattering data with genetic algorithms

Mao Ye, Shimin Wang, Yong Lu, Tao Hu, Zhen Zhu, and Yiqian Xu
Appl. Opt. 38(12) 2677-2685 (1999)

Numerical study of particle-size distributions retrieved from angular light-scattering data using an evolution strategy with the Fraunhofer approximation

Javier Vargas-Ubera, Juan Jaime Sánchez-Escobar, J. Félix Aguilar, and David Michel Gale
Appl. Opt. 46(17) 3602-3610 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription