Abstract

A planar waveguide structure in a chalcohalide glass was fabricated by dual-energy C ion implantation with energies of 5.5 and 6.0 MeV at fluences of 7.0×1014 and 8.0×1014ionscm2, respectively. A waveguide with a thickness of 5.9 μm was formed. SRIM 2013 was used to simulate the defect distribution fabricated by C ion implantation. Images of the polished end face of the C-implanted chalcohalide glass were measured with a metallographic microscope using reflected polarized light. The micro-Raman spectra were measured in air. The near-field intensity distributions were investigated at visible (633 nm) and near-infrared (1300, 1400, and 1539 nm) bands.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tanaka and K. Shimakawa, “Chalcogenide glasses in Japan: a review on photoinduced phenomena,” Phys. Status Solidi B 246, 1744–1757 (2009).
    [CrossRef]
  2. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photononics,” Nat. Photonics 5, 141–148 (2011).
  3. A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6, 229–233 (2012).
    [CrossRef]
  4. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
    [CrossRef]
  5. A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
    [CrossRef]
  6. D. P. San-Román-Alerigi, D. H. Anjum, Y. Zhang, X. Yang, A. B. Slimane, T. K. Ng, M. N. Hedhili, M. Alsunaidi, and B. S. Ooi, “Electron irradiation induced reduction of the permittivity of chalcogenide glass (As2S3) thin film,” J. Appl. Phys. 113, 044116 (2013).
    [CrossRef]
  7. V. Krasteva, D. Hensley, and G. Sigel, “The effect of compositional variations on the properties of rare-earth doped Ge-S-I chalcohalide glasses,” J. Non-Cryst. Solids 222, 235–242 (1997).
    [CrossRef]
  8. H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794–1796 (1990).
    [CrossRef]
  9. C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high nonlinear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435–1440 (2001).
    [CrossRef]
  10. X. Wang, Z. Wang, J. Yu, C. Liu, X. Zhao, and Q. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
    [CrossRef]
  11. H. Guo, Y. Zhai, H. Tao, Y. Gong, and X. Zhao, “Synthesis and properties of GeS2-Ga2S3-PbI2 chalcohalide glasses,” Mater. Res. Bull. 42, 1111–1118 (2007).
    [CrossRef]
  12. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 6, 256–257 (1999).
  13. J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14, 1797–1803 (2006).
    [CrossRef]
  14. D. R. Scifres, R. D. Burnham, and W. Streifer, “Branching waveguide coupler in a GaAs/GaAlAs injection laser,” Appl. Phys. Lett. 32, 658–661 (1978).
    [CrossRef]
  15. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
    [CrossRef]
  16. N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, S. Shen, and A. Jha, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Conference on Lasers and Electro-Optics (Optical Society of America, 2007).
  17. L. Zhang, P. J. Chandler, and P. D. Townsend, “Extra ‘strange’ modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70, 1185–1189 (1991).
    [CrossRef]
  18. A. Gumennik, G. Perepelitsa, A. Ibrael, and A. J. Agranat, “A tunable channel waveguide array fabricated by the implantations of He+ ions in an electro-optical KLTN substrate,” Opt. Express 17, 6166–6176 (2009).
    [CrossRef]
  19. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
    [CrossRef]
  20. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
    [CrossRef]
  21. F. Qiu, T. Narusawa, and J. Zheng, “Swift and heavy ion implanted chalcogenide laser glass waveguides and their different refractive index distributions,” Appl. Opt. 50, 733–737 (2011).
    [CrossRef]
  22. T. Liu, P. Liu, L. Zhang, Y. F. Zhou, X. F. Yu, J. H. Zhao, and X. L. Wang, “Visible and near-infrared planar waveguide structure of polycrystalline zinc sulfide from C ions implantation,” Opt. Express 21, 4671–4676 (2013).
    [CrossRef]
  23. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
    [CrossRef]
  24. D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94, 011109 (2009).
    [CrossRef]
  25. H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+-doped and Dy3+, Tm3+-codoped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express 17, 15350–15358 (2009).
    [CrossRef]
  26. T. Liu, Q. Huang, P. Liu, S. Guo, L. Zhang, Y. Zhou, and X. Wang, “Planar and channel waveguides in fused silica fabricated by multi-energy C ion in the visible and near-infrared band,” Nucl. Instrum. Methods Phys. Res., Sect. B 307, 472–476 (2013).
    [CrossRef]
  27. J. F. Ziegler, “Computer code,” SRIM http://www.srim.org
  28. T. Liu, C. X. Liu, H. T. Guo, Q. Huang, P. Liu, S. S. Guo, L. Zhang, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Visible and near-infrared optical properties of chalcogenide glass waveguides formed by swift Kr ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 314, 166–169 (2013).
    [CrossRef]
  29. Z. Y. Yang, G. Tang, L. Luo, and W. Chen, “Visible transparent GeSe2-Ga2Se3-KX (X=I, Br, or Cl) glasses for infrared optics,” J. Am. Ceram. Soc. 90, 667–669 (2007).
    [CrossRef]
  30. H. L. Ma, Y. Guimond, X. H. Zhang, and J. Lucas, “Ga–Ge–Sb–Se based glasses and influence of alkaline halide addition,” J. Non-Cryst. Solids 256–257, 165–169 (1999).
    [CrossRef]
  31. F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105, 871–875 (2011).
    [CrossRef]
  32. S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1, 3126–3129 (2004).
    [CrossRef]

2013 (4)

D. P. San-Román-Alerigi, D. H. Anjum, Y. Zhang, X. Yang, A. B. Slimane, T. K. Ng, M. N. Hedhili, M. Alsunaidi, and B. S. Ooi, “Electron irradiation induced reduction of the permittivity of chalcogenide glass (As2S3) thin film,” J. Appl. Phys. 113, 044116 (2013).
[CrossRef]

T. Liu, Q. Huang, P. Liu, S. Guo, L. Zhang, Y. Zhou, and X. Wang, “Planar and channel waveguides in fused silica fabricated by multi-energy C ion in the visible and near-infrared band,” Nucl. Instrum. Methods Phys. Res., Sect. B 307, 472–476 (2013).
[CrossRef]

T. Liu, C. X. Liu, H. T. Guo, Q. Huang, P. Liu, S. S. Guo, L. Zhang, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Visible and near-infrared optical properties of chalcogenide glass waveguides formed by swift Kr ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 314, 166–169 (2013).
[CrossRef]

T. Liu, P. Liu, L. Zhang, Y. F. Zhou, X. F. Yu, J. H. Zhao, and X. L. Wang, “Visible and near-infrared planar waveguide structure of polycrystalline zinc sulfide from C ions implantation,” Opt. Express 21, 4671–4676 (2013).
[CrossRef]

2012 (2)

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[CrossRef]

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6, 229–233 (2012).
[CrossRef]

2011 (3)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photononics,” Nat. Photonics 5, 141–148 (2011).

F. Qiu, T. Narusawa, and J. Zheng, “Swift and heavy ion implanted chalcogenide laser glass waveguides and their different refractive index distributions,” Appl. Opt. 50, 733–737 (2011).
[CrossRef]

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105, 871–875 (2011).
[CrossRef]

2009 (5)

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94, 011109 (2009).
[CrossRef]

A. Gumennik, G. Perepelitsa, A. Ibrael, and A. J. Agranat, “A tunable channel waveguide array fabricated by the implantations of He+ ions in an electro-optical KLTN substrate,” Opt. Express 17, 6166–6176 (2009).
[CrossRef]

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+-doped and Dy3+, Tm3+-codoped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express 17, 15350–15358 (2009).
[CrossRef]

K. Tanaka and K. Shimakawa, “Chalcogenide glasses in Japan: a review on photoinduced phenomena,” Phys. Status Solidi B 246, 1744–1757 (2009).
[CrossRef]

2007 (3)

Z. Y. Yang, G. Tang, L. Luo, and W. Chen, “Visible transparent GeSe2-Ga2Se3-KX (X=I, Br, or Cl) glasses for infrared optics,” J. Am. Ceram. Soc. 90, 667–669 (2007).
[CrossRef]

H. Guo, Y. Zhai, H. Tao, Y. Gong, and X. Zhao, “Synthesis and properties of GeS2-Ga2S3-PbI2 chalcohalide glasses,” Mater. Res. Bull. 42, 1111–1118 (2007).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

2006 (1)

2005 (1)

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

2004 (3)

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1, 3126–3129 (2004).
[CrossRef]

X. Wang, Z. Wang, J. Yu, C. Liu, X. Zhao, and Q. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

2001 (1)

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high nonlinear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435–1440 (2001).
[CrossRef]

1999 (2)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 6, 256–257 (1999).

H. L. Ma, Y. Guimond, X. H. Zhang, and J. Lucas, “Ga–Ge–Sb–Se based glasses and influence of alkaline halide addition,” J. Non-Cryst. Solids 256–257, 165–169 (1999).
[CrossRef]

1997 (1)

V. Krasteva, D. Hensley, and G. Sigel, “The effect of compositional variations on the properties of rare-earth doped Ge-S-I chalcohalide glasses,” J. Non-Cryst. Solids 222, 235–242 (1997).
[CrossRef]

1991 (1)

L. Zhang, P. J. Chandler, and P. D. Townsend, “Extra ‘strange’ modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70, 1185–1189 (1991).
[CrossRef]

1990 (1)

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794–1796 (1990).
[CrossRef]

1982 (1)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

1978 (1)

D. R. Scifres, R. D. Burnham, and W. Streifer, “Branching waveguide coupler in a GaAs/GaAlAs injection laser,” Appl. Phys. Lett. 32, 658–661 (1978).
[CrossRef]

Abouraddy, A. F.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

Aggarwal, I. D.

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14, 1797–1803 (2006).
[CrossRef]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 6, 256–257 (1999).

Agranat, A. J.

Agulló-López, F.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Alsunaidi, M.

D. P. San-Román-Alerigi, D. H. Anjum, Y. Zhang, X. Yang, A. B. Slimane, T. K. Ng, M. N. Hedhili, M. Alsunaidi, and B. S. Ooi, “Electron irradiation induced reduction of the permittivity of chalcogenide glass (As2S3) thin film,” J. Appl. Phys. 113, 044116 (2013).
[CrossRef]

Anjum, D. H.

D. P. San-Román-Alerigi, D. H. Anjum, Y. Zhang, X. Yang, A. B. Slimane, T. K. Ng, M. N. Hedhili, M. Alsunaidi, and B. S. Ooi, “Electron irradiation induced reduction of the permittivity of chalcogenide glass (As2S3) thin film,” J. Appl. Phys. 113, 044116 (2013).
[CrossRef]

Barthélémy, A.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high nonlinear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435–1440 (2001).
[CrossRef]

Bayindir, M.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

Bookey, H. T.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, S. Shen, and A. Jha, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Conference on Lasers and Electro-Optics (Optical Society of America, 2007).

Brown, G.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, S. Shen, and A. Jha, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Conference on Lasers and Electro-Optics (Optical Society of America, 2007).

Burnham, R. D.

D. R. Scifres, R. D. Burnham, and W. Streifer, “Branching waveguide coupler in a GaAs/GaAlAs injection laser,” Appl. Phys. Lett. 32, 658–661 (1978).
[CrossRef]

Caballero, O.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Cerullo, G.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, S. Shen, and A. Jha, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Conference on Lasers and Electro-Optics (Optical Society of America, 2007).

Chandler, P. J.

L. Zhang, P. J. Chandler, and P. D. Townsend, “Extra ‘strange’ modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70, 1185–1189 (1991).
[CrossRef]

Chen, F.

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94, 011109 (2009).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

Chen, W.

Z. Y. Yang, G. Tang, L. Luo, and W. Chen, “Visible transparent GeSe2-Ga2Se3-KX (X=I, Br, or Cl) glasses for infrared optics,” J. Am. Ceram. Soc. 90, 667–669 (2007).
[CrossRef]

Chiodo, N.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, S. Shen, and A. Jha, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Conference on Lasers and Electro-Optics (Optical Society of America, 2007).

Chua, S. L.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6, 229–233 (2012).
[CrossRef]

Couderc, V.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high nonlinear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435–1440 (2001).
[CrossRef]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photononics,” Nat. Photonics 5, 141–148 (2011).

Fink, Y.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6, 229–233 (2012).
[CrossRef]

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

Frantz, J. A.

García, G.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

García-Cabañes, A.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

García-Navarro, A.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Gong, Q.

X. Wang, Z. Wang, J. Yu, C. Liu, X. Zhao, and Q. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
[CrossRef]

Gong, Y.

H. Guo, Y. Zhai, H. Tao, Y. Gong, and X. Zhao, “Synthesis and properties of GeS2-Ga2S3-PbI2 chalcohalide glasses,” Mater. Res. Bull. 42, 1111–1118 (2007).
[CrossRef]

Guimond, Y.

H. L. Ma, Y. Guimond, X. H. Zhang, and J. Lucas, “Ga–Ge–Sb–Se based glasses and influence of alkaline halide addition,” J. Non-Cryst. Solids 256–257, 165–169 (1999).
[CrossRef]

Gumennik, A.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[CrossRef]

A. Gumennik, G. Perepelitsa, A. Ibrael, and A. J. Agranat, “A tunable channel waveguide array fabricated by the implantations of He+ ions in an electro-optical KLTN substrate,” Opt. Express 17, 6166–6176 (2009).
[CrossRef]

Guo, H.

Guo, H. T.

T. Liu, C. X. Liu, H. T. Guo, Q. Huang, P. Liu, S. S. Guo, L. Zhang, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Visible and near-infrared optical properties of chalcogenide glass waveguides formed by swift Kr ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 314, 166–169 (2013).
[CrossRef]

Guo, S.

T. Liu, Q. Huang, P. Liu, S. Guo, L. Zhang, Y. Zhou, and X. Wang, “Planar and channel waveguides in fused silica fabricated by multi-energy C ion in the visible and near-infrared band,” Nucl. Instrum. Methods Phys. Res., Sect. B 307, 472–476 (2013).
[CrossRef]

Guo, S. S.

T. Liu, C. X. Liu, H. T. Guo, Q. Huang, P. Liu, S. S. Guo, L. Zhang, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Visible and near-infrared optical properties of chalcogenide glass waveguides formed by swift Kr ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 314, 166–169 (2013).
[CrossRef]

Hart, S. D.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

Hedhili, M. N.

D. P. San-Román-Alerigi, D. H. Anjum, Y. Zhang, X. Yang, A. B. Slimane, T. K. Ng, M. N. Hedhili, M. Alsunaidi, and B. S. Ooi, “Electron irradiation induced reduction of the permittivity of chalcogenide glass (As2S3) thin film,” J. Appl. Phys. 113, 044116 (2013).
[CrossRef]

Hensley, D.

V. Krasteva, D. Hensley, and G. Sigel, “The effect of compositional variations on the properties of rare-earth doped Ge-S-I chalcohalide glasses,” J. Non-Cryst. Solids 222, 235–242 (1997).
[CrossRef]

Hou, C.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[CrossRef]

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+-doped and Dy3+, Tm3+-codoped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express 17, 15350–15358 (2009).
[CrossRef]

Huang, Q.

T. Liu, Q. Huang, P. Liu, S. Guo, L. Zhang, Y. Zhou, and X. Wang, “Planar and channel waveguides in fused silica fabricated by multi-energy C ion in the visible and near-infrared band,” Nucl. Instrum. Methods Phys. Res., Sect. B 307, 472–476 (2013).
[CrossRef]

T. Liu, C. X. Liu, H. T. Guo, Q. Huang, P. Liu, S. S. Guo, L. Zhang, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Visible and near-infrared optical properties of chalcogenide glass waveguides formed by swift Kr ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 314, 166–169 (2013).
[CrossRef]

Ibrael, A.

Jackel, J. L.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

Jaque, D.

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94, 011109 (2009).
[CrossRef]

Jha, A.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, S. Shen, and A. Jha, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Conference on Lasers and Electro-Optics (Optical Society of America, 2007).

Joannopoulos, J.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

Joannopoulos, J. D.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[CrossRef]

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6, 229–233 (2012).
[CrossRef]

Kamiya, K.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794–1796 (1990).
[CrossRef]

Kar, A. K.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, S. Shen, and A. Jha, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Conference on Lasers and Electro-Optics (Optical Society of America, 2007).

Kobayashi, M.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794–1796 (1990).
[CrossRef]

Kostritskii, S. M.

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1, 3126–3129 (2004).
[CrossRef]

Krasteva, V.

V. Krasteva, D. Hensley, and G. Sigel, “The effect of compositional variations on the properties of rare-earth doped Ge-S-I chalcohalide glasses,” J. Non-Cryst. Solids 222, 235–242 (1997).
[CrossRef]

Kubodera, K.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794–1796 (1990).
[CrossRef]

Lestoquoy, G.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[CrossRef]

Li, W.

Liu, C.

X. Wang, Z. Wang, J. Yu, C. Liu, X. Zhao, and Q. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
[CrossRef]

Liu, C. X.

T. Liu, C. X. Liu, H. T. Guo, Q. Huang, P. Liu, S. S. Guo, L. Zhang, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Visible and near-infrared optical properties of chalcogenide glass waveguides formed by swift Kr ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 314, 166–169 (2013).
[CrossRef]

Liu, L.

Liu, P.

T. Liu, Q. Huang, P. Liu, S. Guo, L. Zhang, Y. Zhou, and X. Wang, “Planar and channel waveguides in fused silica fabricated by multi-energy C ion in the visible and near-infrared band,” Nucl. Instrum. Methods Phys. Res., Sect. B 307, 472–476 (2013).
[CrossRef]

T. Liu, C. X. Liu, H. T. Guo, Q. Huang, P. Liu, S. S. Guo, L. Zhang, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Visible and near-infrared optical properties of chalcogenide glass waveguides formed by swift Kr ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 314, 166–169 (2013).
[CrossRef]

T. Liu, P. Liu, L. Zhang, Y. F. Zhou, X. F. Yu, J. H. Zhao, and X. L. Wang, “Visible and near-infrared planar waveguide structure of polycrystalline zinc sulfide from C ions implantation,” Opt. Express 21, 4671–4676 (2013).
[CrossRef]

Liu, T.

T. Liu, P. Liu, L. Zhang, Y. F. Zhou, X. F. Yu, J. H. Zhao, and X. L. Wang, “Visible and near-infrared planar waveguide structure of polycrystalline zinc sulfide from C ions implantation,” Opt. Express 21, 4671–4676 (2013).
[CrossRef]

T. Liu, C. X. Liu, H. T. Guo, Q. Huang, P. Liu, S. S. Guo, L. Zhang, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Visible and near-infrared optical properties of chalcogenide glass waveguides formed by swift Kr ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 314, 166–169 (2013).
[CrossRef]

T. Liu, Q. Huang, P. Liu, S. Guo, L. Zhang, Y. Zhou, and X. Wang, “Planar and channel waveguides in fused silica fabricated by multi-energy C ion in the visible and near-infrared band,” Nucl. Instrum. Methods Phys. Res., Sect. B 307, 472–476 (2013).
[CrossRef]

Lu, M.

Lucas, J.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high nonlinear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435–1440 (2001).
[CrossRef]

H. L. Ma, Y. Guimond, X. H. Zhang, and J. Lucas, “Ga–Ge–Sb–Se based glasses and influence of alkaline halide addition,” J. Non-Cryst. Solids 256–257, 165–169 (1999).
[CrossRef]

Luo, L.

Z. Y. Yang, G. Tang, L. Luo, and W. Chen, “Visible transparent GeSe2-Ga2Se3-KX (X=I, Br, or Cl) glasses for infrared optics,” J. Am. Ceram. Soc. 90, 667–669 (2007).
[CrossRef]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photononics,” Nat. Photonics 5, 141–148 (2011).

Ma, H. L.

H. L. Ma, Y. Guimond, X. H. Zhang, and J. Lucas, “Ga–Ge–Sb–Se based glasses and influence of alkaline halide addition,” J. Non-Cryst. Solids 256–257, 165–169 (1999).
[CrossRef]

McDaniel, W.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[CrossRef]

Moretti, P.

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1, 3126–3129 (2004).
[CrossRef]

Nakamura, M.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794–1796 (1990).
[CrossRef]

Narusawa, T.

F. Qiu, T. Narusawa, and J. Zheng, “Swift and heavy ion implanted chalcogenide laser glass waveguides and their different refractive index distributions,” Appl. Opt. 50, 733–737 (2011).
[CrossRef]

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105, 871–875 (2011).
[CrossRef]

Nasu, H.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794–1796 (1990).
[CrossRef]

Ng, T. K.

D. P. San-Román-Alerigi, D. H. Anjum, Y. Zhang, X. Yang, A. B. Slimane, T. K. Ng, M. N. Hedhili, M. Alsunaidi, and B. S. Ooi, “Electron irradiation induced reduction of the permittivity of chalcogenide glass (As2S3) thin film,” J. Appl. Phys. 113, 044116 (2013).
[CrossRef]

Olivares, J.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Ooi, B. S.

D. P. San-Román-Alerigi, D. H. Anjum, Y. Zhang, X. Yang, A. B. Slimane, T. K. Ng, M. N. Hedhili, M. Alsunaidi, and B. S. Ooi, “Electron irradiation induced reduction of the permittivity of chalcogenide glass (As2S3) thin film,” J. Appl. Phys. 113, 044116 (2013).
[CrossRef]

Osellame, R.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, S. Shen, and A. Jha, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Conference on Lasers and Electro-Optics (Optical Society of America, 2007).

Peng, B.

Perepelitsa, G.

Psaila, N. D.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, S. Shen, and A. Jha, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Conference on Lasers and Electro-Optics (Optical Society of America, 2007).

Qiu, F.

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105, 871–875 (2011).
[CrossRef]

F. Qiu, T. Narusawa, and J. Zheng, “Swift and heavy ion implanted chalcogenide laser glass waveguides and their different refractive index distributions,” Appl. Opt. 50, 733–737 (2011).
[CrossRef]

Quémard, C.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high nonlinear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435–1440 (2001).
[CrossRef]

Rice, C. E.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photononics,” Nat. Photonics 5, 141–148 (2011).

Rose, A.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[CrossRef]

Sanghera, J. S.

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14, 1797–1803 (2006).
[CrossRef]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 6, 256–257 (1999).

San-Román-Alerigi, D. P.

D. P. San-Román-Alerigi, D. H. Anjum, Y. Zhang, X. Yang, A. B. Slimane, T. K. Ng, M. N. Hedhili, M. Alsunaidi, and B. S. Ooi, “Electron irradiation induced reduction of the permittivity of chalcogenide glass (As2S3) thin film,” J. Appl. Phys. 113, 044116 (2013).
[CrossRef]

Schell, B. R.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[CrossRef]

Scifres, D. R.

D. R. Scifres, R. D. Burnham, and W. Streifer, “Branching waveguide coupler in a GaAs/GaAlAs injection laser,” Appl. Phys. Lett. 32, 658–661 (1978).
[CrossRef]

Shapira, O.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6, 229–233 (2012).
[CrossRef]

Shaw, L. B.

Shen, S.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, S. Shen, and A. Jha, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Conference on Lasers and Electro-Optics (Optical Society of America, 2007).

Shimakawa, K.

K. Tanaka and K. Shimakawa, “Chalcogenide glasses in Japan: a review on photoinduced phenomena,” Phys. Status Solidi B 246, 1744–1757 (2009).
[CrossRef]

Sigel, G.

V. Krasteva, D. Hensley, and G. Sigel, “The effect of compositional variations on the properties of rare-earth doped Ge-S-I chalcohalide glasses,” J. Non-Cryst. Solids 222, 235–242 (1997).
[CrossRef]

Slimane, A. B.

D. P. San-Román-Alerigi, D. H. Anjum, Y. Zhang, X. Yang, A. B. Slimane, T. K. Ng, M. N. Hedhili, M. Alsunaidi, and B. S. Ooi, “Electron irradiation induced reduction of the permittivity of chalcogenide glass (As2S3) thin film,” J. Appl. Phys. 113, 044116 (2013).
[CrossRef]

Smektala, F.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high nonlinear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435–1440 (2001).
[CrossRef]

Sorin, F.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6, 229–233 (2012).
[CrossRef]

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

Stolyarov, A. M.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6, 229–233 (2012).
[CrossRef]

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[CrossRef]

Streifer, W.

D. R. Scifres, R. D. Burnham, and W. Streifer, “Branching waveguide coupler in a GaAs/GaAlAs injection laser,” Appl. Phys. Lett. 32, 658–661 (1978).
[CrossRef]

Sun, J. R.

T. Liu, C. X. Liu, H. T. Guo, Q. Huang, P. Liu, S. S. Guo, L. Zhang, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Visible and near-infrared optical properties of chalcogenide glass waveguides formed by swift Kr ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 314, 166–169 (2013).
[CrossRef]

Tanaka, K.

K. Tanaka and K. Shimakawa, “Chalcogenide glasses in Japan: a review on photoinduced phenomena,” Phys. Status Solidi B 246, 1744–1757 (2009).
[CrossRef]

Tang, G.

Z. Y. Yang, G. Tang, L. Luo, and W. Chen, “Visible transparent GeSe2-Ga2Se3-KX (X=I, Br, or Cl) glasses for infrared optics,” J. Am. Ceram. Soc. 90, 667–669 (2007).
[CrossRef]

Tao, H.

H. Guo, Y. Zhai, H. Tao, Y. Gong, and X. Zhao, “Synthesis and properties of GeS2-Ga2S3-PbI2 chalcohalide glasses,” Mater. Res. Bull. 42, 1111–1118 (2007).
[CrossRef]

Thomson, R. R.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, S. Shen, and A. Jha, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Conference on Lasers and Electro-Optics (Optical Society of America, 2007).

Townsend, P. D.

L. Zhang, P. J. Chandler, and P. D. Townsend, “Extra ‘strange’ modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70, 1185–1189 (1991).
[CrossRef]

Veselka, J. J.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

Viens, J.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

Wang, K. M.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

Wang, X.

T. Liu, Q. Huang, P. Liu, S. Guo, L. Zhang, Y. Zhou, and X. Wang, “Planar and channel waveguides in fused silica fabricated by multi-energy C ion in the visible and near-infrared band,” Nucl. Instrum. Methods Phys. Res., Sect. B 307, 472–476 (2013).
[CrossRef]

X. Wang, Z. Wang, J. Yu, C. Liu, X. Zhao, and Q. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
[CrossRef]

Wang, X. L.

T. Liu, C. X. Liu, H. T. Guo, Q. Huang, P. Liu, S. S. Guo, L. Zhang, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Visible and near-infrared optical properties of chalcogenide glass waveguides formed by swift Kr ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 314, 166–169 (2013).
[CrossRef]

T. Liu, P. Liu, L. Zhang, Y. F. Zhou, X. F. Yu, J. H. Zhao, and X. L. Wang, “Visible and near-infrared planar waveguide structure of polycrystalline zinc sulfide from C ions implantation,” Opt. Express 21, 4671–4676 (2013).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

Wang, Y.

Wang, Z.

X. Wang, Z. Wang, J. Yu, C. Liu, X. Zhao, and Q. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
[CrossRef]

Wang, Z. G.

T. Liu, C. X. Liu, H. T. Guo, Q. Huang, P. Liu, S. S. Guo, L. Zhang, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Visible and near-infrared optical properties of chalcogenide glass waveguides formed by swift Kr ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 314, 166–169 (2013).
[CrossRef]

Wei, L.

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6, 229–233 (2012).
[CrossRef]

Yang, X.

D. P. San-Román-Alerigi, D. H. Anjum, Y. Zhang, X. Yang, A. B. Slimane, T. K. Ng, M. N. Hedhili, M. Alsunaidi, and B. S. Ooi, “Electron irradiation induced reduction of the permittivity of chalcogenide glass (As2S3) thin film,” J. Appl. Phys. 113, 044116 (2013).
[CrossRef]

Yang, Z. Y.

Z. Y. Yang, G. Tang, L. Luo, and W. Chen, “Visible transparent GeSe2-Ga2Se3-KX (X=I, Br, or Cl) glasses for infrared optics,” J. Am. Ceram. Soc. 90, 667–669 (2007).
[CrossRef]

Yu, J.

X. Wang, Z. Wang, J. Yu, C. Liu, X. Zhao, and Q. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
[CrossRef]

Yu, X. F.

Zhai, Y.

H. Guo, Y. Zhai, H. Tao, Y. Gong, and X. Zhao, “Synthesis and properties of GeS2-Ga2S3-PbI2 chalcohalide glasses,” Mater. Res. Bull. 42, 1111–1118 (2007).
[CrossRef]

Zhang, L.

T. Liu, P. Liu, L. Zhang, Y. F. Zhou, X. F. Yu, J. H. Zhao, and X. L. Wang, “Visible and near-infrared planar waveguide structure of polycrystalline zinc sulfide from C ions implantation,” Opt. Express 21, 4671–4676 (2013).
[CrossRef]

T. Liu, C. X. Liu, H. T. Guo, Q. Huang, P. Liu, S. S. Guo, L. Zhang, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Visible and near-infrared optical properties of chalcogenide glass waveguides formed by swift Kr ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 314, 166–169 (2013).
[CrossRef]

T. Liu, Q. Huang, P. Liu, S. Guo, L. Zhang, Y. Zhou, and X. Wang, “Planar and channel waveguides in fused silica fabricated by multi-energy C ion in the visible and near-infrared band,” Nucl. Instrum. Methods Phys. Res., Sect. B 307, 472–476 (2013).
[CrossRef]

L. Zhang, P. J. Chandler, and P. D. Townsend, “Extra ‘strange’ modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70, 1185–1189 (1991).
[CrossRef]

Zhang, X. H.

H. L. Ma, Y. Guimond, X. H. Zhang, and J. Lucas, “Ga–Ge–Sb–Se based glasses and influence of alkaline halide addition,” J. Non-Cryst. Solids 256–257, 165–169 (1999).
[CrossRef]

Zhang, Y.

D. P. San-Román-Alerigi, D. H. Anjum, Y. Zhang, X. Yang, A. B. Slimane, T. K. Ng, M. N. Hedhili, M. Alsunaidi, and B. S. Ooi, “Electron irradiation induced reduction of the permittivity of chalcogenide glass (As2S3) thin film,” J. Appl. Phys. 113, 044116 (2013).
[CrossRef]

Zhao, J. H.

Zhao, X.

H. Guo, Y. Zhai, H. Tao, Y. Gong, and X. Zhao, “Synthesis and properties of GeS2-Ga2S3-PbI2 chalcohalide glasses,” Mater. Res. Bull. 42, 1111–1118 (2007).
[CrossRef]

X. Wang, Z. Wang, J. Yu, C. Liu, X. Zhao, and Q. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
[CrossRef]

Zheng, J.

Zhou, Y.

T. Liu, Q. Huang, P. Liu, S. Guo, L. Zhang, Y. Zhou, and X. Wang, “Planar and channel waveguides in fused silica fabricated by multi-energy C ion in the visible and near-infrared band,” Nucl. Instrum. Methods Phys. Res., Sect. B 307, 472–476 (2013).
[CrossRef]

Zhou, Y. F.

T. Liu, C. X. Liu, H. T. Guo, Q. Huang, P. Liu, S. S. Guo, L. Zhang, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Visible and near-infrared optical properties of chalcogenide glass waveguides formed by swift Kr ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 314, 166–169 (2013).
[CrossRef]

T. Liu, P. Liu, L. Zhang, Y. F. Zhou, X. F. Yu, J. H. Zhao, and X. L. Wang, “Visible and near-infrared planar waveguide structure of polycrystalline zinc sulfide from C ions implantation,” Opt. Express 21, 4671–4676 (2013).
[CrossRef]

Zou, K.

Adv. Mater. (1)

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105, 871–875 (2011).
[CrossRef]

Appl. Phys. Lett. (4)

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94, 011109 (2009).
[CrossRef]

D. R. Scifres, R. D. Burnham, and W. Streifer, “Branching waveguide coupler in a GaAs/GaAlAs injection laser,” Appl. Phys. Lett. 32, 658–661 (1978).
[CrossRef]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

X. Wang, Z. Wang, J. Yu, C. Liu, X. Zhao, and Q. Gong, “Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass,” Chem. Phys. Lett. 399, 230–233 (2004).
[CrossRef]

J. Am. Ceram. Soc. (2)

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794–1796 (1990).
[CrossRef]

Z. Y. Yang, G. Tang, L. Luo, and W. Chen, “Visible transparent GeSe2-Ga2Se3-KX (X=I, Br, or Cl) glasses for infrared optics,” J. Am. Ceram. Soc. 90, 667–669 (2007).
[CrossRef]

J. Appl. Phys. (3)

L. Zhang, P. J. Chandler, and P. D. Townsend, “Extra ‘strange’ modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70, 1185–1189 (1991).
[CrossRef]

D. P. San-Román-Alerigi, D. H. Anjum, Y. Zhang, X. Yang, A. B. Slimane, T. K. Ng, M. N. Hedhili, M. Alsunaidi, and B. S. Ooi, “Electron irradiation induced reduction of the permittivity of chalcogenide glass (As2S3) thin film,” J. Appl. Phys. 113, 044116 (2013).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

J. Non-Cryst. Solids (3)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 6, 256–257 (1999).

V. Krasteva, D. Hensley, and G. Sigel, “The effect of compositional variations on the properties of rare-earth doped Ge-S-I chalcohalide glasses,” J. Non-Cryst. Solids 222, 235–242 (1997).
[CrossRef]

H. L. Ma, Y. Guimond, X. H. Zhang, and J. Lucas, “Ga–Ge–Sb–Se based glasses and influence of alkaline halide addition,” J. Non-Cryst. Solids 256–257, 165–169 (1999).
[CrossRef]

J. Phys. Chem. Solids (1)

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high nonlinear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435–1440 (2001).
[CrossRef]

Mater. Res. Bull. (1)

H. Guo, Y. Zhai, H. Tao, Y. Gong, and X. Zhao, “Synthesis and properties of GeS2-Ga2S3-PbI2 chalcohalide glasses,” Mater. Res. Bull. 42, 1111–1118 (2007).
[CrossRef]

Nat. Photonics (2)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photononics,” Nat. Photonics 5, 141–148 (2011).

A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, and Y. Fink, “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nat. Photonics 6, 229–233 (2012).
[CrossRef]

Nature (1)

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

Nucl. Instrum. Methods Phys. Res., Sect. B (2)

T. Liu, Q. Huang, P. Liu, S. Guo, L. Zhang, Y. Zhou, and X. Wang, “Planar and channel waveguides in fused silica fabricated by multi-energy C ion in the visible and near-infrared band,” Nucl. Instrum. Methods Phys. Res., Sect. B 307, 472–476 (2013).
[CrossRef]

T. Liu, C. X. Liu, H. T. Guo, Q. Huang, P. Liu, S. S. Guo, L. Zhang, Y. F. Zhou, J. R. Sun, Z. G. Wang, and X. L. Wang, “Visible and near-infrared optical properties of chalcogenide glass waveguides formed by swift Kr ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 314, 166–169 (2013).
[CrossRef]

Opt. Express (4)

Opt. Mater. (1)

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

Phys. Status Solidi B (1)

K. Tanaka and K. Shimakawa, “Chalcogenide glasses in Japan: a review on photoinduced phenomena,” Phys. Status Solidi B 246, 1744–1757 (2009).
[CrossRef]

Phys. Status Solidi C (1)

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1, 3126–3129 (2004).
[CrossRef]

Other (2)

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, S. Shen, and A. Jha, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Conference on Lasers and Electro-Optics (Optical Society of America, 2007).

J. F. Ziegler, “Computer code,” SRIM http://www.srim.org

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the experimental setup for end-face coupling in the near-infrared region with a tunable diode laser.

Fig. 2.
Fig. 2.

A photograph, collected by a metallographic microscope with 200× magnification using reflected polarized light, of the C ion-implanted chalcohalide glass.

Fig. 3.
Fig. 3.

Relative atom displacement distribution of modes for the waveguide fabricated by C ion implantation.

Fig. 4.
Fig. 4.

Measured near-field intensity distributions of the TE mode for the waveguide fabricated by C ions at wavelength of 633 nm.

Fig. 5.
Fig. 5.

Measured near-field intensity distributions of modes for the waveguide fabricated by C ions in the near-infrared band: (a) 1300 nm, (b) 1400 nm, (c) 1539 nm.

Fig. 6.
Fig. 6.

Micro-Raman spectra measured in the chalcohalide glass waveguide formed by 5.5 and 6.0 MeV C ions.

Metrics